Tighter Circuit Lower Bounds for MA/1 With Efficient PCPs

Joshua Cook Joint work with Dana Moshkovitz

Trust Can't Buy Time***

An Alternate Title

Untrusted Advice Vs Trusted Advice

	Deterministic	Randomized
No Advice	TIME[T]	BPTIME[T]
Untrusted, Adaptive	NTIME[T]	MATIME[T]
Trusted, Unadaptive	SIZE[T]	BPTIME[T]/T
Untrusted, Unadaptive	ONTIME[T]	OMATIME $[T]$

[^0]
Untrusted Advice Vs Trusted Advice

	Deterministic	Randomized
No Advice	TIME[T]	BPTIME[T]
Untrusted, Adaptive	NTIME[T]	MATIME[T]
Trusted, Unadaptive	SIZE[T]*	BPTIME[T]/T
Untrusted, Unadaptive	ONTIME[T]	OMATIME[T]

Expect New Resource To Help Solve Some Problems
Suspect some problems can't be sped up with these resources.

[^1]
Untrusted Advice Vs Trusted Advice

	Deterministic	Randomized
No Advice	TIME[T]	BPTIME[T]
Untrusted, Adaptive	NTIME[T]	MATIME[T]
Trusted, Unadaptive	SIZE[T]	BPTIME[T]/T
Untrusted, Unadaptive	ONTIME[T]	OMATIME[T]

Expect New Resource To Help Solve Some Problems
Suspect some problems can't be sped up with these resources.
? Can All Statements Be Verified TIME $\left[n^{4}\right] \subseteq$ NTIME[n] Faster than Computed?

[^2]
Untrusted Advice Vs Trusted Advice

	Deterministic	Randomized
No Advice	TIME[T]	BPTIME[T]
Untrusted, Adaptive	NTIME[T]	MATIME[T]
Trusted, Unadaptive	SIZE[T]*	BPTIME[T]/T
Untrusted, Unadaptive	ONTIME[T]	OMATIME[T]

Expect New Resource To Help Solve Some Problems
Suspect some problems can't be sped up with these resources.
? Can All Statements Be Verified
TIME $\left[n^{4}\right] \subseteq$ NTIME[n] Faster than Computed?

$$
\text { TIME }\left[n^{4}\right] \stackrel{?}{\subseteq} \text { SIZE }[n] \quad \begin{array}{ll}
\text { Can fixed instance sizes be hard } \\
\text { coded to faster, short programs? }
\end{array}
$$

[^3]
Untrusted Advice Vs Trusted Advice

	Deterministic	Randomized
No Advice	TIME[T]	BPTIME[T]
Untrusted, Adaptive	NTIME[T]	MATIME[T]
Trusted, Unadaptive	SIZE[T].	BPTIME[T]/T
Untrusted, Unadaptive	ONTIME[T]	OMATIME[T]

Expect New Resource To Help Solve Some Problems
Suspect some problems can't be sped up with these resources.
TIME[n $n^{4} \stackrel{?}{\subseteq}$ NTIME[n] \quad Can All Statements Be Verified

$$
\text { TIME }\left[n^{4}\right] \stackrel{?}{\subseteq} \text { SIZE }[n] \quad \text { Can fixed instance sizes be hard }
$$

NTIME[n4] $\subseteq \overbrace{}^{?}$ SIZE[n]

Can any verifiable problem on fixed instance sizes be hard coded into a faster, short program.

[^4]
Untrusted Advice Vs Trusted Advice

	Deterministic	Randomized
No Advice	TIME[T]	BPTIME[T]
Untrusted, Adaptive	NTIME[T]	MATIME[T]
Trusted, Unadaptive	SIZE[T]	BPTIME[T]/T
Untrusted, Unadaptive	ONTIME[T]	OMATIME[T]

[^5]Expect New Resource To Help Solve Some Problems
Suspect some problems can't be sped up with these resources.
TIME[n $n^{4} \stackrel{?}{\subseteq}$ NTIME[n] \quad Can All Statements Be Verified
TIME $\left[n^{4}\right] \stackrel{?}{\subseteq}$ SIZE $[n] \quad$ Can fixed instance sizes be hard

Can any verifiable problem on fixed instance sizes be hard coded into a faster, short program.

Can trusted programs always run faster than untrusted programs?

Santhanam: $\forall k>1$: MATIME[nO(k)]/1 $\nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$

Santhanam: $\forall k>1$: MATIME[nO(k)]/1 $\nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$

Santhanam: $\forall k>1: \quad$ MATIME[$\left.n^{0(k)}\right] / 1 \nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$

Murray-Williams: $\forall k>1: \quad$ MATIME[$\left.n^{c k}\right] / 1 \nsubseteq \operatorname{SIZE[O(n^{k})]}$

Santhanam: $\forall k>1: \quad$ MATIME[$\left.n^{0}(k)\right] / 1 \nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$

$$
\begin{aligned}
& 8 \gtrsim c \gtrsim \\
& 2
\end{aligned}
$$

Murray-Williams: $\forall k>1: \quad$ MATIME[$\left.n^{c k}\right] / 1 \nsubseteq \operatorname{SIZE[O(n^{k})]}$

Santhanam: $\forall k>1: \quad$ MATIME[$\left.n^{0(k)}\right] / 1 \nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$
$8 \gtrsim c \gtrsim$
2

Murray-Williams: $\forall k>1: \quad$ MATIME[$\left.\left.n^{c k}\right] / 1 \nsubseteq \operatorname{SIZE[O}\left(n^{k}\right)\right]$

Our result: ヨa>1: $\forall k<a: \quad$ MATIME[nnto(1) $] / 1 \nsubseteq \operatorname{SIZE[O(n^{k})]}$

Santhanam: $\forall k>1: \quad$ MATIME[$\left.n^{0(k)}\right] / 1 \nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$

```
8\gtrsimc\gtrsim
2
```

Murray-Williams: $\forall k>1: \quad$ MATIME[$\left.\left.n^{c k}\right] / 1 \nsubseteq \operatorname{SIZE[O}\left(n^{k}\right)\right]$

Non Explicit,
but small

Our result: $\exists a>1: \forall k<a: \quad$ MATIME[nk+o(1) $] / 1 \nsubseteq \operatorname{SIZE[O(n^{k})]}$

Santhanam: $\forall k>1: \quad$ MATIME[$\left.n^{0(k)}\right] / 1 \nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$
$8 \gtrsim c \gtrsim$
2

Murray-Williams: $\forall k>1: \quad$ MATIME[$\left.\left.n^{c k}\right] / 1 \nsubseteq \operatorname{SIZE[O}\left(n^{k}\right)\right]$

> Non Explicit,
> but small

Our result: $\exists \mathrm{a}>1: \forall \mathrm{k}<\mathrm{a}: \quad \mathrm{MATIME}\left[\mathrm{n}^{\mathrm{k}+(1)}\right] / 1 \nsubseteq \operatorname{SIZE[O(n^{k})]}$
$\forall k>1: ~ M A T I M E\left[n^{2 k+o(1)}\right] / 1 \nsubseteq \operatorname{SIZE}\left[O\left(n^{k}\right)\right]$

There exists randomized programs with one bit of trusted advice and a long, untrusted program advice that cannot be solved much faster with trusted advice.

Non Explicit, Unbounded
Polynomial

Santhanam: $\forall k>1: ~ O M A T I M E\left[n^{0(k)}\right] / 1 \nsubseteq \operatorname{BPTIME}\left[O\left(n^{k}\right)\right] / O\left(n^{k}\right)$

$$
\begin{aligned}
& 8 \gtrsim c \gtrsim \\
& 2
\end{aligned}
$$

Murray-Williams: $\forall k>1$: OMATIME[nck $] / 1 \nsubseteq$ BPTIME[O($\left.\left.n^{k}\right)\right] / O\left(n^{k}\right)$

Non Explicit,

but small
Our result: $\exists a>1: \forall k<a:$ OMATIME[nk+o(1) $] / 1 \nsubseteq \operatorname{BPTIME[O(n^{k})]/O(n^{k})}$ $\forall k>1:$ OMATIME[nak+o(1)]/1 \nsubseteq BPTIME[O($\left.\left.n^{k}\right)\right] / O\left(n^{k}\right)$

Interactive Proofs (IPs)?

 Untrusted Merlin Randomized Arthur.Many Questions and Answers.

IVTIME[T]: Arthur time T.

Interactive Proofs (IPs)?

 Untrusted Merlin Randomized Arthur.Many Questions and Answers.

IVTIME[T]: Arthur time T.

Interactive Proofs (IPs)?

 Untrusted Merlin Randomized Arthur.Many Questions and Answers.

IVTIME[T]: Arthur time T.

Interactive Proofs (IPs)?

 Untrusted Merlin Randomized Arthur.Many Questions and Answers.

IVTIME[T]: Arthur time T.

Interactive Proofs (IPs)? Untrusted Merlin Randomized Arthur.
 Many Questions and Answers.

IVTIME[T]: Arthur time T.

Interactive Proofs (IPs)? Untrusted Merlin Randomized Arthur.
 Many Questions and Answers.
 IVTIME[T]: Arthur time T.

How powerful is IP?

Shamir 92 proved IP = PSPACE! SPACE[n] \subseteq IVTIME $\left[n^{2}\right]$ IVTIME[n] \subseteq SPACE[n]

Prover's for IP also small space! Circuit bounds for SPACE apply to IP!

Main Idea

Use a Circuit as Merlin in IP.

Merlin Gives a Circuit Arthur Uses it to run IP

Merlin Gives a Circuit Arthur Uses it to run IP

Merlin Gives a Circuit Arthur Uses it to run IP

Merlin Gives a Circuit Arthur Uses it to run IP

Merlin Gives a Circuit Arthur Uses it to run IP

Merlin Gives a Circuit Arthur Uses it to run IP

Merlin Gives a Circuit Arthur Uses it to run IP
 Arthur Uses it to run IP

Santhanam's Proof: Lower Bound From IP=PSPACE

The University of Texas at Austin
Santhanam's Proof: Lower Bound From IP=PSPACE

Santhanam's Proof: Lower Bound From IP=PSPACE

Santhanam's Proof: Lower Bound From IP=PSPACE

Santhanam's Proof: Lower Bound From IP=PSPACE

- PSPACE-Complete L not in P/poly.
- Suppose L circuit size T>poly(n).
- Pad so T just above (advice ensures padding right).
- MA guesses prover circuit.

$$
T(m) \sim n^{k}
$$

Santhanam's Proof: Lower Bound From IP=PSPACE

To simulate verifier-prover interaction need time polynomially larger than prover circuit size.

$$
T(m) \sim n^{k}
$$

Santhanam's Proof: Lower Bound From IP=PSPACE

- PSPACE $\not \subset$ SIZE[nㅊ] (PSPACE can search outside SIZE[nk]).
- PSPACE=MA (MA guesses prover circuit for IP).

To simulate verifier-prover interaction need time polynomially larger than prover circuit size. Idea: Use PCP to minimize verifier time, queries, interaction.

$$
T(m) \sim n^{k}
$$

New PCP Theorem

For Time-Space[T,S] there is PCP verifier with:

1. Verifier time $\mathrm{O} \sim(\mathrm{n}+\log \mathrm{T})$.
2. Prover space $O \sim(S+n)$.
3. Queries $\mathrm{O}(\log n+\log \log T)$. 4. Answer size $\mathrm{O}(\log \log \mathrm{T})$.

New PCP Theorem

For Time-Space[T,S] there is PCP verifier with:

1. Verifier time $O \sim(n+\log T)$.
2. Prover space $O \sim(S+n)$.
3. Queries $\mathrm{O}(\log n+\log \log T)$. 4. Answer size $\mathrm{O}(\log \log \mathrm{T})$.

New PCP Theorem

1. Verifier time $\mathrm{O} \sim(\mathrm{n}+\log \mathrm{T})$.
2. Prover space $O \sim(S+n)$.
3. Queries $\mathrm{O}(\log n+\log \log T)$.
4. Answer size $\mathrm{O}(\log \log \mathrm{T})$.

New PCP Theorem

Holmgren-Rothblum '18 could give $\mathrm{O}^{\sim}(\mathrm{n}+\log \mathrm{T})$ verifier time, but $\mathrm{O}(\log \mathrm{T})$ queries
3. Queries $\mathrm{O}(\log n+\log \log T)$.
4. Answer size $\mathrm{O}(\log \log \mathrm{T})$.

What Goes Into New PCP: Ultra-Efficient Query Reduction

"Aggregation Through Curves": How to evaluate an mvariate low degree polynomial on k points using a prover?

What Goes Into New PCP: Ultra-Efficient Query Reduction

"Aggregation Through Curves": How to evaluate an mvariate low degree polynomial on k points using a prover?

What Goes Into New PCP: Ultra-Efficient Query Reduction

"Aggregation Through Curves": How to evaluate an mvariate low degree polynomial on k points using a prover?

1. Pass degree-k curve through k points and random point.
2. Ask prover for the restriction of polynomial to curve.
3. Check restriction on random point.

What Goes Into New PCP: Ultra-Efficient Query Reduction

"Aggregation Through Curves": How to evaluate an mvariate low degree polynomial on k points using a prover?

1. Pass degree-k curve through k points and random point.
2. Ask prover for the restriction of polynomial to curve.
3. Check restriction on random point.

Time to compute curve $\sim \mathrm{km}$, instead of ~k+m.

What Goes Into New PCP: Ultra-Efficient Query Reduction

"Aggregation Through Curves": How to evaluate an mvariate low degree polynomial on k points using a prover?

1. Pass degree-k curve through k points and random point.
2. Ask prover for the restriction of polynomial to curve.
3. Check restriction on random point.

Time to compute curve $\sim \mathrm{km}$, instead of $\sim \mathrm{k}+\mathrm{m}$. Idea: need linear transformation of k points in time \sim_{k+m}. Possible for related points.

For Which k Prove MATIME[nk+o(1)]/1 $\not \subset$ SIZE[nk]?
Have three cases:

1. PSPACE $\not \subset \mathrm{P} /$ poly
2. SPACE[n] \subseteq SIZE[$n^{1+o(1)]}$
3. $\exists>1$: SPACE[n] \subseteq SIZE[n $\left.{ }^{+o(1)}\right]$ - SIZE[n $\left.{ }^{-o(1)}\right]$

For Which k Prove MATIME[nk+o(1)]/1 $\not \subset$ SIZE[nk]?
Have three cases:

All k. Santhanam's IP works, part of input running IP on shrinks very quickly, poly overhead shrinks.

1. PSPACE \subset P/poly
2. SPACE[n] \subseteq SIZE[$\left.\mathrm{n}^{1+(1)}\right]$
3. $\exists \gg 1$: SPACE $[n] \subseteq S I Z E[n+o(1)]-$ SIZE[n - o(1) $]$

For Which k Prove MATIME[$\left.\mathrm{n}^{k+o(1)}\right] / 1 \not \subset$ SIZE[$\left.n^{k}\right] ?$
Have three cases:

All k. Santhanam's IP works, part of input running IP on shrinks very quickly, poly overhead shrinks.

1. PSPACE \subset P/poly 2. SPACE[n] $\subseteq S I Z E\left[n^{1+0(1)]}\right.$ Spacee - Prover Spacee - Provers size. 3. $\exists \gg 1$: SPACE $[n] \subseteq S I Z E[n+o(1)]-$ SIZE[n - o(1) $]$

For Which k Prove MATIME[nk+o(1)]/1 $\not \subset$ SIZE[nk]?

Have three cases:

1. PSPACE $\not \subset$ P/poly
2. SPACE $[n] \subseteq S I Z E\left[n^{1+o(1)}\right]$ Space ~ Prover Space ~ Prover size.
3. $\exists>1$: SPACE[n] \subseteq SIZE[n $\left.{ }^{+o(1)}\right]-$ SIZE[n $\left.{ }^{-o(1)}\right]$
$k<a$. For k = a, Space[n] $\not \subset$ Size [$\left.n^{\text {a }}\right]$, but Prover Space[n] ~ Size $\left[n^{a+o(1)}\right]$. So OMA time is about Size [$\mathrm{n}^{\text {a+o(1) }}$. Pad inputs for $\mathrm{k}<\mathrm{a}$.

For $k>a$, need something stronger than Space[n] for hard problem. Space hardness might stall, may need Space[n^{k}], but then prover requires Space [$\left.n^{k}\right]$, may need Size[$n^{k a}$].

Citations

Sanjeev Arora and Shmuel Safra. "Probabilistic Checking of Proofs: A New Characterization of NP". JACM 1998.
L. Babai, L. Fortnow, and C. Lund. "Nondeterministic exponential time has two-prover interactive protocols". FOCS 1990.
Joshua Cook, Dana Moshkovitz. "Tighter MA/1 Circuit Lower Bounds From Verifier Efficient PCPs for PSPACE". 2022.
Cody Murray and Ryan Williams. "Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP". STOC 2018.
Rahul Santhanam. "Circuit Lower Bounds for Merlin-Arthur Classes". STOC '07.
Adi Shamir. "IP = PSPACE". JACM 1992.
Ryan Williams. "Non-uniform ACC Circuit Lower Bounds". CCC 2011.

[^0]: * Is some gap between circuit size program size. Circuit size is more commonly studied, so used instead of TIME[T]/T

[^1]: * Is some gap between circuit size program size. Circuit size is more commonly studied, so used instead of TIME[T]/T

[^2]: * Is some gap between circuit size program size. Circuit size is more commonly studied, so used instead of TIME[T]/T

[^3]: * Is some gap between circuit size program size. Circuit size is more commonly studied, so used instead of TIME[T]/T

[^4]: * Is some gap between circuit size program size. Circuit size is more commonly studied, so used instead of TIME[T]/T

[^5]: * Is some gap between circuit size program size. Circuit size is more commonly studied, so used instead of TIME[T]/T

