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Promise Majority

0 ε 1 − ε 1

0 1?

ratio of 1s

Approximate majority[1], promise majority[3], approximate selector[2], etc.

Definition (Promise Majority)
For n ∈ N, ε ∈ (0, 1/2), and function f : {0, 1}n → {0, 1}, we say f solves
ε-promise majority if for all x ∈ {0, 1}n with

∑
i∈[n] xi < εn and for all

y ∈ {0, 1}n with
∑

i∈[n] 1 − yi < εn

f (x) = 0, f (y) = 1.

Often usable in place of majority, in circuit derandomization.

Widely studied, computable by AC0.
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AC0

x1 ¬x1 x2 ¬x2 x3 ¬x3

∧ ∧ ∧ ∧

∨ ∨

∧

Alternating circuit: unbounded fan in “AND” and “OR” gates.

Layers “Alternate” between “AND” and “OR” gates.
Bottom layer includes negated inputs.
Size is number of gates (same results for wires).
AC0 constant depth, polynomial size.
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Depth-3 ε-Promise Circuit Bounds

Depth-3 Lower Bounds (Suppressing polylogarithmic factors):

Author Size Monotone

Trivial n General

Chaudhuri, Radhakrishnan 1996 [2] n
64
63 General

Viola 2011 [5] nΩ(− ln(1−2ε)) General

Us n2+ ln(1−ε)
ln(ε) Monotone

Us n2+ ln(1−ε2)
2 ln(ε) General

Circuit Upper Bound by Ajtai 1983 [1]:

n2+ ln(1−ε)
ln(ε)−ln(1−ε) .
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Depth-3 Circuits Terminology

x1 x2 x3 x4

∧ ∧ ∧

∨ ∨

∧

Focus on depth-3 promise Majority
Negation of promise majority circuit, also promise majority.
Assume lowest level gate is “AND”.

Call input bits “variables”.
First level, AND gates “clauses”.
Second level, OR gates “DNFs”.
Third level, AND gate “circuits”.
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Biased Coin Distributions

Definition
Let Dε be the distribution on {0, 1}n that sets each bit independently to 1
with probability ε.

Example: D1/3 with 3 coins:

outputs probabilities

111
(1

3
)3

011, 101, 110
(1

3
)2 2

3

100, 010, 001
(1

3
) (2

3
)2

000
(2

3
)3

By central limit theorem, with probability almost one half, Dε has less
than ε fraction ones.
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Restriction

Definition
We say ρ ∈ {0, 1, ∗}n is a restriction on n bits. We say the size of ρ, |ρ|, is
the number of 1s and 0s in ρ.
If f : {0, 1}n → {0, 1}, then define f �ρ as the function where the values
from ρ are passed into f where it is 1 or 0, and otherwise the
corresponding variable from the argument is passed in.

Example:
ρ = (1, ∗,0, ∗)

f �ρ (x1,x2) = f (1,x1,0,x2)
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Monotone Lower Bound Idea

Idea: Lower bound the fan in at each layer.
Pretend ε ∈ (0, 1/2) is constant for simplicity. Let α = ε

ln(1/ε) .

1 From Viola [4], clauses have size ln(n)
ln(1/ε) .

2 DNFs have size Ω̃(n1+α).
3 Circuit has Ω̃(n2+α) clauses.
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Greedy Set Cover

Theorem
Let S = {S1, ...,Sm} be subsets of [n] where each i ∈ [m] has |Si | ≥ w.
Then for any t ∈ [n] there is some T ⊆ [n] with |T | = t so that T
intersects all but at most

|S |e−w t
n

of the sets in S .

In particular, if
S is the set of clauses in a monotone DNF, F , and
ρ is some restriction restricting variables in T to 0,

then |F �ρ | ≤ |F |e−w t
n variables remaining.
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Monotone DNF Size

Theorem
Let ε ∈ (0, 1/2) and monotone DNF F be such that

For all x with less than εn zeros, F(x) = 1.
Pr[F(Dε) = 0] ≥ poly(1/n).

Then F has n1+α clauses for some α = Ω( ε
ln(1/ε)).

All DNFs in circuit must satisfy condition 1.

But For DNF to “help” by much, it must satisfy condition 2.
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Monotone Circuit Size Lower Bounds

Theorem

Depth-3 Circuit C solving ε-promise majority has size n2+Ω
(

ε
ln(1/ε)

)
.

Idea: Eliminate many DNFs with few clauses.

Can eliminate too many DNFs if there are not enough clauses.
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Monotone Circuit Lower Bound Proof Idea

Remove large clauses.
Use DNF lower bounds to get each DNF bigger than n1+α.
Fix whole clauses to apply set cover on DNFs.

If there are few clauses, DNFs must share some clauses many times.
Must be many clauses or many DNFs.

Issue: Some DNFs might be small.
Solution: Focus on large DNFs during elimination.

Insight: Some large DNF must survive if few variables fixed.
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Non Monotone Lower Bound Overview

Monotone Idea: Bound size at each level, using restrictions from set cover
algorithm.

General Idea: Same!

Clause lower bounds, works!
DNF lower bounds, almost works.

Following first proof, may set DNF to one early due to negations.
Then, can’t argue restriction left any clauses.
Will discuss next.
Circuit lower bounds, works!

At worst, might eliminate or shrink DNFs and clauses early.
But circuit still solves a promise problem, so it still has large DNFs
after restriction.
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Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable
such that:

Each restriction in the sequence adds one more restriction, sampled
from Dε.
Each restriction has a good chance of eliminating many clauses.
Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ε.

Then by Chernoff bounds, its likely that we eliminate many clauses.

By definition, restricting the rest of the variables is the same as using Dε.

Joshua Cook FSTTCS 2020 July 3, 2022 14 / 17



Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable
such that:

Each restriction in the sequence adds one more restriction, sampled
from Dε.

Each restriction has a good chance of eliminating many clauses.
Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ε.

Then by Chernoff bounds, its likely that we eliminate many clauses.

By definition, restricting the rest of the variables is the same as using Dε.

Joshua Cook FSTTCS 2020 July 3, 2022 14 / 17



Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable
such that:

Each restriction in the sequence adds one more restriction, sampled
from Dε.
Each restriction has a good chance of eliminating many clauses.

Focuses on deleting clauses bigger then w.
Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ε.

Then by Chernoff bounds, its likely that we eliminate many clauses.

By definition, restricting the rest of the variables is the same as using Dε.

Joshua Cook FSTTCS 2020 July 3, 2022 14 / 17



Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable
such that:

Each restriction in the sequence adds one more restriction, sampled
from Dε.
Each restriction has a good chance of eliminating many clauses.
Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ε.

Then by Chernoff bounds, its likely that we eliminate many clauses.

By definition, restricting the rest of the variables is the same as using Dε.

Joshua Cook FSTTCS 2020 July 3, 2022 14 / 17



Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable
such that:

Each restriction in the sequence adds one more restriction, sampled
from Dε.
Each restriction has a good chance of eliminating many clauses.
Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ε.

Then by Chernoff bounds, its likely that we eliminate many clauses.

By definition, restricting the rest of the variables is the same as using Dε.

Joshua Cook FSTTCS 2020 July 3, 2022 14 / 17



Probabilistic Restriction Idea

Idea: Define sequence of restrictions, each restricting one more variable
such that:

Each restriction in the sequence adds one more restriction, sampled
from Dε.
Each restriction has a good chance of eliminating many clauses.
Focuses on deleting clauses bigger then w.

Use greedy set cover algorithm to choose variables like monotone case.

Instead of just setting them to 0, we set them to 1 with probability ε.

Then by Chernoff bounds, its likely that we eliminate many clauses.

By definition, restricting the rest of the variables is the same as using Dε.

Joshua Cook FSTTCS 2020 July 3, 2022 14 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

)

Trivial

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

)

Trivial
A83

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

)

Trivial
A83

CR96

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

)

Trivial
A83

CR96
V09

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

)

Trivial
A83

CR96
V09
V11

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

) Trivial
A83

CR96
V09
V11

Us M

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

)

Trivial
A83

CR96
V09
V11

Us M
Us G

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



Depth-3 Bounds, Constant ε

Note: Graphs slightly adjusted for visibility.
Y-axis is c for circuit size nc.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

ε

ln
(|

C
|)

ln
(n

)

Trivial
A83

CR96
V09
V11

Us M
Us G
Us

Joshua Cook FSTTCS 2020 July 3, 2022 15 / 17



References I

Miklós Ajtai.
Sigma11-formulae on finite structures.
Ann. Pure Appl. Log., 24:1–48, 1983.

Shiva Chaudhuri and Jaikumar Radhakrishnan.
Deterministic restrictions in circuit complexity.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, page 30–36, New York, NY, USA,
1996. Association for Computing Machinery.

Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi.
More on AC0[⊕] and variants of the majority function.
In 39th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2019),
volume 150, pages 22:1–22:14, 2019.

Joshua Cook FSTTCS 2020 July 3, 2022 16 / 17



References II

Emanuele Viola.
On approximate majority and probabilistic time.
Computational Complexity, 18:337–375, 2009.

Emanuele Viola.
Randomness buys depth for approximate counting.
In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 230–239, 2011.

Joshua Cook FSTTCS 2020 July 3, 2022 17 / 17


	Result Overview
	Motivation
	Previous Results
	Term Definitions

	Monotone Depth-3 Lower Bound
	Clause Size Lower Bound
	Greedy Set Cover Algorithm
	Monotone DNF Size Lower Bound
	Circuit Size Lower Bound

	General Depth-3 Lower Bounds
	Open Problems
	References

