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Program To Run
• Deterministic Machine M in TISP[T, S]

– Time T, Space S
• Think S ≪ n ≪ T

– S = n⍺, T = 2Sβ, for ⍺, β > 1
O(log(n) + log(S))

Memory Head ICInput

n S O(1)



Arthur Doesn’t Have Time!
Arthur wants to run M.
Doesn’t have exponential time in S!

Merlin can help, but untrusted.
Has exponential time, but just 2O(S).



Interactive Proofs (IPs)
Untrusted Merlin
(Prover P)
Randomized Arthur
(Verifier V)

Many Questions and 
Answers.



Results



Interactive Time
L in ITIME[TV, TP]

Verifier time TV, Prover time TP

Completeness: If x in L,
then P convinces V with probability ⅔

Soundness: If x not in L,
then NO P’ convinces V with probability ⅓ 



Main Result for TISP[T, S]
US: ITIME[Õ(log(T)S + n), 2O(S)]

(Previous Best, time not explicit prior)
Sha: ITIME[Õ(log(T)(S + n)), 2O(log(T)(S + n))]
GKR: ITIME[Õ(log(T)S2 + n), 2O(S)]
RRR: ITIME[To(1)S2 + n, T1+o(1)SO(1)]



Us Vs Shamir
IP for SPACE[n⍺] T = 2S

Verifier Time nβ

⍺ vs β

Ours is better when S < n

Our prover is ALWAYS faster

2O(S) vs 2O(S2)



IPs for Randomized Space
• Let L ∈ BPSPACE[S]
• Standard: Saks Zhou, L ∈  SPACE[S3/2]:

– Shamir, L has time S3 verifier
• Us, Use Nisan’s PRG with Our IP:

– Reduction: space S, input length S2

– Our IP, L has time S2 verifier
– Match’s deterministic IP



Nondeterministic Result
IP for NTISP[T, S]

US: ITIME[Õ(log(T)2S + n), 2O(S)]
Sha: ITIME[Õ(log(T)2(S + n)), 2O(log(T)(S + 

n))]
GKR: ITIME[Õ(log(T)S2 + n), 2O(S)]
RRR: NA



Us Vs GKR
IP for NTISP[2n⍺, n]

Verifier Time nβ

⍺ vs β

Ours is better
When T ≪ 2S

Deterministic Algorithm

Both Prover 2O(S)



Proof



Proof Outline
Us
• Space to Matrix

– Simpler reduction
• Matrix Sum Check

– Simpler
• Arithmetize Multitape

– Allows S < n

Shamir
• Space to QBF

– Needs conditioning
• QBF Sum Check

– Requires Specific 
Format Reduction

• Arithmetize Single



Why Not Single Tape TM?
Single tape TM require S > n

Concern, need Õ(n + S) time arithmetization
Show for multitape TM, paper uses RAM

RAM more efficient, only constant factor



Reduction To Matrix



Computation Graph
View space S program as
2S state graph, G
Edges are state transitions

Graph is a function of
Input, Program

Accepts IFF there is a length T path 
from start to end.

Edges are fast to compute
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Adjacency Matrix
Represent G as an adjacency, M

Algorithm accepts in time T iff
MT

start, end = 1

By repeated squaring,
MT = M2t

For t = log(T)

Run matrix sum check log(T) times
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Matrix Sum Check



Sum Check (LFKN)
Given: individual degree d polynomial, p: 𝔽S→𝔽, 

and ⍺ ∈ 𝔽

Reduce claim: ⍺ = ∑a∈{0,1}S p(a)

To new claim: ꞵ = p(b)
some ꞵ ∈ 𝔽, b ∈ 𝔽S



Sum Check Protocol
• Ask for p1(x) = ∑a∈{0,1}S-1 p(x, a)
• Check if ⍺ = p1(0) + p1(1)
• Set b1 randomly
• Ask for p2(x) = ∑a∈{0,1}S-2 p(b1, x, a)
• Check if p1(b1) = p2(0) + p2(1)

• …



Sum Check Idea 
(Schwartz-Zippel)

If ⍺ ≠ ∑a∈{0,1}S p(a), then p1 
is incorrect.

p1 is degree d, equal to 
true p1 ≤ d places

Pr[agree at b1] ≤ d / |𝔽|



Sum Check Performance
There exists an IP with verifier V, prover P:

Completeness: If ⍺=∑a∈{0,1}S p(a), with P, V gives
ꞵ∈𝔽 and b∈𝔽S s.t. ꞵ=p(b)

Soundness: If ⍺≠∑a∈{0,1}S p(a), for any P’, V gives 
ꞵ=p(b) with probability < Sd / |𝔽|

Time: Verifier Sd Õ(log(|𝔽|)) Prover 2O(S) Õ(log(|𝔽|))



Matrix Multilinear Extension
For 2Sx2S matrix M containing elements of 𝔽

Let M : 𝔽S ⨉ 𝔽S →𝔽 be s.t.
M is multilinear (individual degree 1)
For any a, c ∈{0,1}S, M(a, c) = Ma,c



Matrix Sum Check (Thaler)
By definition M2

a,c = ∑b∈{0,1}S Ma,bMb,c

Also have M2(a,c)= ∑b∈{0,1}S M(a,b)M(b,c)

For claim ⍺ = M2(a,c), let p(b) = M(a,b)M(b,c)
Sum check reduces to ꞵ = M(a,b)M(b,c)



Product Reduction
Reduce claim: ꞵ = p(a)p(b) 
To new claim: ⍺’ = p(c)
• Let ψ: 𝔽 →𝔽S be line s.t. ψ(0) = a, ψ(1) = b

ψ(x) = (1-x) a + x b
• Ask for degree S polynomial q(x) ≝ p(ψ(x))
• Check if ꞵ = q(0)q(1)
• For random z, set ⍺’ = q(z), c = ψ(z)

⍺’ =  q(z) = p(ψ(z)) = p(c)



Repeated Square Rooting
For start a, end b:
Verifier given claim MT

a,b=1,  or MT(a,b) = 1
Reduce to claim M2t-1

(a’,b’)=⍺’, M2t-2
(a’’,b’’)=⍺’’...

After log(T) times, have claim M(a*,b*) = ⍺*
Uses S log(T) operations over 𝔽 



Arithmetization



Calculate M, multilinear extension
From program definition, Ma,b simple.

How to calculate M?

Sum over every edge in program, simple 
formula can calculate easily.



Two Tape TM
Program has two tapes, input and 
working, Λ program transitions

Input x,
Initial state a = (p, i, h, w)
Final state b = (p’, i’, h’, w’)

p, p’ TM program states,
i, i’ input heads
h, h’ working space heads
w, w’ working space contents

x

w
i

h

p
1, R
0, 0, L

1, R
1, 1, L

0, R
0, 1, R

0, L
1, 0, L



Transition Function
∑λ∈Λ u(λ, p) v(λ, p’) Inp(λ, x, i, i’) Wrk(λ, h, h’, w, w’)

u λ is from state p v λ is to state p’
Inp x at i has symbol in λ, i’ is i+1 or i-1 from λ

Wrk w at h from λ, h’ is h+1 or h-1 from λ,
w’ at h from λ, w’ = w elsewhere

Use different symbols! Calculate extensions separately!



Closer Look: Wrk(λ, h, h’, w, w’)
∑i∈[S] eq(i, h) eq(i+D(λ), h’) bef(i, w, w’) aft(i, w, w’)

eq(us(λ), wi) eq(vs(λ), w’i)

eq checks equality D 1 for R, -1 for L
bef equality before i aft equality after i
us starting symbol vs ending symbol
Use different symbols! Calculate extensions separately!



Calculate Wrk Efficiently
• eq(wi, w’i) = wiw’i + (1 - w’i)(1 - w’i)
• bef(i+1, w, w’) = bef(i, w, w’) eq(wi, w’i)
• bef(i, w, w’) can be calculated for each i in 

O(S) operations. aft similarly
• Similarly, eq(i, h) for each i with O(S) ops.
• Only O(S) operations in Wrk



Finishing up Arithmetization
• Inp similarly calculated in O(n) operations
• Total M only takes O(n + S) operations.



Prover Time
Entire M can be constructed in time ~ 22S

Each Mk for k = 2i in time ~ log(T)2⍵S

Any Mk(a, b) calculated in time ~ 22S



Open Problems
• Remove log(T) factor from verifier time
• Do nondeterministic algorithms have 

same verifier time as deterministic?
• Same verifier time, poly(T) time prover?
• Gives quadratic gap interactive hierarchy

– Fine grain interactive hierarchy?
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