Size Bounds on Low Depth Circuits for Promise Majority

Joshua Cook

The University of Texas at Austin

July 3, 2022

Promise Majority

Approximate majority[1], promise majority[3], approximate selector[2], etc.

Definition (Promise Majority)

For $n \in \mathbf{N}$, $\epsilon \in (0, 1/2)$, and function $f : \{0, 1\}^n \to \{0, 1\}$, we say f solves ϵ -promise majority if for all $x \in \{0, 1\}^n$ with $\sum_{i \in [n]} x_i < \epsilon n$ and for all $y \in \{0, 1\}^n$ with $\sum_{i \in [n]} 1 - y_i < \epsilon n$

$$f(x) = 0, f(y) = 1.$$

Often usable in place of majority, in circuit derandomization.

Promise Majority

Approximate majority[1], promise majority[3], approximate selector[2], etc.

Definition (Promise Majority)

For $n \in \mathbf{N}$, $\epsilon \in (0, 1/2)$, and function $f : \{0, 1\}^n \to \{0, 1\}$, we say f solves ϵ -promise majority if for all $x \in \{0, 1\}^n$ with $\sum_{i \in [n]} x_i < \epsilon n$ and for all $y \in \{0, 1\}^n$ with $\sum_{i \in [n]} 1 - y_i < \epsilon n$

$$f(x) = 0, f(y) = 1.$$

Often usable in place of majority, in circuit derandomization.

Widely studied, computable by AC0.

Joshua Cook

Alternating circuit: unbounded fan in "AND" and "OR" gates.

Alternating circuit: unbounded fan in "AND" and "OR" gates.
Layers "Alternate" between "AND" and "OR" gates.

Alternating circuit: unbounded fan in "AND" and "OR" gates.

- Layers "Alternate" between "AND" and "OR" gates.
- Bottom layer includes negated inputs.

- Alternating circuit: unbounded fan in "AND" and "OR" gates.
- Layers "Alternate" between "AND" and "OR" gates.
- Bottom layer includes negated inputs.
- Size is number of gates (same results for wires).

- Alternating circuit: unbounded fan in "AND" and "OR" gates.
- Layers "Alternate" between "AND" and "OR" gates.
- Bottom layer includes negated inputs.
- Size is number of gates (same results for wires).
- AC0 constant depth, polynomial size.

Joshua Cook

Depth-3 ϵ -Promise Circuit Bounds

Depth-3 Lower Bounds (Suppressing polylogarithmic factors):					
Author	Size	Monotone			
Trivial	n	General			
Chaudhuri, Radhakrishnan 1996 [2]	$n^{rac{64}{63}}$	General			
Viola 2011 [5]	$n^{\Omega(-\ln(1-2\epsilon))}$	General			
Us	$n^{2+\frac{\ln(1-\epsilon)}{\ln(\epsilon)}}$	Monotone			
Us	$n^{2 + \frac{\ln(1-\epsilon^2)}{2\ln(\epsilon)}}$	General			

Circuit Upper Bound by Ajtai 1983 [1]:

 $n^{2+\frac{\ln(1-\epsilon)}{\ln(\epsilon)-\ln(1-\epsilon)}}$.

Focus on depth-3 promise Majority

 Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".

- Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".
- Call input bits "variables".

- Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".
- Call input bits "variables".
- First level, AND gates "clauses".

- Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".
- Call input bits "variables".
- First level, AND gates "clauses".
- Second level, OR gates "DNFs".

- Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".
- Call input bits "variables".
- First level, AND gates "clauses".
- Second level, OR gates "DNFs".
- Third level, AND gate "circuits".

Let D_ϵ be the distribution on $\{0,1\}^n$ that sets each bit independently to 1 with probability $\epsilon.$

Let D_ϵ be the distribution on $\{0,1\}^n$ that sets each bit independently to 1 with probability $\epsilon.$

Example: $D_{1/3}$ with 3 coins:

outputs	probabilities
111	$\left(\frac{1}{3}\right)^3$
011, 101, 110	$\left(\frac{1}{3}\right)^2 \frac{2}{3}$
100,010,001	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2$
000	$\left(\frac{2}{3}\right)^3$

By central limit theorem, with probability almost one half, D_ϵ has less than ϵ fraction ones.

os	hua	Co	ok	

We say $\rho \in \{0, 1, *\}^n$ is a restriction on n bits. We say the size of ρ , $|\rho|$, is the number of 1s and 0s in ρ . If $f: \{0, 1\}^n \to \{0, 1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0, and otherwise the corresponding variable from the argument is passed in.

We say $\rho \in \{0, 1, *\}^n$ is a restriction on n bits. We say the size of ρ , $|\rho|$, is the number of 1s and 0s in ρ . If $f: \{0, 1\}^n \to \{0, 1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0, and otherwise the corresponding variable from the argument is passed in.

$$\rho = (1, *, 0, *)$$
$$f \upharpoonright_{\rho} (x_1, x_2) = f(1, x_1, 0, x_2)$$

We say $\rho \in \{0, 1, *\}^n$ is a restriction on n bits. We say the size of ρ , $|\rho|$, is the number of 1s and 0s in ρ .

If $f: \{0,1\}^n \to \{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0, and otherwise the corresponding variable from the argument is passed in.

We say $\rho \in \{0, 1, *\}^n$ is a restriction on n bits. We say the size of ρ , $|\rho|$, is the number of 1s and 0s in ρ .

If $f: \{0,1\}^n \to \{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0, and otherwise the corresponding variable from the argument is passed in.

We say $\rho \in \{0, 1, *\}^n$ is a restriction on n bits. We say the size of ρ , $|\rho|$, is the number of 1s and 0s in ρ .

If $f: \{0,1\}^n \to \{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0, and otherwise the corresponding variable from the argument is passed in.

Idea: Lower bound the fan in at each layer. Pretend $\epsilon \in (0, 1/2)$ is constant for simplicity. Let $\alpha = \frac{\epsilon}{\ln(1/\epsilon)}$. 1 From Viola [4], clauses have size $\frac{\ln(n)}{\ln(1/\epsilon)}$. Idea: Lower bound the fan in at each layer. Pretend $\epsilon \in (0, 1/2)$ is constant for simplicity. Let $\alpha = \frac{\epsilon}{\ln(1/\epsilon)}$.

- **1** From Viola [4], clauses have size $\frac{\ln(n)}{\ln(1/\epsilon)}$.
- **2** DNFs have size $\tilde{\Omega}(n^{1+\alpha})$.

Idea: Lower bound the fan in at each layer. Pretend $\epsilon \in (0, 1/2)$ is constant for simplicity. Let $\alpha = \frac{\epsilon}{\ln(1/\epsilon)}$.

- **1** From Viola [4], clauses have size $\frac{\ln(n)}{\ln(1/\epsilon)}$.
- **2** DNFs have size $\tilde{\Omega}(n^{1+\alpha})$.
- **3** Circuit has $\tilde{\Omega}(n^{2+\alpha})$ clauses.

Let $S = \{S_1, ..., S_m\}$ be subsets of [n] where each $i \in [m]$ has $|S_i| \ge w$. Then for any $t \in [n]$ there is some $T \subseteq [n]$ with |T| = t so that T intersects all but at most

$$S|e^{-w\frac{t}{n}}$$

of the sets in S.

Let $S = \{S_1, ..., S_m\}$ be subsets of [n] where each $i \in [m]$ has $|S_i| \ge w$. Then for any $t \in [n]$ there is some $T \subseteq [n]$ with |T| = t so that T intersects all but at most

$$S|e^{-w\frac{t}{n}}$$

of the sets in S.

In particular, if

- S is the set of clauses in a monotone DNF, F, and
- ρ is some restriction restricting variables in T to 0,

then $|F|_{\rho} \leq |F|e^{-w\frac{t}{n}}$ variables remaining.

Let $\epsilon \in (0, 1/2)$ and monotone DNF F be such that

• For all x with less than ϵn zeros, F(x) = 1.

•
$$\Pr[F(D_{\epsilon}) = 0] \ge \operatorname{poly}(1/n).$$

Then F has $n^{1+\alpha}$ clauses for some $\alpha = \Omega(\frac{\epsilon}{\ln(1/\epsilon)})$.

All DNFs in circuit must satisfy condition 1.

But For DNF to "help" by much, it must satisfy condition 2.

Depth-3 Circuit C solving ϵ -promise majority has size $n^{2+\Omega\left(\frac{\epsilon}{\ln(1/\epsilon)}\right)}$.

Idea: Eliminate many DNFs with few clauses.

Can eliminate too many DNFs if there are not enough clauses.

- Remove large clauses.
- Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.
- Fix whole clauses to apply set cover on DNFs.

- Remove large clauses.
- Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.
- Fix whole clauses to apply set cover on DNFs.
- If there are few clauses, DNFs must share some clauses many times.
- Must be many clauses or many DNFs.

- Remove large clauses.
- Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.
- Fix whole clauses to apply set cover on DNFs.
- If there are few clauses, DNFs must share some clauses many times.
- Must be many clauses or many DNFs.

Issue: Some DNFs might be small.

- Remove large clauses.
- Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.
- Fix whole clauses to apply set cover on DNFs.
- If there are few clauses, DNFs must share some clauses many times.
- Must be many clauses or many DNFs.

Issue: Some DNFs might be small.

- Solution: Focus on large DNFs during elimination.
 - Insight: Some large DNF must survive if few variables fixed.

General Idea: Same!

General Idea: Same!

Clause lower bounds, works!

General Idea: Same!

- Clause lower bounds, works!
- DNF lower bounds, *almost* works.

General Idea: Same!

- Clause lower bounds, works!
- DNF lower bounds, *almost* works.

Following first proof, may set DNF to one early due to negations. Then, can't argue restriction left any clauses. **Will discuss next.**

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!

- Clause lower bounds, works!
- DNF lower bounds, *almost* works.

Following first proof, may set DNF to one early due to negations. Then, can't argue restriction left any clauses. **Will discuss next.**

Circuit lower bounds, works!

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!

- Clause lower bounds, works!
- DNF lower bounds, *almost* works.

Following first proof, may set DNF to one early due to negations. Then, can't argue restriction left any clauses. **Will discuss next.**

- Circuit lower bounds, works!
 - At worst, might eliminate or shrink DNFs and clauses early.
 - But circuit still solves a promise problem, so it still has large DNFs after restriction.

Each restriction in the sequence adds one more restriction, sampled from D_{ϵ} .

- Each restriction in the sequence adds one more restriction, sampled from D_{ϵ} .
- Each restriction has a good chance of eliminating many clauses.

- Each restriction in the sequence adds one more restriction, sampled from D_{ϵ} .
- Each restriction has a good chance of eliminating many clauses.
- Focuses on deleting clauses bigger then w.

- Each restriction in the sequence adds one more restriction, sampled from D_{ϵ} .
- Each restriction has a good chance of eliminating many clauses.
- Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ϵ .

- Each restriction in the sequence adds one more restriction, sampled from D_{ϵ} .
- Each restriction has a good chance of eliminating many clauses.
- Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ϵ .

Then by Chernoff bounds, its likely that we eliminate many clauses.

By definition, restricting the rest of the variables is the same as using D_{ϵ} .

Joshua Cook

Joshua Cook

References I

Miklós Ajtai.

Sigma11-formulae on finite structures. Ann. Pure Appl. Log., 24:1–48, 1983.

Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit complexity. In Proceedings of the Twenty-Eighth Annual ACM Symposium on

Theory of Computing, STOC '96, page 30–36, New York, NY, USA, 1996. Association for Computing Machinery.

Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi.
More on AC⁰[⊕] and variants of the majority function.
In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019), volume 150, pages 22:1–22:14, 2019.

Emanuele Viola.

On approximate majority and probabilistic time. *Computational Complexity*, 18:337–375, 2009.

Emanuele Viola.

Randomness buys depth for approximate counting.

In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 230–239, 2011.