Size Bounds on Low Depth Circuits for Promise Majority

Joshua Cook
The University of Texas at Austin

July 3, 2022

Promise Majority

Approximate majority[1], promise majority[3], approximate selector[2], etc.

Definition (Promise Majority)

For $n \in \mathbf{N}, \epsilon \in(0,1 / 2)$, and function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, we say f solves ϵ-promise majority if for all $x \in\{0,1\}^{n}$ with $\sum_{i \in[n]} x_{i}<\epsilon n$ and for all $y \in\{0,1\}^{n}$ with $\sum_{i \in[n]} 1-y_{i}<\epsilon n$

$$
f(x)=0, f(y)=1 .
$$

■ Often usable in place of majority, in circuit derandomization.

Promise Majority

Approximate majority[1], promise majority[3], approximate selector[2], etc.

Definition (Promise Majority)

For $n \in \mathbf{N}, \epsilon \in(0,1 / 2)$, and function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, we say f solves ϵ-promise majority if for all $x \in\{0,1\}^{n}$ with $\sum_{i \in[n]} x_{i}<\epsilon n$ and for all $y \in\{0,1\}^{n}$ with $\sum_{i \in[n]} 1-y_{i}<\epsilon n$

$$
f(x)=0, f(y)=1 .
$$

■ Often usable in place of majority, in circuit derandomization.
■ Widely studied, computable by ACO.

ACO

■ Alternating circuit: unbounded fan in "AND" and "OR" gates.

ACO

- Alternating circuit: unbounded fan in "AND" and "OR" gates.

■ Layers "Alternate" between "AND" and "OR" gates.

ACO

■ Alternating circuit: unbounded fan in "AND" and "OR" gates.
■ Layers "Alternate" between "AND" and "OR" gates.

- Bottom layer includes negated inputs.

ACO

- Alternating circuit: unbounded fan in "AND" and "OR" gates.

■ Layers "Alternate" between "AND" and "OR" gates.

- Bottom layer includes negated inputs.

■ Size is number of gates (same results for wires).

ACO

- Alternating circuit: unbounded fan in "AND" and "OR" gates.

■ Layers "Alternate" between "AND" and "OR" gates.

- Bottom layer includes negated inputs.

■ Size is number of gates (same results for wires).

- AC0 constant depth, polynomial size.

Depth-3 ϵ-Promise Circuit Bounds

Depth-3 Lower Bounds (Suppressing polylogarithmic factors):

Author	Size	Monotone
Trivial	n	General
Chaudhuri, Radhakrishnan 1996 [2]	$n^{\frac{64}{63}}$	General
Viola 2011 [5]	$n^{\Omega(-\ln (1-2 \epsilon))}$	General
Us	$n^{2+\frac{\ln (1-\epsilon)}{\ln (\epsilon)}}$	Monotone
Us	$n^{2+\frac{\ln \left(1-\epsilon^{2}\right)}{2 \ln (\epsilon)}}$	General

Circuit Upper Bound by Ajtai 1983 [1]:

$$
n^{2+\frac{\ln (1-\epsilon)}{\ln (\epsilon)-\ln (1-\epsilon)}}
$$

Depth-3 Circuits Terminology

Focus on depth-3 promise Majority

- Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".

Depth-3 Circuits Terminology

Focus on depth-3 promise Majority

- Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".
■ Call input bits "variables".

Depth-3 Circuits Terminology

Clauses

Focus on depth-3 promise Majority
■ Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".

- Call input bits "variables".

■ First level, AND gates "clauses".

Depth-3 Circuits Terminology

DNFs

Clauses

Variables

Focus on depth-3 promise Majority
■ Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".

- Call input bits "variables".

■ First level, AND gates "clauses".
■ Second level, OR gates "DNFs".

Depth-3 Circuits Terminology

Focus on depth-3 promise Majority
■ Negation of promise majority circuit, also promise majority. Assume lowest level gate is "AND".

- Call input bits "variables".

■ First level, AND gates "clauses".

- Second level, OR gates "DNFs".

■ Third level, AND gate "circuits".

Biased Coin Distributions

Definition

Let D_{ϵ} be the distribution on $\{0,1\}^{n}$ that sets each bit independently to 1 with probability ϵ.

Biased Coin Distributions

Definition

Let D_{ϵ} be the distribution on $\{0,1\}^{n}$ that sets each bit independently to 1 with probability ϵ.

Example: $D_{1 / 3}$ with 3 coins:

outputs	probabilities
111	$\left(\frac{1}{3}\right)^{3}$
$011,101,110$	$\left(\frac{1}{3}\right)^{2} \frac{2}{3}$
$100,010,001$	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{2}$
000	$\left(\frac{2}{3}\right)^{3}$

By central limit theorem, with probability almost one half, D_{ϵ} has less than ϵ fraction ones.

Restriction

Definition

We say $\rho \in\{0,1, *\}^{n}$ is a restriction on n bits. We say the size of $\rho,|\rho|$, is the number of 1 s and 0 s in ρ. If $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0 , and otherwise the corresponding variable from the argument is passed in.

Restriction

Definition

We say $\rho \in\{0,1, *\}^{n}$ is a restriction on n bits. We say the size of $\rho,|\rho|$, is the number of 1 s and 0 s in ρ. If $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0 , and otherwise the corresponding variable from the argument is passed in.

Example:
$f \upharpoonright_{\rho}\left(x_{1}, x_{2}\right)=f(1, *, 0, *)$

Restriction

Definition

We say $\rho \in\{0,1, *\}^{n}$ is a restriction on n bits. We say the size of $\rho,|\rho|$, is the number of 1 s and 0 s in ρ.
If $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0 , and otherwise the corresponding variable from the argument is passed in.

Example:

Restriction

Definition

We say $\rho \in\{0,1, *\}^{n}$ is a restriction on n bits. We say the size of $\rho,|\rho|$, is the number of 1 s and 0 s in ρ.
If $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0 , and otherwise the corresponding variable from the argument is passed in.

Example:

Restriction

Definition

We say $\rho \in\{0,1, *\}^{n}$ is a restriction on n bits. We say the size of $\rho,|\rho|$, is the number of 1 s and 0 s in ρ.
If $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then define $f \upharpoonright_{\rho}$ as the function where the values from ρ are passed into f where it is 1 or 0 , and otherwise the corresponding variable from the argument is passed in.

Example:

Monotone Lower Bound Idea

Idea: Lower bound the fan in at each layer. Pretend $\epsilon \in(0,1 / 2)$ is constant for simplicity. Let $\alpha=\frac{\epsilon}{\ln (1 / \epsilon)}$.
1 From Viola [4], clauses have size $\frac{\ln (n)}{\ln (1 / \epsilon)}$.

Monotone Lower Bound Idea

Idea: Lower bound the fan in at each layer. Pretend $\epsilon \in(0,1 / 2)$ is constant for simplicity. Let $\alpha=\frac{\epsilon}{\ln (1 / \epsilon)}$.
1 From Viola [4], clauses have size $\frac{\ln (n)}{\ln (1 / \epsilon)}$.
2 DNFs have size $\tilde{\Omega}\left(n^{1+\alpha}\right)$.

Monotone Lower Bound Idea

Idea: Lower bound the fan in at each layer. Pretend $\epsilon \in(0,1 / 2)$ is constant for simplicity. Let $\alpha=\frac{\epsilon}{\ln (1 / \epsilon)}$.
1 From Viola [4], clauses have size $\frac{\ln (n)}{\ln (1 / \epsilon)}$.
2 DNFs have size $\tilde{\Omega}\left(n^{1+\alpha}\right)$.
3 Circuit has $\tilde{\Omega}\left(n^{2+\alpha}\right)$ clauses.

Greedy Set Cover

Theorem

Let $S=\left\{S_{1}, \ldots, S_{m}\right\}$ be subsets of $[n]$ where each $i \in[m]$ has $\left|S_{i}\right| \geq w$. Then for any $t \in[n]$ there is some $T \subseteq[n]$ with $|T|=t$ so that T intersects all but at most

$$
|S| e^{-w \frac{t}{n}}
$$

of the sets in S.

Greedy Set Cover

Theorem

Let $S=\left\{S_{1}, \ldots, S_{m}\right\}$ be subsets of $[n]$ where each $i \in[m]$ has $\left|S_{i}\right| \geq w$.
Then for any $t \in[n]$ there is some $T \subseteq[n]$ with $|T|=t$ so that T intersects all but at most

$$
|S| e^{-w \frac{t}{n}}
$$

of the sets in S.
In particular, if
■ S is the set of clauses in a monotone DNF, F, and
■ ρ is some restriction restricting variables in T to 0 , then $\left|F \upharpoonright_{\rho}\right| \leq|F| e^{-w \frac{t}{n}}$ variables remaining.

Monotone DNF Size

Theorem

Let $\epsilon \in(0,1 / 2)$ and monotone DNF F be such that

- For all x with less than ϵn zeros, $F(x)=1$.

■ $\operatorname{Pr}\left[F\left(D_{\epsilon}\right)=0\right] \geq \operatorname{poly}(1 / n)$.
Then F has $n^{1+\alpha}$ clauses for some $\alpha=\Omega\left(\frac{\epsilon}{\ln (1 / \epsilon)}\right)$.
All DNFs in circuit must satisfy condition 1.

But For DNF to "help" by much, it must satisfy condition 2.

Monotone Circuit Size Lower Bounds

Theorem

Idea: Eliminate many DNFs with few clauses.

Can eliminate too many DNFs if there are not enough clauses.

Monotone Circuit Lower Bound Proof Idea

- Remove large clauses.
- Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.

■ Fix whole clauses to apply set cover on DNFs.

Monotone Circuit Lower Bound Proof Idea

- Remove large clauses.

■ Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.
■ Fix whole clauses to apply set cover on DNFs.
■ If there are few clauses, DNFs must share some clauses many times.
■ Must be many clauses or many DNFs.

Monotone Circuit Lower Bound Proof Idea

- Remove large clauses.

■ Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.
■ Fix whole clauses to apply set cover on DNFs.
■ If there are few clauses, DNFs must share some clauses many times.
■ Must be many clauses or many DNFs.
Issue: Some DNFs might be small.

Monotone Circuit Lower Bound Proof Idea

- Remove large clauses.

■ Use DNF lower bounds to get each DNF bigger than $n^{1+\alpha}$.
■ Fix whole clauses to apply set cover on DNFs.
■ If there are few clauses, DNFs must share some clauses many times.
■ Must be many clauses or many DNFs.
Issue: Some DNFs might be small.
Solution: Focus on large DNFs during elimination.
Insight: Some large DNF must survive if few variables fixed.

Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!

Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!
■ Clause lower bounds, works!

Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!

- Clause lower bounds, works!

■ DNF lower bounds, almost works.

Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!
■ Clause lower bounds, works!
■ DNF lower bounds, almost works.

Following first proof, may set DNF to one early due to negations. Then, can't argue restriction left any clauses. Will discuss next.

Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!
■ Clause lower bounds, works!
■ DNF lower bounds, almost works.

Following first proof, may set DNF to one early due to negations. Then, can't argue restriction left any clauses.
Will discuss next.

- Circuit lower bounds, works!

Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover algorithm.

General Idea: Same!
■ Clause lower bounds, works!
■ DNF lower bounds, almost works.

Following first proof, may set DNF to one early due to negations. Then, can't argue restriction left any clauses.

Will discuss next.

■ Circuit lower bounds, works!

- At worst, might eliminate or shrink DNFs and clauses early.
- But circuit still solves a promise problem, so it still has large DNFs after restriction.

Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable such that:

Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable such that:

■ Each restriction in the sequence adds one more restriction, sampled from D_{ϵ}.

Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable such that:

■ Each restriction in the sequence adds one more restriction, sampled from D_{ϵ}.
■ Each restriction has a good chance of eliminating many clauses.

Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable such that:

■ Each restriction in the sequence adds one more restriction, sampled from D_{ϵ}.

■ Each restriction has a good chance of eliminating many clauses.

- Focuses on deleting clauses bigger then w.

Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable such that:

■ Each restriction in the sequence adds one more restriction, sampled from D_{ϵ}.
■ Each restriction has a good chance of eliminating many clauses.

- Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0 , we set them to 1 with probability ϵ.

Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable such that:

■ Each restriction in the sequence adds one more restriction, sampled from D_{ϵ}.

- Each restriction has a good chance of eliminating many clauses.
- Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0 , we set them to 1 with probability ϵ.
Then by Chernoff bounds, its likely that we eliminate many clauses.
By definition, restricting the rest of the variables is the same as using D_{ϵ}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y -axis is c for circuit size n^{c}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y -axis is c for circuit size n^{c}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y -axis is c for circuit size n^{c}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size n^{c}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size n^{c}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size n^{c}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size n^{c}.

Depth-3 Bounds, Constant ϵ

Note: Graphs slightly adjusted for visibility.
Y -axis is c for circuit size n^{c}.

References I

國 Miklós Ajtai．
Sigma11－formulae on finite structures．
Ann．Pure Appl．Log．，24：1－48， 1983.
围 Shiva Chaudhuri and Jaikumar Radhakrishnan．
Deterministic restrictions in circuit complexity．
In Proceedings of the Twenty－Eighth Annual ACM Symposium on Theory of Computing，STOC＇96，page 30－36，New York，NY，USA， 1996．Association for Computing Machinery．
目 Nutan Limaye，Srikanth Srinivasan，and Utkarsh Tripathi． More on $\mathrm{AC}^{0}[\oplus]$ and variants of the majority function． In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science（FSTTCS 2019）， volume 150，pages 22：1－22：14， 2019.

References II

Emanuele Viola.
On approximate majority and probabilistic time.
Computational Complexity, 18:337-375, 2009.
Emanuele Viola.
Randomness buys depth for approximate counting. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 230-239, 2011.

