More Verifier Efficient Interactive Proofs For Bounded Space

Joshua Cook

Program To Run

- Deterministic Machine M in TISP[T, S] - Time T, Space S
- Think $S \ll n \ll T$
- $S=n^{\alpha}, T={ }_{2} S^{\beta}$, for $\alpha, \beta>1$
$\mathrm{O}(\log (\mathrm{n})+\log (\mathrm{S}))$

Arthur Doesn't Have Time!

Arthur wants to run M.
Doesn't have exponential time in S!

Merlin can help, but untrusted. Has exponential time, but just $2^{\mathrm{O}(\mathrm{S})}$.

Interactive Proofs (IPs)

Untrusted Merlin (Prover P)
Randomized Arthur (Verifier V)

Many Questions and Answers.

Results

Interactive Time

L in ITIME $\left[T_{V}, T_{p}\right]$ Verifier time T_{V}, Prover time T_{P}

Completeness: If x in L, then P convinces V with probability $2 / 3$
Soundness: If x not in L, then NO P' convinces V with probability $1 / 3$

Main Result for TISP[T, S]
 US: ITIME[Õ(log(T)S + n), $2^{0(S)]}$

(Previous Best, time not explicit prior) Sha: ITIME[Õ($\left.\log (T)(S+n)), 2^{O(\log (T)(S+n))}\right]$
GKR: ITIME[Õ($\left.\left.\log (T) \mathrm{S}^{2}+n\right), 2^{\mathrm{O}(\mathrm{S})}\right]$
RRR: ITIME[To(1) $\left.S^{2}+n, T^{1+o(1)} S^{O(1)}\right]$

Verifier Time vs Space (When $\mathrm{T}=2^{\wedge} \mathrm{S}$)

Us Vs Shamir

IP for SPACE[n $\left.{ }^{\alpha}\right] \quad \mathrm{T}=2^{\mathrm{S}}$
Verifier Time n^{β}
α vs β

Ours is better when $\mathrm{S}<\mathrm{n}$

Our prover is ALWAYS faster ${ }_{2} \mathrm{O}(\mathrm{S})$ vs ${ }_{2} \mathrm{O}\left(\mathrm{S}^{2}\right)$

IPs for Randomized Space

- Let L E BPSPACE[S]
- Standard: Saks Zhou, L \in SPACE[S $\left.{ }^{3 / 2}\right]$:
- Shamir, L has time S^{3} verifier
- Us, Use Nisan's PRG with Our IP:
- Reduction: space S, input length S^{2}
- Our IP, L has time S² verifier
- Match's deterministic IP

Nondeterministic Result IP for NTISP[T, S]

US: ITIME[Õ $\left.\left(\log (T)^{2} S+n\right), 2^{0(S)}\right]$
Sha: ITIME[Õ($\left(\log (T)^{2}(S+n)\right), 2^{O(\log (T)(S+}$
n)]

GKR: ITIME[Õ(log(T)S2 $\left.+n), 2^{O(S)}\right]$
RRR. N/

Us Vs GKR

IP for NTISP[${ }_{2}{ }^{n}, \mathrm{n}$] Verifier Time n^{β}
α vs β

Ours is better
When $T \ll 2^{\text {s }}$
Deterministic Algorithm

Both Prover $2^{\mathrm{O}(\mathrm{S})}$

Proof

Proof Outline

Us

- Space to Matrix
- Simpler reduction
- Matrix Sum Check
- Simpler
- Arithmetize Multitape
- Allows S < n

Shamir

- Space to QBF
- Needs conditioning
- QBF Sum Check
- Requires Specific

Format Reduction

- Arithmetize Single

Why Not Single Tape TM?
 Single tape TM require S > n

Concern, need Õ(n + S) time arithmetization Show for multitape TM, paper uses RAM

RAM more efficient, only constant factor

Reduction To Matrix

$$
\begin{array}{l|r}
\text { Input } & 1010001 \\
+0110110
\end{array}
$$

Adjacency Matrix

Represent G as an adjacency, M

Algorithm accepts in time T iff

$$
\mathrm{M}_{\text {start, end }}^{\top}=1
$$

By repeated squaring,

$$
M^{\top}=M^{2^{t}}
$$

For $\mathrm{t}=\log (\mathrm{T})$

Run matrix sum check $\log (T)$ times

	1														
			1												
				1											
					1										
					1	1									
						1	1								
								1							
								1							
									1						
								1							
										1	1				
											1	1			
										1					
										1					

Matrix Sum Check

Sum Check (LFKN)

Given: individual degree d polynomial, $\mathrm{p}: \mathbb{F}^{S} \rightarrow \mathbb{F}$, and $\alpha \in \mathbb{F}$

Reduce claim:

$$
\alpha=\sum_{\mathrm{a} \in\{0,1\}^{\mathrm{s}}} \mathrm{p}(\mathrm{a})
$$

To new claim:
$\square=p(b)$
some $\square \in \mathbb{F}, b \in \mathbb{F}^{s}$

Sum Check Protocol

- Ask for $p_{1}(x)=\sum_{a \in\{0,1\}^{s-1}} p(x, a)$
- Check if $\alpha=p_{1}(0)+p_{1}(1)$
- Set
b_{1} randomly
- Ask for
$p_{2}(x)=\sum_{a \in\{0,1\}^{s .2}} p\left(b_{1}, x, a\right)$
. Check if
$p_{1}\left(b_{1}\right)=p_{2}(0)+p_{2}(1)$

Sum Check Idea
(Schwartz-Zippel)

If $\alpha \neq \sum_{a \in\{0,1\}^{\mathrm{s}}} p(\mathrm{a})$, then p_{1} is incorrect.
p_{1} is degree d, equal to true $p_{1} \leq d$ places
$\operatorname{Pr}\left[\right.$ agree at $\left.b_{1}\right] \leq d /|\mathbb{F}|$

Sum Check Performance

There exists an IP with verifier V, prover P:
Completeness: If $\alpha=\sum_{\mathrm{a} \in\{0,1\}^{s}} \mathrm{p}(\mathrm{a})$, with P, V gives $\square \in \mathbb{F}$ and $b \in \mathbb{F}^{\mathbb{S}}$ s.t. $\square=p(b)$

Soundness: If $\alpha \neq \sum_{a \in\{0,1\}^{s}} p(a)$, for any P^{\prime}, V gives $\square=p(b)$ with probability $<\mathrm{Sd} /|\mathbb{F}|$

Time: Verifier Sd Õ($\log (|\mathbb{F}|))$
Prover $2^{\mathrm{O}(\mathrm{S})} \mathrm{O}(\log (|\mathbb{F}|))$

Matrix Multilinear Extension
For $2^{s} \times 2^{s}$ matrix M containing elements of \mathbb{F}

Let $\mathbf{M}: \mathbb{F}^{\mathbb{S}} \times \mathbb{F}^{\mathbb{S}} \rightarrow \mathbb{F}$ be s.t.
\mathbf{M} is multilinear (individual degree 1)
For any $a, c \in\{0,1\}^{\mathrm{S}}, \mathrm{M}(\mathrm{a}, \mathrm{c})=\mathrm{M}_{\mathrm{a}, \mathrm{c}}$

Matrix Sum Check (Thaler)

By definition $\quad M^{2}{ }_{a, c}=\sum_{b \in\{0,1\}} M_{a, b} M_{b, c}$
Also have $\quad M^{2}(a, c)=\sum_{b \in\{0,1\}^{\mathbf{s}}} M(a, b) M(b, c)$
For claim $\alpha=M^{2}(a, c)$, let $p(b)=M(a, b) M(b, c)$ Sum check reduces to $\square=M(a, b) M(b, c)$

Product Reduction

Reduce claim: $\square=\mathrm{p}(\mathrm{a}) \mathrm{p}(\mathrm{b})$
To new claim: $\alpha^{\prime}=p(c)$

- Let $\Psi: \mathbb{F}^{\mathrm{F}} \rightarrow \mathbb{F}^{S}$ be line s.t. $\psi(0)=a, \Psi(1)=\mathrm{b}$

$$
\Psi(x)=(1-x) a+x b
$$

- Ask for degree S polynomial $q(x) \stackrel{\text { 此 }}{=} p(\Psi(x))$
- Check if $\quad \square=q(0) q(1)$
- For random z, set $\alpha^{\prime}=q(z), c=\psi(z)$

$$
\alpha^{\prime}=q(z)=p(\Psi(z))=p(c)
$$

Repeated Square Rooting

For start a, end b:
Verifier given claim $\mathrm{M}^{\top}{ }_{\mathrm{a}, \mathrm{b}}=1$, or $\mathbf{M}^{\top}(\mathrm{a}, \mathrm{b})=1$
Reduce to claim $M^{2^{t-1}}{ }_{\left(a^{\prime}, b^{\prime}\right)}=\alpha^{\prime}, M^{2^{t-2}}{ }_{\left(a^{\prime \prime}, b^{\prime \prime}\right)}=\alpha^{\prime \prime} \ldots$
After $\log (\mathrm{T})$ times, have claim $\mathrm{M}\left(\mathrm{a}^{*}, \mathrm{~b}^{*}\right)=\alpha^{*}$ Uses $S \log (T)$ operations over \mathbb{F}

Arithmetization

Calculate M, multilinear extension From program definition, $\mathrm{M}_{\mathrm{a}, \mathrm{b}}$ simple.

How to calculate \mathbf{M} ?

Sum over every edge in program, simple formula can calculate easily.

Two Tape TM

Program has two tapes, input and working, \wedge program transitions

Input x,
Initial state $a=(p, i, h, w)$
Final state $\mathrm{b}=\left(\mathrm{p}^{\prime}, \mathrm{i}^{\prime}, \mathrm{h}^{\prime}, \mathrm{w}^{\prime}\right)$
p, p' TM program states, i, i' input heads
h, h' working space heads
w, w' working space contents

w

h

p

1, R
$1,1, \mathrm{~L}$
1, R
$0,0, L$

$0, R$
$0,1, R$

Transition Function
 $\sum_{\lambda \in \Lambda} u(\lambda, p) v\left(\lambda, p^{\prime}\right) \operatorname{Inp}\left(\lambda, x, i, i^{\prime}\right) \operatorname{Wrk}\left(\lambda, h, h^{\prime}, w, w^{\prime}\right)$

u $\quad \lambda$ is from state $p \quad v \quad \lambda$ is to state p ' Inp x at i has symbol in λ, i is $i+1$ or $i-1$ from λ

Wrk w at h from λ, h ' is $\mathrm{h}+1$ or $\mathrm{h}-1$ from λ, w^{\prime} at h from $\lambda, w^{\prime}=\mathrm{w}$ elsewhere

Use different symbols! Calculate extensions separately!

Closer Look: Wrk(λ, h, h', w, w')
 $\sum_{i \in[S]} e q(i, h) \operatorname{eq}\left(i+D(\lambda), h^{\prime}\right) \operatorname{bef}\left(i, w, w^{\prime}\right) \operatorname{aft}\left(i, w, w^{\prime}\right)$ eq(us(λ), $\left.w_{i}\right)$ eq(vs(λ), $\left.w_{i}^{\prime}\right)$

eq checks equality bef equality before i us starting symbol

D aft equality after i vs ending symbol Use different symbols! Calculate extensions separately!

Calculate Wrk Efficiently

- eq($\left.\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}^{\prime}\right)=\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}^{\prime}+\left(1-\mathrm{w}_{\mathrm{i}}^{\prime}\right)\left(1-\mathrm{w}_{\mathrm{i}}^{\prime}\right)$
- $\operatorname{bef}\left(i+1, w, w^{\prime}\right)=\operatorname{bef}\left(i, w, w^{\prime}\right) \operatorname{eq}\left(w_{i}, w_{i}^{\prime}\right)$
- bef(i, w, w') can be calculated for each i in O(S) operations. aft similarly
- Similarly, eq(i, h) for each i with O(S) ops.
- Only O(S) operations in Wrk

Finishing up Arithmetization

- Inp similarly calculated in O(n) operations
- Total M only takes O(n + S) operations.

Prover Time

Entire M can be constructed in time $\sim 2^{2 S}$

Each M^{k} for $\mathrm{k}=2^{\mathrm{i}}$ in time $\sim \log (\mathrm{T}) 2^{\omega \mathrm{S}}$

Any $\mathrm{M}^{\mathrm{k}}(\mathrm{a}, \mathrm{b})$ calculated in time $\sim 2^{2 \mathrm{~S}}$

Open Problems

- Remove $\log (T)$ factor from verifier time
- Do nondeterministic algorithms have same verifier time as deterministic?
. Same verifier time, poly(T) time prover?
- Gives quadratic gap interactive hierarchy
- Fine grain interactive hierarchy?

Citations

- Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. "Algebraic methods for interactive proof systems". FOCS 1990.
- Adi Shamir. "IP = PSPACE". JACM 1992.
- Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. "Delegating computation: Interactive proofs for muggles". JACM 2015.
- Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. "Constant-round interactive proofs for delegating computation". STOC 2016.
- Michael Saks and Shiyu Zhou. "BpH space(s) \subseteq dspace(s3/2)". J. Comput. Syst. Sci. 1999.
- Noam Nisan. "Pseudorandom generators for space-bounded computations". STOC 1990.
- Justin Thaler. "Time-Optimal Interactive Proofs for Circuit Evaluation". CRYPTO 2013.

