

Tighter Circuit Lower Bounds for MA/1 With Efficient PCPs

Based on a Joint Work of Joshua Cook and Dana Moshkovitz

Main Result $\exists a > 1 \text{ and } g(n) = o(1) \text{ such that } \forall k < a$

$MATIME[n^{k+g(n)}]/1 \nsubseteq SIZE[O(n^k)]$

- Super linear circuit lower bound.
- MA is similar to NP.
- Tighter parameters than previous results.

Explaining Our Result

Circuit Definition

Circuits have NOT, AND, OR gates, fan in at most 2.

SIZE[f(n)] are languages computable by families of circuits with f(n) gates.

Non uniform, circuits may be hard to find.

Uniform vs Non-Uniform

Uniform

- Fast Algorithm
- Constant Description
- No Preprocessing
- Static Program

Non-Uniform

- Fast Algorithm
- New Description For Every Input Size
- Precomputed
- Contains Unary Halting: HALT^{*}

Circuit bounds

SPACE[T]: Programs That Use T bits of RAM

By Search: For $2^n/n > T_1 > T_0$, SPACE[T_1] \subseteq SIZE[T_0]

 $HALT^* \in SIZE[O(1)]$ $HALT^* \notin R$

Hope And Dream

Fear And Dread

Towards Our Dreams

TIME circuit lower bounds hard?

Try NTIME!

Still too hard? Try MATIME!

What is MATIME[T]? MA, 'Merlin Arthur'. All Powerful Merlin Sends Proof. Arthur Verifies in Time T with Randomness.

Previous MA Lower Bounds Santhanam, for some constant c, for all k: MATIME[n^{ck}]/1 \subseteq SIZE[O(n^k)].

For some L

MATIME[n⁴]/1

Removing c! We remove the factor of c, well, *almost*. MATIME[$n^{k+g(n)}$]/1 \leq SIZE[O(n^{k})]. • Has a subconstant, g(n) = o(1). Only works for some k > 1, not all k.

What is "/1" in MATIME[T]/1? A bit of trusted advice per input length.

A bit of non-uniformity.

Precomputing, Single Bit Result.

How to get Circuit Lower Bounds

Interactive Proofs (IPs)? Untrusted Merlin Randomized Arthur.

Many Questions and Answers.

IVTIME[T]: Arthur time T.

How powerful is IP? Shamir 92 proved IP = PSPACE! SPACE[n] \subseteq IVTIME[n⁴] IVTIME[n] \subseteq SPACE[n]

Prover's for IP also small space! Circuit bounds for SPACE apply to IP!

Main Idea

Use a Circuit as Merlin in IP.

Merlin Gives a Circuit Arthur Uses it to run IP

Santhanam's Proof

If PSPACE \subseteq P/poly

PSPACE *I* P/poly

Problem in SPACE[n^k] Hard for SIZE[o(n^k)]

Guess Circuit for Prover

 $SPACE[n] \ \ \ \ SIZE[n^k]$

Pad SPACE[n] till prover has SIZE[n^k]

PSPACE ⊈ P/poly Comments Bit of Advice Needed for Pad Length.

Already Efficient, Case Unchanged by Us.

$PSPACE \subseteq P/poly Analysis$ $PSPACE \subseteq P/poly$ \rightarrow SPACE[n] \subseteq SIZE[n^a] $L \in SPACE[n^k]$ \rightarrow L IP Verifier Time n^{4k} \rightarrow L Prover Space n^{4k} \rightarrow L Prover SIZE n^{a4k} $SPACE[n] \subseteq SIZE[n^a]$ L IP Verifier Time n^{4k} \rightarrow n^{4k} Prover Queries $\rightarrow n^{4k} + n^{4k} n^{a4k} = n^{(a+1)4k}$ L MA Verifier Time

Areas for improvement? $SPACE[n^k] \subseteq MATIME[n^{(a+1)4k}]$ a? Overhead From Circuit for SPACE. - Add Case Where SPACE[n] \subseteq SIZE[n^{1+o(1)}] +1? Too many Queries. - Use Low Query PCP. • 4? IP Verifier is Slow. - Use Very Efficient PCP.

PCP: Non Adaptive Proof Faster Verification

IP vs PCP (or IP vs MIP)

- PCP Prover Strategy Non-Adaptive
 - Prover Can't Use Past Questions
 - New Prover Per Query
- PCP Can Use Fewer Queries
- PCP Is Faster
- Circuit Has No Memory, is PCP, **not** IP!

Example: Graph Three Coloring Assign Each Vertex a Color: Red, Green, or

Make Adjacent Vertices Different Colors.

Main Take Away

Fast Protocols Give Lower Bounds

Circuit Lower Bounds From Fast Verification / Algorithms

- Santhanam 2007 (Prior Work)
 - Circuit lower bound for MÁ/1
 - Through Efficient Interactive Proofs PSPACE
- Williams 2010
 - ACC Lower Bounds For NEXP
 - Through Fast SAT algorithms for ACC
- Murray Williams 2018
 - ACC Bounds for NQP
 - Through Interactive Proofs AND SAT algorithms

Second Result, Main Lemma For L computable in time T and space S,

There is a PCP with

- Verifier time \sim n+log(T),
- polylog(n+log(T)) Queries
- and Prover space ~ n+S,

PCP Performance For time T, space S algorithm

Old: Either verifier time $\sim n + \log(T)^2$ Queries $\sim \log(T)$ New: Verifier time $\sim n + \log(T)$, Prover space $\sim n + S$, $\log(n + \log(T))$ Queries.

Citations

Sanjeev Arora and Shmuel Safra. "Probabilistic Checking of Proofs: A New Characterization of NP". JACM 1998.

L. Babai, L. Fortnow, and C. Lund. "Nondeterministic exponential time has two-prover interactive protocols". FOCS 1990.

Joshua Cook, Dana Moshkovitz. "Tighter MA/1 Circuit Lower Bounds From Verifier Efficient PCPs for PSPACE". 2022.

Cody Murray and Ryan Williams. "Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP". STOC 2018.

Rahul Santhanam. "Circuit Lower Bounds for Merlin-Arthur Classes". STOC '07.

Adi Shamir. "IP = PSPACE". JACM 1992.

Ryan Williams. "Non-uniform ACC Circuit Lower Bounds". CCC 2011.