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Trust Can’t Buy Time***

An Alternate Title
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OMATIME[nO(k)]/1  BPTIME[O(n⊈ k)]/O(nk)

Murray-Williams: k>1:∀

8  c  ≳ ≳
2

OMATIME[nck ]/1  BPTIME[O(n⊈ k)]/O(nk)
2

Our result: a>1: k<a:∃ ∀ OMATIME[nk+o(1)]/1  BPTIME[O(n⊈ k)]/O(nk)

Non Explicit, 
but small

OMATIME[nak+o(1)]/1  BPTIME[O(n⊈ k)]/O(nk)∀k>1:

Win-Win if a is small

There exists randomized programs with one bit of 
trusted advice and a long, untrusted program advice 
that cannot be solved much faster with trusted 
advice.
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How powerful is IP?
Shamir 92 proved IP = PSPACE!

SPACE[n]  IVTIME[n⊆ 2]
IVTIME[n]  SPACE[n]⊆

Prover’s for IP also small space!
Circuit bounds for SPACE apply to IP!
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Santhanam’s Proof: Lower Bound From 
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• Idea: Use PCP to minimize verifier 
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2. Prover space O~(S+n).
3. Queries O(logn + loglogT).
4. Answer size O(loglogT).

Think of T=2n and S=n

As opposed to polylogT [BGHSV05,…]

Holmgren-Rothblum`18 could give 
O~(n+logT) verifier time, but O(logT) queries
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“Aggregation Through Curves”: How to evaluate an m-
variate low degree polynomial on k points using a prover?
1. Pass degree-k curve through k points 

and random point.
2. Ask prover for the restriction of 

polynomial to curve.
3. Check restriction on random point.

Time to compute curve ~km, instead of ~k+m. 
Idea: need linear transformation of k points in 
time ~k+m. Possible for related points.
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Have three cases: 
1.PSPACE  P/poly⊄  
2.SPACE[n]  SIZE[n⊆ 1+o(1)]
3.  ∃a>1: SPACE[n]  SIZE[n⊆ a+o(1)] - SIZE[na-o(1)]

All k. Santhanam’s IP works, part of input running IP on 
shrinks very quickly, poly overhead shrinks.

All k. Space ~ Size. From our PCP 
Space ~ Prover Space ~ Prover size.

k < a. For k = a, Space[n]  Size [n⊄ a], but Prover Space[n] ~ Size [na+o(1)]. So OMA time is 
about Size [na+o(1)]. Pad inputs for k < a.

For k > a, need something stronger than Space[n] for hard problem. Space hardness might 
stall, may need Space[nk], but then prover requires Space [nk], may need Size[nka].
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