
Tighter Circuit Lower Bounds for
MA/1 With Efficient PCPs

Joshua Cook

Joint work with Dana Moshkovitz

Trust Can’t Buy Time***

An Alternate Title

Untrusted Advice Vs Trusted Advice

Deterministic Randomized

No Advice TIME[T] BPTIME[T]

Untrusted,
Adaptive

NTIME[T] MATIME[T]

Trusted,
Unadaptive

SIZE[T]* BPTIME[T]/T

Untrusted,
Unadaptive

ONTIME[T] OMATIME[T]

* Is some gap between circuit size program size.
 Circuit size is more commonly studied, so used
 instead of TIME[T]/T

Expect New Resource To Help Solve Some Problems

Untrusted Advice Vs Trusted Advice
Deterministic Randomized

No Advice TIME[T] BPTIME[T]

Untrusted,
Adaptive

NTIME[T] MATIME[T]

Trusted,
Unadaptive

SIZE[T]* BPTIME[T]/T

Untrusted,
Unadaptive

ONTIME[T] OMATIME[T]

* Is some gap between circuit size program size.
 Circuit size is more commonly studied, so used
 instead of TIME[T]/T

Expect New Resource To Help Solve Some Problems

Suspect some problems can’t be sped up with these
resources.

Untrusted Advice Vs Trusted Advice

Deterministic Randomized

No Advice TIME[T] BPTIME[T]

Untrusted,
Adaptive

NTIME[T] MATIME[T]

Trusted,
Unadaptive

SIZE[T]* BPTIME[T]/T

Untrusted,
Unadaptive

ONTIME[T] OMATIME[T]

* Is some gap between circuit size program size.
 Circuit size is more commonly studied, so used
 instead of TIME[T]/T

Expect New Resource To Help Solve Some Problems

Suspect some problems can’t be sped up with these
resources.

TIME[n4] NTIME[n]⊆
? Can All Statements Be Verified

Faster than Computed?

Untrusted Advice Vs Trusted Advice

Deterministic Randomized

No Advice TIME[T] BPTIME[T]

Untrusted,
Adaptive

NTIME[T] MATIME[T]

Trusted,
Unadaptive

SIZE[T]* BPTIME[T]/T

Untrusted,
Unadaptive

ONTIME[T] OMATIME[T]

* Is some gap between circuit size program size.
 Circuit size is more commonly studied, so used
 instead of TIME[T]/T

Expect New Resource To Help Solve Some Problems

Suspect some problems can’t be sped up with these
resources.

TIME[n4] NTIME[n]⊆
? Can All Statements Be Verified

Faster than Computed?

TIME[n4] SIZE[n]⊆
Can fixed instance sizes be hard
coded to faster, short programs?

?

Untrusted Advice Vs Trusted Advice

Deterministic Randomized

No Advice TIME[T] BPTIME[T]

Untrusted,
Adaptive

NTIME[T] MATIME[T]

Trusted,
Unadaptive

SIZE[T]* BPTIME[T]/T

Untrusted,
Unadaptive

ONTIME[T] OMATIME[T]

* Is some gap between circuit size program size.
 Circuit size is more commonly studied, so used
 instead of TIME[T]/T

Expect New Resource To Help Solve Some Problems

Suspect some problems can’t be sped up with these
resources.

TIME[n4] NTIME[n]⊆
? Can All Statements Be Verified

Faster than Computed?

NTIME[n4] SIZE[n]⊆
Can any verifiable problem on fixed
instance sizes be hard coded into a
faster, short program.

?

TIME[n4] SIZE[n]⊆
Can fixed instance sizes be hard
coded to faster, short programs?

?

Untrusted Advice Vs Trusted Advice

Deterministic Randomized

No Advice TIME[T] BPTIME[T]

Untrusted,
Adaptive

NTIME[T] MATIME[T]

Trusted,
Unadaptive

SIZE[T]* BPTIME[T]/T

Untrusted,
Unadaptive

ONTIME[T] OMATIME[T]

* Is some gap between circuit size program size.
 Circuit size is more commonly studied, so used
 instead of TIME[T]/T

Expect New Resource To Help Solve Some Problems

Suspect some problems can’t be sped up with these
resources.

TIME[n4] NTIME[n]⊆
? Can All Statements Be Verified

Faster than Computed?

NTIME[n4] SIZE[n]⊆
Can any verifiable problem on fixed
instance sizes be hard coded into a
faster, short program.

?

ONTIME[n4] SIZE[n]⊆
Can trusted programs always run
faster than untrusted programs?

?

TIME[n4] SIZE[n]⊆
Can fixed instance sizes be hard
coded to faster, short programs?

?

Santhanam: k>1:∀ MATIME[nO(k)]/1 SIZE[O(n⊈ k)]

2

Santhanam: k>1:∀

Non Explicit, Unbounded
Polynomial

MATIME[nO(k)]/1 SIZE[O(n⊈ k)]

2

Santhanam: k>1:∀

Non Explicit, Unbounded
Polynomial

MATIME[nO(k)]/1 SIZE[O(n⊈ k)]

Murray-Williams: k>1:∀ MATIME[nck]/1 SIZE[O(n⊈ k)]
2

Santhanam: k>1:∀

Non Explicit, Unbounded
Polynomial

MATIME[nO(k)]/1 SIZE[O(n⊈ k)]

Murray-Williams: k>1:∀

8 c ≳ ≳
2

MATIME[nck]/1 SIZE[O(n⊈ k)]
2

Santhanam: k>1:∀

Non Explicit, Unbounded
Polynomial

MATIME[nO(k)]/1 SIZE[O(n⊈ k)]

Murray-Williams: k>1:∀

8 c ≳ ≳
2

MATIME[nck]/1 SIZE[O(n⊈ k)]
2

Our result: a>1: k<a:∃ ∀ MATIME[nk+o(1)]/1 SIZE[O(n⊈ k)]

Santhanam: k>1:∀

Non Explicit, Unbounded
Polynomial

MATIME[nO(k)]/1 SIZE[O(n⊈ k)]

Murray-Williams: k>1:∀

8 c ≳ ≳
2

MATIME[nck]/1 SIZE[O(n⊈ k)]
2

Our result: a>1: k<a:∃ ∀ MATIME[nk+o(1)]/1 SIZE[O(n⊈ k)]

Non Explicit,
but small

Santhanam: k>1:∀

Non Explicit, Unbounded
Polynomial

MATIME[nO(k)]/1 SIZE[O(n⊈ k)]

Murray-Williams: k>1:∀

8 c ≳ ≳
2

MATIME[nck]/1 SIZE[O(n⊈ k)]
2

Our result: a>1: k<a:∃ ∀ MATIME[nk+o(1)]/1 SIZE[O(n⊈ k)]

Non Explicit,
but small

MATIME[nak+o(1)]/1 SIZE[O(n⊈ k)]∀k>1:

Win-Win if a is small

Santhanam: k>1:∀

Non Explicit, Unbounded
Polynomial

OMATIME[nO(k)]/1 BPTIME[O(n⊈ k)]/O(nk)

Murray-Williams: k>1:∀

8 c ≳ ≳
2

OMATIME[nck]/1 BPTIME[O(n⊈ k)]/O(nk)
2

Our result: a>1: k<a:∃ ∀ OMATIME[nk+o(1)]/1 BPTIME[O(n⊈ k)]/O(nk)

Non Explicit,
but small

OMATIME[nak+o(1)]/1 BPTIME[O(n⊈ k)]/O(nk)∀k>1:

Win-Win if a is small

There exists randomized programs with one bit of
trusted advice and a long, untrusted program advice
that cannot be solved much faster with trusted
advice.

Interactive Proofs (IPs)?
Untrusted Merlin
Randomized Arthur.

Many Questions and
Answers.

IVTIME[T]: Arthur time
T.

Interactive Proofs (IPs)?
Untrusted Merlin
Randomized Arthur.

Many Questions and
Answers.

IVTIME[T]: Arthur time
T.

Interactive Proofs (IPs)?
Untrusted Merlin
Randomized Arthur.

Many Questions and
Answers.

IVTIME[T]: Arthur time
T.

Interactive Proofs (IPs)?
Untrusted Merlin
Randomized Arthur.

Many Questions and
Answers.

IVTIME[T]: Arthur time
T.

Interactive Proofs (IPs)?
Untrusted Merlin
Randomized Arthur.

Many Questions and
Answers.

IVTIME[T]: Arthur time
T.

Interactive Proofs (IPs)?
Untrusted Merlin
Randomized Arthur.

Many Questions and
Answers.

IVTIME[T]: Arthur time
T.

How powerful is IP?
Shamir 92 proved IP = PSPACE!

SPACE[n] IVTIME[n⊆ 2]
IVTIME[n] SPACE[n]⊆

Prover’s for IP also small space!
Circuit bounds for SPACE apply to IP!

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Main Idea

Use a Circuit as Merlin
in IP.

Merlin Gives a Circuit
Arthur Uses it to run IP

Santhanam’s Proof: Lower Bound From
IP=PSPACE

Santhanam’s Proof: Lower Bound From
IP=PSPACE

PSPACE
 ?⊆

P/poly

Santhanam’s Proof: Lower Bound From
IP=PSPACE

PSPACE
 ?⊆

P/poly
• PSPACE SIZE[n⊄ k] (PSPACE can

search outside SIZE[nk]).
• PSPACE=MA (MA guesses

prover circuit for IP).

YES

Santhanam’s Proof: Lower Bound From
IP=PSPACE

PSPACE
 ?⊆

P/poly
• PSPACE SIZE[n⊄ k] (PSPACE can

search outside SIZE[nk]).
• PSPACE=MA (MA guesses

prover circuit for IP).

• PSPACE-Complete L not in
P/poly.

• Suppose L circuit size T>poly(n).
• Pad so T just above nk (advice

ensures padding right).
• MA guesses prover circuit.

YES NO

n

Santhanam’s Proof: Lower Bound From
IP=PSPACE

PSPACE
 ?⊆

P/poly
• PSPACE SIZE[n⊄ k] (PSPACE can

search outside SIZE[nk]).
• PSPACE=MA (MA guesses

prover circuit for IP).

• PSPACE-Complete L not in
P/poly.

• Suppose L circuit size T>poly(n).
• Pad so T just above nk (advice

ensures padding right).
• MA guesses prover circuit.

YES NO

m

T(m) ~ nk

n

Santhanam’s Proof: Lower Bound From
IP=PSPACE

•To simulate verifier-prover
interaction need time
polynomially larger than
prover circuit size.

PSPACE
 ?⊆

P/poly
• PSPACE SIZE[n⊄ k] (PSPACE can

search outside SIZE[nk]).
• PSPACE=MA (MA guesses

prover circuit for IP).

• PSPACE-Complete L not in
P/poly.

• Suppose L circuit size T>poly(n).
• Pad so T just above nk (advice

ensures padding right).
• MA guesses prover circuit.

YES NO

m

T(m) ~ nk

n

Santhanam’s Proof: Lower Bound From
IP=PSPACE

•To simulate verifier-prover
interaction need time polynomially
larger than prover circuit size.

• Idea: Use PCP to minimize verifier
time, queries, interaction.

PSPACE
 ?⊆

P/poly
• PSPACE SIZE[n⊄ k] (PSPACE can

search outside SIZE[nk]).
• PSPACE=MA (MA guesses

prover circuit for IP).

• PSPACE-Complete L not in
P/poly.

• Suppose L circuit size T>poly(n).
• Pad so T just above nk (advice

ensures padding right).
• MA guesses prover circuit.

YES NO

m

T(m) ~ nk

New PCP Theorem

For Time-Space[T,S] there is
PCP verifier with:
1. Verifier time O~(n+logT).
2. Prover space O~(S+n).
3. Queries O(logn + loglogT).
4. Answer size O(loglogT).

New PCP Theorem

For Time-Space[T,S] there is
PCP verifier with:
1. Verifier time O~(n+logT).
2. Prover space O~(S+n).
3. Queries O(logn + loglogT).
4. Answer size O(loglogT).

Think of T=2n and S=n

New PCP Theorem

For Time-Space[T,S] there is
PCP verifier with:
1. Verifier time O~(n+logT).
2. Prover space O~(S+n).
3. Queries O(logn + loglogT).
4. Answer size O(loglogT).

Think of T=2n and S=n

As opposed to polylogT [BGHSV05,…]

New PCP Theorem

For Time-Space[T,S] there is
PCP verifier with:
1. Verifier time O~(n+logT).
2. Prover space O~(S+n).
3. Queries O(logn + loglogT).
4. Answer size O(loglogT).

Think of T=2n and S=n

As opposed to polylogT [BGHSV05,…]

Holmgren-Rothblum`18 could give
O~(n+logT) verifier time, but O(logT) queries

What Goes Into New PCP: Ultra-Efficient
Query Reduction

“Aggregation Through Curves”: How to evaluate an m-
variate low degree polynomial on k points using a prover?

What Goes Into New PCP: Ultra-Efficient
Query Reduction

“Aggregation Through Curves”: How to evaluate an m-
variate low degree polynomial on k points using a prover?

What Goes Into New PCP: Ultra-Efficient
Query Reduction

“Aggregation Through Curves”: How to evaluate an m-
variate low degree polynomial on k points using a prover?
1. Pass degree-k curve through k points

and random point.
2. Ask prover for the restriction of

polynomial to curve.
3. Check restriction on random point.

What Goes Into New PCP: Ultra-Efficient
Query Reduction

“Aggregation Through Curves”: How to evaluate an m-
variate low degree polynomial on k points using a prover?
1. Pass degree-k curve through k points

and random point.
2. Ask prover for the restriction of

polynomial to curve.
3. Check restriction on random point.

Time to compute curve ~km, instead of
~k+m.

What Goes Into New PCP: Ultra-Efficient
Query Reduction

“Aggregation Through Curves”: How to evaluate an m-
variate low degree polynomial on k points using a prover?
1. Pass degree-k curve through k points

and random point.
2. Ask prover for the restriction of

polynomial to curve.
3. Check restriction on random point.

Time to compute curve ~km, instead of ~k+m.
Idea: need linear transformation of k points in
time ~k+m. Possible for related points.

For Which k Prove MATIME[nk+o(1)]/1 SIZE[n⊄ k]?

Have three cases:
1.PSPACE P/poly⊄
2.SPACE[n] SIZE[n⊆ 1+o(1)]
3. ∃a>1: SPACE[n] SIZE[n⊆ a+o(1)] - SIZE[na-o(1)]

For Which k Prove MATIME[nk+o(1)]/1 SIZE[n⊄ k]?

Have three cases:
1.PSPACE P/poly⊄
2.SPACE[n] SIZE[n⊆ 1+o(1)]
3. ∃a>1: SPACE[n] SIZE[n⊆ a+o(1)] - SIZE[na-o(1)]

All k. Santhanam’s IP works, part of input running IP on
shrinks very quickly, poly overhead shrinks.

For Which k Prove MATIME[nk+o(1)]/1 SIZE[n⊄ k]?

Have three cases:
1.PSPACE P/poly⊄
2.SPACE[n] SIZE[n⊆ 1+o(1)]
3. ∃a>1: SPACE[n] SIZE[n⊆ a+o(1)] - SIZE[na-o(1)]

All k. Santhanam’s IP works, part of input running IP on
shrinks very quickly, poly overhead shrinks.

All k. Space ~ Size. From our PCP
Space ~ Prover Space ~ Prover size.

For Which k Prove MATIME[nk+o(1)]/1 SIZE[n⊄ k]?

Have three cases:
1.PSPACE P/poly⊄
2.SPACE[n] SIZE[n⊆ 1+o(1)]
3. ∃a>1: SPACE[n] SIZE[n⊆ a+o(1)] - SIZE[na-o(1)]

All k. Santhanam’s IP works, part of input running IP on
shrinks very quickly, poly overhead shrinks.

All k. Space ~ Size. From our PCP
Space ~ Prover Space ~ Prover size.

k < a. For k = a, Space[n] Size [n⊄ a], but Prover Space[n] ~ Size [na+o(1)]. So OMA time is
about Size [na+o(1)]. Pad inputs for k < a.

For k > a, need something stronger than Space[n] for hard problem. Space hardness might
stall, may need Space[nk], but then prover requires Space [nk], may need Size[nka].

Citations
Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A
New Characterization of NP”. JACM 1998.
L. Babai, L. Fortnow, and C. Lund. “Nondeterministic exponential time
has two-prover interactive protocols”. FOCS 1990.
Joshua Cook, Dana Moshkovitz. “Tighter MA/1 Circuit Lower Bounds
From Verifier Efficient PCPs for PSPACE”. 2022.
Cody Murray and Ryan Williams. “Circuit Lower Bounds for Non-
deterministic Quasi-Polytime: An Easy Witness Lemma for NP and
NQP”. STOC 2018.
Rahul Santhanam. “Circuit Lower Bounds for Merlin-Arthur Classes”.
STOC ’07.
Adi Shamir. “IP = PSPACE”. JACM 1992.
Ryan Williams. “Non-uniform ACC Circuit Lower Bounds”. CCC 2011.

	Slide: 1
	Slide: 2
	Untrusted Advice Vs Trusted Advice (1)
	Untrusted Advice Vs Trusted Advice (2)
	Untrusted Advice Vs Trusted Advice (3)
	Untrusted Advice Vs Trusted Advice (4)
	Untrusted Advice Vs Trusted Advice (5)
	Untrusted Advice Vs Trusted Advice (6)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 4 (6)
	Slide: 4 (7)
	Slide: 4 (8)
	Interactive Proofs (IPs)? (1)
	Interactive Proofs (IPs)? (2)
	Interactive Proofs (IPs)? (3)
	Interactive Proofs (IPs)? (4)
	Interactive Proofs (IPs)? (5)
	Interactive Proofs (IPs)? (6)
	How powerful is IP?
	Main Idea (1)
	Main Idea (2)
	Main Idea (3)
	Main Idea (4)
	Main Idea (5)
	Main Idea (6)
	Main Idea (7)
	Main Idea (8)
	Main Idea (9)
	Santhanam’s Proof: Lower Bound From IP=PSPACE (1)
	Santhanam’s Proof: Lower Bound From IP=PSPACE (2)
	Santhanam’s Proof: Lower Bound From IP=PSPACE (3)
	Santhanam’s Proof: Lower Bound From IP=PSPACE (4)
	Santhanam’s Proof: Lower Bound From IP=PSPACE (5)
	Santhanam’s Proof: Lower Bound From IP=PSPACE (6)
	Santhanam’s Proof: Lower Bound From IP=PSPACE (7)
	New PCP Theorem (1)
	New PCP Theorem (2)
	New PCP Theorem (3)
	New PCP Theorem (4)
	What Goes Into New PCP: Ultra-Efficient Query Reduction (1)
	What Goes Into New PCP: Ultra-Efficient Query Reduction (2)
	What Goes Into New PCP: Ultra-Efficient Query Reduction (3)
	What Goes Into New PCP: Ultra-Efficient Query Reduction (4)
	What Goes Into New PCP: Ultra-Efficient Query Reduction (5)
	For Which k Prove MATIME[nk+o(1)]/1 ⊄ SIZE[nk]? (1)
	For Which k Prove MATIME[nk+o(1)]/1 ⊄ SIZE[nk]? (2)
	For Which k Prove MATIME[nk+o(1)]/1 ⊄ SIZE[nk]? (3)
	For Which k Prove MATIME[nk+o(1)]/1 ⊄ SIZE[nk]? (4)
	Citations

