

More Verifier Efficient Interactive Proofs For Bounded Space

Joshua Cook

Program To Run

Deterministic Machine M in TISP[T, S]

 Time T, Space S
 Think S ≪ n ≪ T

-
$$S = n^{\alpha}$$
, $T = {}_{2}S^{\beta}$, for α , $\beta > 1$

O(log(n) + log(S))

Input	Memory	Head	IC
n	S		O(1)

Arthur Doesn't Have Time!

Arthur wants to run M. Doesn't have exponential time in S!

Merlin can help, but untrusted. Has exponential time, but just 2^{O(S)}.

Interactive Proofs (IPs) Untrusted Merlin (Prover P) Randomized Arthur (Verifier V)

Many Questions and Answers.

Results

Interactive Time L in ITIME[T_V, T_P] Verifier time T_V, Prover time T_P

Completeness: If x in L, then P convinces V with probability ²/₃ Soundness: If x not in L, then NO P' convinces V with probability ¹/₃

Main Result for TISP[T, S] US: ITIME[$\tilde{O}(\log(T)S + n), 2^{O(S)}$]

(Previous Best, time not explicit prior) Sha: ITIME[$\tilde{O}(\log(T)(S + n)), 2^{O(\log(T)(S + n))}$] GKR: ITIME[$\tilde{O}(\log(T)S^2 + n), 2^{O(S)}$] RRR: ITIME[$T^{o(1)}S^2 + n, T^{1+o(1)}S^{O(1)}$]

Us Vs Shamir

 $\begin{array}{ll} \text{IP for SPACE}[n^{\alpha}] \quad \text{T = } 2^{\text{S}} \\ \text{Verifier Time } n^{\beta} \end{array}$

 α vs β

Ours is better when S < n

Our prover is ALWAYS faster $_2O(S)$ vs $_2O(S^2)$

IPs for Randomized Space

- · Let L ∈ BPSPACE[S]
- Standard: Saks Zhou, $L \in SPACE[S^{3/2}]$:
 - Shamir, L has time S^3 verifier
- Us, Use Nisan's PRG with Our IP:
 - Reduction: space S, input length S^2
 - Our IP, L has time S^2 verifier
 - Match's deterministic IP

Nondeterministic Result IP for NTISP[T, S]

US: ITIME[$\tilde{O}(\log(T)^{2}S + n), 2^{O(S)}$] Sha: ITIME[$\tilde{O}(\log(T)^{2}(S + n)), 2^{O(\log(T)(S + n))}$] GKR: ITIME[$\tilde{O}(\log(T)S^{2} + n), 2^{O(S)}$] RRR: NIA

Us Vs GKR IP for NTISP[$_2$ n^{α}, n] Verifier Time n^{β}

 α vs β

Ours is better When $T \ll 2^S$ Deterministic Algorithm

Both Prover 2^{O(S)}

Proof

Proof Outline

Us

- Space to Matrix
 Simpler reduction
- Matrix Sum Check
 Simpler
- Arithmetize Multitape
 - Allows S < n

Shamir

- Space to QBF
 - Needs conditioning
- QBF Sum Check
 - Requires Specific
 Format Reduction
- Arithmetize Single

Why Not Single Tape TM? Single tape TM require S > n

Concern, need Õ(n + S) time arithmetization Show for multitape TM, paper uses RAM

RAM more efficient, only constant factor

Reduction To Matrix

Computation Graph

View space S program as 2^S state graph, G Edges are state transitions

Graph is a function of Input, Program

Accepts IFF there is a length T path from start to end.

Edges are fast to compute

Adjacency Matrix

Represent G as an adjacency, M

Algorithm accepts in time T iff $M^{T}_{start, end} = 1$

By repeated squaring, $M^{T} = {}_{M}2^{t}$ For t = log(T)

Run matrix sum check log(T) times

Matrix Sum Check

Sum Check (LFKN) Given: individual degree d polynomial, p: $\mathbb{F}^{S} \rightarrow \mathbb{F}$, and $\alpha \in \mathbb{F}$

Reduce claim:

$$\alpha = \sum_{a \in \{0,1\}^s} p(a)$$

To new claim:

 $\Box = p(b)$
some $\Box \in \mathbb{F}, b \in \mathbb{F}^{S}$

Sum Check Protocol

- Ask for $p_1(x)$
- Check if α
- Set b₁
- Ask for
- Check if
- $p_1(x) = \overline{\sum_{a \in \{0,1\}^{S-1}} p(x, a)}$ $= p_1(0) + p_1(1)$ randomly $p_2(x) = \sum_{a \in \{0,1\}^{S-2}} p(b_1, x, a)$ $p_1(b_1) = p_2(0) + p_2(1)$

Sum Check Idea (Schwartz-Zippel)

If $\alpha \neq \sum_{a \in \{0,1\}^s} p(a)$, then p_1 is incorrect.

 p_1 is degree d, equal to true $p_1 \le d$ places

 $Pr[agree at b_1] \le d / |\mathbb{F}|$

Sum Check Performance There exists an IP with verifier V, prover P: If $\alpha = \sum_{a \in \{0,1\}^s} p(a)$, with P, V gives $\Box \in \mathbb{F}$ and $b \in \mathbb{F}^S$ s.t. $\Box = p(b)$ Completeness: If $\alpha \neq \sum_{a \in \{0,1\}^s} p(a)$, for any P', V gives Soundness: $\Box = p(b)$ with probability < Sd / \mathbb{F} Prover $2^{O(S)} \tilde{O}(\log(|\mathbb{F}|))$ Time: Verifier Sd $\tilde{O}(\log(|\mathbb{F}|))$

Matrix Multilinear Extension For $2^{s}x2^{s}$ matrix M containing elements of \mathbb{F}

Let $M : \mathbb{F}^S \times \mathbb{F}^S \to \mathbb{F}$ be s.t. M is multilinear (individual degree 1) For any a, $c \in \{0,1\}^S$, $M(a, c) = M_{a,c}$

Matrix Sum Check (Thaler) By definition $M_{a,c}^2 = \sum_{b \in \{0,1\}^s} M_{a,b} M_{b,c}$

Also have $M^2(a,c) = \sum_{b \in \{0,1\}^s} M(a,b)M(b,c)$

For claim $\alpha = M^2(a,c)$, let p(b) = M(a,b)M(b,c)Sum check reduces to $\Box = M(a,b)M(b,c)$

Product Reduction

Reduce claim: $\Box = p(a)p(b)$ To new claim: $\alpha' = p(c)$

- Let ψ : $\mathbb{F} \to \mathbb{F}^S$ be line s.t. $\psi(0) = a, \psi(1) = b$ $\psi(x) = (1-x) a + x b$
- Ask for degree S polynomial $q(x) \triangleq p(\psi(x))$
- Check if $\Box = q(0)q(1)$
- For random z, set $\alpha' = q(z)$, $c = \psi(z)$

 $\alpha' = q(z) = p(\psi(z)) = p(c)$

Repeated Square Rooting For start a, end b: Verifier given claim $M^{T}_{a,b}=1$, or $M^{T}(a,b)=1$ Reduce to claim $M^{2^{t-1}}_{(a',b')}=\alpha'$, $M^{2^{t-2}}_{(a'',b'')}=\alpha''$...

After log(T) times, have claim $M(a^*,b^*) = \alpha^*$ Uses S log(T) operations over \mathbb{F}

Arithmetization

Calculate M, multilinear extension From program definition, $M_{a,b}$ simple.

How to calculate M?

Sum over every edge in program, simple formula can calculate easily.

Two Tape TM

Program has two tapes, input and working, Λ program transitions

Input x, Initial state a = (p, i, h, w) Final state b = (p', i', h', w')

p, p' TM program states,i, i' input headsh, h' working space headsw, w' working space contents

Transition Function $\sum_{\lambda \in \Lambda} u(\lambda, p) v(\lambda, p') lnp(\lambda, x, i, i') Wrk(\lambda, h, h', w, w')$

- u λ is from state p v λ is to state p' Inp x at i has symbol in λ , i' is i+1 or i-1 from λ
- Wrk wat h from λ , h' is h+1 or h-1 from λ , w' at h from λ , w' = w elsewhere

Use different symbols! Calculate extensions separately!

Closer Look: Wrk(λ , h, h', w, w') $\sum_{i \in [S]} eq(i, h) eq(i+D(\lambda), h') bef(i, w, w') aft(i, w, w')$ $eq(us(\lambda), w_i) eq(vs(\lambda), w'_i)$

eqchecks equalityD1 for R, -1 for Lbefequality before iaftequality after iusstarting symbolvsending symbolUse different symbols! Calculate extensions separately!

Calculate Wrk Efficiently

- $eq(w_i, w'_i) = w_i w'_i + (1 w'_i)(1 w'_i)$ • $bef(i+1, w, w') = bef(i, w, w') eq(w_i, w'_i)$
- bef(i, w, w') can be calculated for each i in
 O(S) operations. aft similarly
- Similarly, eq(i, h) for each i with O(S) ops.
- Only O(S) operations in Wrk

Finishing up Arithmetization

Inp similarly calculated in O(n) operations
 Total M only takes O(n + S) operations.

Prover Time

Entire M can be constructed in time ~ 2^{2S}

Each M^k for k = 2^i in time ~ log(T) $2^{\omega S}$

Any M^k(a, b) calculated in time ~ 2^{2S}

Open Problems

- Remove log(T) factor from verifier time
 Do nondeterministic algorithms have same verifier time as deterministic?
- Same verifier time, poly(T) time prover?
- Gives quadratic gap interactive hierarchy
 - Fine grain interactive hierarchy?

Citations

- Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. "Algebraic methods for interactive proof systems". FOCS 1990.
- Adi Shamir. "IP = PSPACE". JACM 1992."
- Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
 "Delegating computation: Interactive proofs for muggles". JACM 2015.
- Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. "Constant-round interactive proofs for delegating computation". STOC 2016.
- Michael Saks and Shiyu Zhou. "BpH space(s)⊆dspace(s3/2)". J. Comput. Syst. Sci. 1999.
- Noam Nisan. "Pseudorandom generators for space-bounded computations". STOC 1990.
- Justin Thaler. "Time-Optimal Interactive Proofs for Circuit Evaluation". CRYPTO 2013.