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Majority

0 1/2 1

0 1

ratio of 1s

Definition (Majority)
For n ∈ N, let Maj : {0, 1}n → {0, 1} be defined by

Maj(x) = 1
[∑

i
xi ≥ n/2

]
.

Component of many results, such as circuit derandomization [1].
Widely studied, not computable by AC0, simple computation models.
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Promise Majority

0 ε 1 − ε 1

0 1?

ratio of 1s

Approximate majority[2], promise majority[6], approximate selector[4], etc.

Definition (Promise Majority)
For n ∈ N, ε ∈ (0, 1/2), and function f : {0, 1}n → {0, 1}, we say f solves
ε-promise majority if for all x ∈ {0, 1}n with

∑
i∈[n] xi < εn and for all

y ∈ {0, 1}n with
∑

i∈[n] 1 − yi < εn

f (x) = 0, f (y) = 1.

Often usable in place of majority, in circuit derandomization.

Widely studied, computable by AC0.
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AC0

x1 ¬x1 x2 ¬x2 x3 ¬x3

∧ ∧ ∧ ∧

∨ ∨

∧

Alternating circuit: unbounded fan in “AND” and “OR” gates.

Layers “Alternate” between “AND” and “OR” gates.
Bottom layer includes negated inputs.
Size is number of gates (same results for wires).
AC0 constant depth, polynomial size.
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Depth-3 ε-Promise Circuit Upper Bounds

Depth-3 Upper Bounds:

Author ε Size Uniformity

Ajtai 1983 [2] (0, 1/2) (ε ln(ε)n)2+ ln(1−ε)
ln(ε)−ln(1−ε) Non-Uniform

Viola 2009 [7] 1
ln(n) n4+o(1) P

Viola 2009 [7] (0, 1/2) n4+O((1−2ε)−2) P

Us 1
ln(n) n3+o(1) P
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Depth-3 ε-Promise Circuit Lower Bounds

Depth-3 Lower Bounds (Suppressing polylogarithmic factors):

Author Size Monotone

Trivial εn General

Chaudhuri, Radhakrishnan 1996 [4] (εn)
64
63 − n General

Viola 2011 [8] nΩ(− ln(1−2ε)) General

Us ε3n2+ ln(1−ε)
ln(ε) Monotone

Us ε3n2+ ln(1−ε2)
2 ln(ε) General
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Higher Depth ε-Promise Circuit Upper Bounds

Upper Bounds (Constant ε):

Author Size Uniformity

Ajtai 1990 [3] poly(n) LOGTIME

Chaudhuri, Radhakrishnan 1996 [4] n
1

1−2−O(d) LOGTIME

Us n
1

1−2−(d−2)/2 Non-Uniform

Us n
1

1−(2/3)(d−2)/2 P
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Higher Depth ε-Promise Circuit Lower Bounds

Lower Bounds:
Author ε Size

Trivial any εn

Chaudhuri, Radhakrishnan 1996 [4] any (εn)
1

1−4−d − n

Viola 2011 [8] 1
2 − 1

ln(n)d−2 ω(poly(n))
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Depth 3 Circuits Terminology

x1 x2 x3 x4

∧ ∧ ∧

∨ ∨

∧

Focus on depth-3 promise Majority
Negation of promise majority circuit, also promise majority.
Assume lowest level gate is “AND”.

Call input bits “variables”.
First level, AND gates “clauses”.
Second level, OR gates “DNFs”.
Third level, AND gate “circuits”.
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Size Definitions

x1 x2 x3 x4

∧
A

|A| = 4

x5 x6 x7 x8

∧ ∧ ∧

∨

x9 x10 x11 x12 x13 x14

∧ ∧ ∧ ∧ ∧

∨ ∨

∧

Clause A, size |A| is the number of variables in A.

DNF F , size |F | is the number of clauses in F .
If C is a circuit, denote

|C | as the number of clauses in C .
‖C‖ as the number of DNFs in C .
the size of C as |C |+ ‖C‖.
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Monotone Lower Bound Idea

Idea: Lower bound the fan in at each layer.
Pretend ε ∈ (0, 1/2) is constant for simplicity. Let α = ln(1−ε)

ln(ε) .

1 From Viola [7], clauses have size ln(n)
ln(1/ε) .

2 If DNFs have size õ(n1+α), then we can hit every clause with fewer
than εn variables.
Thus clauses have size Ω̃(n1+α).

3 If fewer than õ(n2+α) clauses, can hit every DNF with fewer than
n

ln(n)2 clauses.
Thus circuit has Ω̃(n2+α) clauses.
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General Lower Bound Idea

Idea: Same as monotone EXCEPT level 2 bounds might fail.

Issue: Negated variables might make DNF one while fixing
adversarial bits.

Solution: Let β = ln(1−ε2)
2 ln(ε) . Fix adversarial bits probabilistically.

Result: Likely won’t set DNF to one.
Almost definitely will eliminate Ω̃(n1+β) clauses.
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Main Tool

Greedy Algorithm for set cover.

Theorem
Let S = {S1, ...,Sm} be subsets of [n] where each i ∈ [m] has |Si | ≥ w.
Then for any t ∈ [n] there is some T ⊆ [n] with |T | = t so that T doesn’t
intersect with at most

mew ln(1− t
n+1 )

of the sets in S .

Idea: Just greedily take the variable in the most sets.
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Upper Bound

Idea: Amplify promise, iteratively reduce size with promise majority.
1 Use random walks on expander graph to amplify promise to 1

ln(n)d .
Only increases size by polylogarithmic factor.

2 Seperate input into groups of size Ω̃

(
n

1
2d−1

)
. Run depth-3

1
ln(n) -promise majority circuit on each group.

3 Repeat with appropriate group d times.

Circuit has depth 2 + 2d and size Ω̃

(
n

1
1−2−d

)
.
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Uniform Depth-3 Circuits

Best known is Viola’s based of derandomization of Lautemann’s proof
BPP ⊆ Σ2 ∩Π2 [5].

Viola uses o(ln(n)) length walks on expander graphs to get size-n4+o(1),
depth-3 circuits for 1

ln(n) -promise majority.

We use walks more efficiently to get size-n3+o(1) depth-3 circuits.

We use this circuit to get small uniform upper bounds with more depth.
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Monotone Depth-3 Lower Bound
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What We Actually Show

Here we prove the simpler lower bounds for constant ε ∈ (0, 1/2) of:
Monotone

n2+Ω
(

ε
ln(1/ε)

)
General

n2+Ω
(

ε2
ln(1/ε)

)
The tighter bounds follow the same ideas with tighter analysis.
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Biased Coin Distributions

Definition
Let Dε be the distribution on {0, 1}n that sets each bit independently to 1
with probability ε.

Example: D1/3 with 3 coins:

outputs probabilities

111
(1

3
)3

011, 101, 110
(1

3
)2 2

3

100, 010, 001
(1

3
) (2

3
)2

000
(2

3
)3

By central limit theorem, with probability almost one half, Dε has less
than ε fraction ones.
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Restriction

Definition
We say ρ ∈ {0, 1, ∗}n is a restriction on n bits. We say the size of ρ, |ρ|, is
the number of 1s and 0s in ρ.
If f : {0, 1}n → {0, 1}, then define f �ρ as the function where the values
from ρ are passed into f where it is 1 or 0, and otherwise the
corresponding variable from the argument is passed in.

Example:
ρ = (1, ∗,0, ∗)

f �ρ (x1,x2) = f (1,x1,0,x2)
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Clause Lower Bound

Viola proved:

Theorem
Suppose that for constant ε ∈ (0, 1/2), and DNF F that

Pr[F(Dε) = 0] ≥ poly(1/n).

Then for some w = Ω( ln(n)
ln(1/ε)), there is a restriction ρ restricting at most

m = εn
ln(n) variables so that:

Any clause C in F with width less than w has C �ρ= 0.
Pr[F �ρ (Dε) = 0] ≥ Pr[F(Dε) = 0]

Eliminates small clauses from a DNF that is likely to output a 0 on Dε

with few variables without setting the DNF to 1.
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Viola’s Clause Lower Bound Idea

For small sets S1, ..Sm ⊆ [n]:
Insight: Maximal independent sets ∼ minimal set cover.

Maximal independent T =⇒ set cover of size |T |w.
Independent T =⇒ set cover requires size |T |.

Large Independence: Not possible! Small width on Dε outputs 1 too often.
Small Independence: Fix few variables in small cover to reduce width.

Choose values to only increase probability of 0.
Repeat until clause width 0.

Joshua Cook FSTTCS 2020 July 3, 2022 23 / 54



Viola’s Clause Lower Bound Idea

For small sets S1, ..Sm ⊆ [n]:
Insight: Maximal independent sets ∼ minimal set cover.

Maximal independent T =⇒ set cover of size |T |w.
Independent T =⇒ set cover requires size |T |.

Large Independence: Not possible! Small width on Dε outputs 1 too often.
Small Independence: Fix few variables in small cover to reduce width.

Choose values to only increase probability of 0.
Repeat until clause width 0.

Joshua Cook FSTTCS 2020 July 3, 2022 23 / 54



Viola’s Clause Lower Bound Idea

For small sets S1, ..Sm ⊆ [n]:
Insight: Maximal independent sets ∼ minimal set cover.

Maximal independent T =⇒ set cover of size |T |w.
Independent T =⇒ set cover requires size |T |.

Large Independence: Not possible! Small width on Dε outputs 1 too often.

Small Independence: Fix few variables in small cover to reduce width.
Choose values to only increase probability of 0.
Repeat until clause width 0.

Joshua Cook FSTTCS 2020 July 3, 2022 23 / 54



Viola’s Clause Lower Bound Idea

For small sets S1, ..Sm ⊆ [n]:
Insight: Maximal independent sets ∼ minimal set cover.

Maximal independent T =⇒ set cover of size |T |w.
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Greedy Set Cover

In this talk, we use

Theorem
Let S = {S1, ...,Sm} be subsets of [n] where each i ∈ [m] has |Si | ≥ w.
Then for any t ∈ [n] there is some T ⊆ [n] with |T | = t so that T
intersects all but at most

|S |e−w t
n

of the sets in S .

Closer analysis gives that T intersects all but |S |e−w ln(1− t
n+1 ) sets.

In particular, if
S is the set of clauses in a monotone DNF, F , and
ρ is some restriction restricting variables in T to 0,

then |F �ρ | ≤ |F |e−w t
n variables remaining.
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Greedy Set Cover Proof

x1 x1 x3 x4 x5 x6 x7 x8

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

The average number of sets an element is in is at least w|S|
n . So at

least one variable, say x2, is in at least w|S|
n sets.

Let S1 be the sets in S not containing x1. Then:

|S1| ≤ |S | − w
n
|S | =

(
1 − w

n

)
|S | ≤ |S |e−w/n.

Repeat with t times and S2, ...,St to get

|St | ≤ |S | − w
n
|S | ≤ |S |e−

tw
n .

Then these t variables work.
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Monotone DNF Size

Theorem
Let ε ∈ (0, 1/2) and monotone DNF F be suchthat

For all x with less than εn zeros, F(x) = 1.
Pr[F(Dε) = 0] ≥ poly(1/n).

Then F has n1+α clauses for some α = Ω( ε
ln(1/ε)).

All DNFs in circuit must satisfy condition 1.

But For DNF to “help” by much, it must satisfy condition 2.
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Monotone DNF Size Proof

1 Using Viola’s theorem, we fix n
ln(n) variables and F is left with only

clauses longer larger than w = Ω( ln(n)
ln(1/ε)).

2 Using greedy set cover, there is a restriction ρ of εn/2 variables so
that ρ makes

|F �ρ | ≤ |F |n−w εn
2n = |F |n−Ω

(
ε

ln(1/ε)

)
.

3 Input can have at least εn
3 more 0s and still be one, so:

εn
3

≤ |F �ρ |.

4 Together

εn
3

≤|F |n−Ω
(

ε
ln(1/ε)

)
n1+α ≤ |F |.
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Monotone Circuit Size Lower Bounds

Theorem
Depth-3 Circuit C solving ε-promise majority has size n2+Ω( ε

ln(1/ε) ).

Idea: Eliminate many DNFs with few clauses.

Can eliminate too many DNFs if there are not enough clauses.
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Eliminate All Large Clauses

Theorem
For any Circuit C with |C | ≤ nc, there is a restriction ρ restricting c n

ln(n)
variables such that C �ρ has no clauses larger than ln(n)2.

Focus on large clauses. Let F ′ be the DNF with clauses from C
bigger than ln(n)2.

Eliminate with Greedy Cover Algorithm! Fix c n
ln(n) variables with

restriction ρ so that

|F ′ �ρ | < |F |e− ln(n)2 cn
ln(n)n ≤ ncn−c ≤ 1.

Conclude |F ′ �ρ | = 0, so C has no clauses bigger than ln(n)2.
NOTE: Similar algorithm works if the clauses are non-monotone, but
must generalize theorem.
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Monotone Lower Bound Final Ingredient
Simple version of final step in circuit lower bound.

Theorem
If F is a monotone DNF with clause width m1+x for constant x > 0,
|F | = poly(n) and such that F computes “OR”, then F must have
n ≥ Ω̃(m2+x).

1 Use greedy set cover to get a restriction ρ restricting m variables such
that:

|F �ρ | ≤ |F |e−m1+x m
n = |F |e−m2+x 1

n

2 See that m < m1+x ≤ n. So F �ρ 6= 0, and |F �ρ | ≥ 1.
3 Together:

1 ≤|F |e−m2+x 1
n

Ω̃(m2+x) ≤n
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Monoton Circuit Lower Bound Proof Idea

Remove Large Clauses.
Use DNF lower bounds to get each cause bigger than n1+α.
Fix whole clauses with the idea from the previous slide to lower bound
number of clauses.

Issue: Some DNFs might be small.
Solution: Focus on large DNFs during elimination.

Insight: Some large DNF must survive if few variables fixed.
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Monotone Circuit Lower Bound Proof
Let C be a circuit solving ε-promise majority.

Remove all clauses larger than ln(n)2 with a restriction ρ1 which
restricts O

(
n

ln(n)

)
variables.

Let C ′ be C �ρ1 only including DNFs with size at least n1+α for
α = Ω

(
ε

ln(1/ε)

)
from our DNF size lower bounds.

Use greedy set cover algorithm to select n
ln(n)3 clauses and set them

to one in ρ2 so that

‖C ′ �ρ2 ‖ ≤ ‖C ′‖e−n1+α n
ln(n)3|C′| .

See that C �ρ1�ρ2 still solves
(
ε− O

(
1

ln(n)

))
-promise majority. If

‖C‖ ≤ n3, by a counting argument some DNF, F , must have
Pr[F(Dε) = 0] ≥ poly(1/n). Thus,‖C ′ �ρ2 ‖ ≥ 1.
Together:

Ω̃(n2+α) = n2+Ω
(

ε
ln(1/ε)

)
≤|C ′|.
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General Depth-3 Lower Bounds
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Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover
algorithm.

General Idea: Same!
Clause lower bounds, works!
DNF lower bounds, almost works.

Following first proof, may set DNF to one early due to negations.
Then, can’t argue restriction left any clauses.
Will fix next.
Circuit lower bounds, works!

At worst, might eliminate or shrink DNFs and clauses early.
But circuit still solves a promise problem, so it still has large DNFs
after restriction.
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Probabilistic Restriction

Main Lemma

Lemma
For constant ε ∈ (0, 1/2), let F be a DNF with:

For all x with less than εn zeros, F(x) = 1.
Pr[F(Dε) = 0] ≥ poly(1/n)

Let β = Ω( ε2

ln(1/ε)). Then there is a random variable ρ which is a
restriction on εn/2 variables such that:

F(Dε) = F �ρ (Dε).

Let F ′ be the DNF with clauses in F �ρ bigger than w = Ω
(

ln(n)
ln(1/ε)

)
.

Then: Pr[|F ′| > |F |n−β] ≤ e−Ω(n).
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Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable
such that:

Each restriction in the sequence adds one more restriction, sampled
from Dε.
Each restriction has a good chance of eliminating many clauses.
Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ε.

Then by Chernoff bounds, its likely that we eliminate many clauses.

And by definition if we restrict the rest of the variables, it is the same as
using Dε.
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Probabilistic Restriction Construction

First, define sequence of DNFs F1, ...,Fm, and restrictions ρ0, ..., ρm for
m = εn/2.

1 Let F1 be the DNF only including clauses from F with width larger
than w = Ω

(
ln(n)
ln(1/ε)

)
from the clause lower bound.

Let ρ0 restrict nothing.

2 There is some variable that is in at least w|Fi |
n clauses of Fi , xi .

Let ρi be the restriction restricting ρi−1 plus restricting xi to one with
probability ε, and 0 otherwise.

3 Define Fi to be the DNF which has the clauses in F �ρi−1 that have
width greater than w.

Then ρ = ρm, and F ′ is the DNF with clauses from Fm �ρ bigger than w.
See that F �ρm (Dε) = F(Dε).
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Probabilistic Restriction Analysis

At step i, either xi or ¬xi is in at least is in w|Fi |
2n clauses.

There is at least an ε chance of successfully eliminating w|Fi |
2n clauses.

If k steps succeed, then

|Fm �ρm | ≤ (1 − w
2n

)k |F | ≤ |F |e−
wk
2n ≤ |F |n−Ω

(
k

ln(1/ε)n

)
.

By Chernoff bound,
Pr[k < εm/2] ≤ e−Ω(n).

Thus

Pr[|Fm �ρm | > |F |n−Ω
(

εm
ln(1/ε)n

)
] ≤e−Ω(n)

Pr[|F ′| > |F |n−Ω
(

ε2
ln(1/ε)

)
] ≤e−Ω(n).
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Applying Restriction To Get DNF Bounds
1 Apply probabilistic restriction to get ρ, F ′ with

Pr[|F ′| > |F |n−β] ≤ e−Ω(n).

2 By assumption, Pr[F �ρ (Dε) = 0] ≥ 1/poly(n). Thus:
Pr
ρ
[Pr
Dε

[F �ρ (Dε) = 0] ≥ 1/poly(n)] ≥ 1/poly(n).

3 1/poly(n) > e−Ω(n), so some ρ′ restricts εn/2 variables such that
Pr[F �ρ′ (Dε) = 0] ≥1/poly(n),

|F ′| <|F |e−β.

4 F �ρ′ has Ω(εn) clauses with width Ω
(

ln(n)
ln(1/ε)

)
: |F ′| ≥ Ω(εn). Thus:

Ω(εn) ≤ |F ′| ≤|F |n−β

n1+β ≤|F |.
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General Circuit Lower Bounds

Use the same argument as the monotone DNF, with the lower bounds of
n1+β on the second level.
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Upper Bounds
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Depth-3 Upper Bounds

Upper bounds use depth-3 circuits as a subroutine.
For constant ε, we use:

Existential: constant ε: Ajtai gave size O
(

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
.

For ε = 1
ln(n) , simplifies to O

(
n2).

P-Uniform: ε = 1
ln(n) : Viola gives n4+o(1).

In appendix, we improve the circuit to get size n3+o(1).
Reminder, Idea: Amplify, recursively apply promise majority.
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Amplification

Easy to amplify constant ε promise to 1/poly(n) promise with
depth-2 circuit.

Idea: Take majority of short walks on expander graphs (Used
by Viola for depth-3 circuit).

How: Short DNFs: majority of O(ln(ln(n))) bits has
polylogarithmic-size DNF.

Chernoff: Expander Chernoff bound proves amplification
Motivation 1/ ln(n)-promise majority is easier.

Results o(n2)-sized depth-4 circuits using careful analysis of
Ajtai’s.

Can we get very small promise majority with just amplification and a
single depth-3 promise majority?

Not without much better amplification!
Existing techniques increase size faster than promise, so that depth-3
promise majority circuits solving promise majority are still ‘large’.

Joshua Cook FSTTCS 2020 July 3, 2022 43 / 54



Amplification

Easy to amplify constant ε promise to 1/poly(n) promise with
depth-2 circuit.

Idea: Take majority of short walks on expander graphs (Used
by Viola for depth-3 circuit).

How: Short DNFs: majority of O(ln(ln(n))) bits has
polylogarithmic-size DNF.

Chernoff: Expander Chernoff bound proves amplification
Motivation 1/ ln(n)-promise majority is easier.

Results o(n2)-sized depth-4 circuits using careful analysis of
Ajtai’s.

Can we get very small promise majority with just amplification and a
single depth-3 promise majority?

Not without much better amplification!
Existing techniques increase size faster than promise, so that depth-3
promise majority circuits solving promise majority are still ‘large’.

Joshua Cook FSTTCS 2020 July 3, 2022 43 / 54



Amplification

Easy to amplify constant ε promise to 1/poly(n) promise with
depth-2 circuit.

Idea: Take majority of short walks on expander graphs (Used
by Viola for depth-3 circuit).

How: Short DNFs: majority of O(ln(ln(n))) bits has
polylogarithmic-size DNF.

Chernoff: Expander Chernoff bound proves amplification
Motivation 1/ ln(n)-promise majority is easier.

Results o(n2)-sized depth-4 circuits using careful analysis of
Ajtai’s.

Can we get very small promise majority with just amplification and a
single depth-3 promise majority?

Not without much better amplification!
Existing techniques increase size faster than promise, so that depth-3
promise majority circuits solving promise majority are still ‘large’.

Joshua Cook FSTTCS 2020 July 3, 2022 43 / 54



Amplification

Easy to amplify constant ε promise to 1/poly(n) promise with
depth-2 circuit.

Idea: Take majority of short walks on expander graphs (Used
by Viola for depth-3 circuit).

How: Short DNFs: majority of O(ln(ln(n))) bits has
polylogarithmic-size DNF.

Chernoff: Expander Chernoff bound proves amplification
Motivation 1/ ln(n)-promise majority is easier.

Results o(n2)-sized depth-4 circuits using careful analysis of
Ajtai’s.

Can we get very small promise majority with just amplification and a
single depth-3 promise majority?

Not without much better amplification!
Existing techniques increase size faster than promise, so that depth-3
promise majority circuits solving promise majority are still ‘large’.

Joshua Cook FSTTCS 2020 July 3, 2022 43 / 54



Iteratively Computing Majority Idea

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 011 1 1 1

Maj Maj Maj Maj Maj

1 1 1 0 0

Maj

1

ε = 2/5

ε = 4/25

δ = 2/5

3/5

1/5

Since amplification increases size too fast, decrease size.

Idea: Run promise majority on small groups to get new bits.
Problem: For large ε, may violate promise.

Insight: ε-promise input ran in groups through δ-promise circuits
gives ε

δ -promise input.
Solution: Amplify, then run in groups.
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Iteratively Computing Majority

Using this idea:

Theorem
If there are depth-3 circuits with size nα solving 1

ln(n) -promise majority,
then for any positive integer k, there are depth-(1 + 2k) circuits solving

1
ln(n)k -promise majority with size

kn
1

1−
(
α−1
α

)k
.

Combined with depth 2 amplification, we get our upper bounds for higher
depths.
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Sub-Quadratic Size Promise Majority

As special cases, we get, using Ajtai’s circuit, we get:

Theorem
There exists a depth-4 circuits computing ε-promise majority with size
o(n2).

And using our circuit, we get:

Theorem
There exists a depth-6, P-Uniform circuits computing ε-promise majority
with size o(n2).

Viola’s original circuit needed depth-8 to get sub-quadratic size.
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Open Problems
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Open Problems

Wanted fine grained tradeoff in depth vs size during derandomization.
Particularly, if quadratic derandomization costs depth-3.

Did show existing derandomization techniques have this.
Might not be only way to derandomize. Need to find explicit problem
OR find a new way to derandomize.

Missing explicit, depth-4 quadratic sized circuits.
Seems related to other psuedorandom objects. Can be rephrased as
distribution over dispersers.

Results aren’t tight!
Upper and lower bounds don’t match.
Are the best circuits monotone?
Do any uniform circuits have optimal size?
Upper bounds for large depth don’t match known lower bounds
(Chaudhuri and Radhakrishnan are asymptotically close [4]).
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Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.
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Depth-3 Bounds, Small ε
Note: now might have many more wires than gates.
X-axis is c if ε = nc.
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