
Aaron Lo, Jeriah Yu
CS 380L

1

Comparing User, Kernel, & Kernel-Bypass HTTP Services

Abstract
Low-latency networking is essential in modern computer services. Distributed networking and
online gaming represent use cases that require data to be sent, processed, and received with
very low overhead to achieve maximum performance. Our experiments seek to analyze the
empirical performance characteristics of servicing network requests at different boundary levels
of the operating system, in particular servicing packets with user-level processes, kernel-level
modules, and direct kernel-bypass NIC communication in the data plane.

Background and Problem
Network communication is ubiquitous in modern computing. For standard user-level applications
in a monolithic kernel, network communication requires the process to communicate with the OS
abstraction layer, which then interacts with the network interface card (NIC) driver, which then
sends instructions to the NIC hardware to send a packet. The reverse process happens to
receive packets. These layers of indirection increase overall latency to process and respond to
packets, adversely affecting performance in critical low-latency high-communication applications
such as grid computing, competitive gaming, or high-frequency trading.

Many system designs have been proposed, implemented, and tested to reduce latency and
improve performance while still maintaining an abstraction layer to share the network resource
and interface among multiple processes. JITSU treats incoming network packets as signals for
servers to rapidly spin up unikernels to process the packet and send the proper response, but
faces higher latency due to kernel boot delay. Arrakis sets up access for a process to have
direct dataflow to the NIC for a time quantum before interposing control to another process,
allowing fast response for the process with exclusive packet access, but requiring other
processes to wait their turn. Exokernel uses injected kernel code to process packets based on a
filter without having to switch on the user boundary, prioritizing speed over security. SnapOS
uses a user-level library to bypass the kernel with a separate channel to the hardware NIC,
ensuring the path to network access is short, but requiring explicit support from the NIC driver
through SR-IOV and explicit cooperation of user processes.

Our goal is to investigate the performance of the underlying methods used in these systems in
terms of throughput and latency in responding to HTTP requests. We look at the performance of
some modern userspace web servers, Apache and Flaskr, as a baseline. We then compare this
to a simple web server daemon implemented within the Linux kernel as a kernel module (khttpd)
and an application that interfaces directly to the NIC via SR-IOV using the Data Plane
Development Kit (DPDK) (with a lot of help from tinyhttpd-lwip-dpdk).



2

Hypothesis
Before starting, we hypothesized that in terms of latency, Flaskr will perform worst, followed by
the kernel module server, with the DPDK server performing the fastest, as each layer removes a
level of abstraction overhead from userspace to kernel, then from kernel to hardware interface.
While Apache is theoretically also slower, we reserve the possibility that it could perform better
than anticipated and potentially better than a kernel module due to its widespread usage and
continuous optimization under the worse-is-better principle.

The Journey and Setbacks
For the kernel module, we first found existing implementations of khttpd as experimental code
(Github). This did not have the ability to read files or serve concurrent requests with multiple
threads, so we found a forked version that implemented that functionality (mostly) to use for
testing (Github). We first attempted to compile and run the module on WSL, but WSL’s kernel
does not come with Linux headers that are needed for the kernel module interface. Next, we
tried to directly inject the installed module into the kernel used in lab0 so it starts on boot. That
also did not work (the server did not start on boot), but using the insmod install module
command did, enabling curl commands to be sent on localhost and receiving directory listings.
However, the module crashes whenever a file is attempted to be read, and the kernel messages
that resulted were difficult to parse due to a lack of error messages.

Image 1: Kernel messages from khttpd crashing on file GET request.

https://github.com/sysprog21/khttpd
https://github.com/zeddyuu/khttpd


3

We eventually found the root cause that separated the behavior of reading directories from
reading files was the kernel_read call, which requires a change to pass a pointer to 0 rather
than a 0 (which is incorrectly interpreted as a null pointer). We have not pushed this change
upstream (so good luck to everyone else figuring it out). With a functional server on the VM, we
worked to port it to the physical machine serving as the benchmarking environment. This
presented a new challenge in the form of security: because kernel modules have broad
unrestricted access, installing a module was blocked even with superuser privileges.

Image 2: Attempting to resolve the insmod error. Building it again did not help.

After further research, we found the error was due to secure boot. We also found along the way
that the VM Linux and physical machine Linux versions differed, and the rebuild process
required additional patching to handle gcc version differences that resulted. After temporarily
disabling the option in the BIOS, the module could then be loaded into the kernel while running
and we could benchmark it. A limitation of this kernel server is that the entire file being read is
first copied into kernel memory and then sent via HTTP, so there is a maximum limit to the size
of the file in this prototype that commercial web servers address.

For the implementation of an HTTP server with DPDK as the network backend, the first step
was to set up the system so that the NIC is able to communicate with the internal system. In
order to do this, the NIC must be placed in its own IOMMU group in order to bind the ports to
VFIO for DPDK usage. However, it was discovered that the placement of the Intel NIC was
actually in an IOMMU group that contained multiple other PCI devices, including the storage
device that contained the currently running OS. Deciding that that was unwise (and finding other
ways of breaking IOMMU groups questionable), we eventually decided to take apart the
machine and strategically move PCI devices around to different points on the motherboard until
everything was arranged in a way such that the NIC was in its own IOMMU group.



4

Image 3: DPDK complaining about IOMMU groups

After that, we were able to not-easily set up a DPDK script that forwarded packets received from
SR-IOV NIC to an internal script that polled continuously for packets. While this seemed to work
great in the sense that packets could be sent back and forth through this bridge, and the NIC
was forwarding packets to the application, we could not intentionally ping/send packets to said
application through the NIC (internal DPDK packet generators could communicate but not
external). This probably occurred due to the lack of backend or in-depth network issues that
remain outside our knowledge. It was then at this point that we realized that DPDK does not
provide a TCP/IP stack, requiring the user to build it themselves. As this would be
insurmountable for us to complete in the short time frame we had, we turned to external libraries
that promised to help. One that we chose was SeaStar (Github), which promised to be a
high-performance networking library. After spending much time trying to get this to work, it still
throws countless errors trying to compile. We remain very confused as to how others got it
working as even the mere import of their libraries causes gcc to complain about a myriad of
issues and missing variables. Finally, we settled on another project tinyhttpd (Github) that
combines both DPDK with lwIP, a lightweight TCP/IP stack, to build a simple web server. As we
were still managing the entire TCP/IP stack, dealing with HTTP splitting into multiple TCP
packets was out of scope, thereby limiting it to a single TCP packet and limiting the size of a
possible HTTP response. DPDK still remains very confusing to us and perhaps was not the best
thing to attempt in this project.

Limitations: Limited HTTP size therefore our HTTP server testing was restricted to small files.

Environment
These experiments were all performed on a PC that was running Ubuntu-22.04. The PC was
running an AMD Ryzen 5 5600X 6-Core Processor that has support for AMD-V virtualization for
an x86_64 architecture and 12 CPUs. In addition, it was running on top of a B550-A Pro
motherboard that had support for SR-IOV PCie. The two network cards within the system were

https://github.com/scylladb/seastar/tree/master
http://tinyhttpd-lwip-dpdk


5

a Realtek RTL8111 PCI Express Gigabit Ethernet Controller and an NIC with an Intel 82576
card (that supports SR-IOV as well as is supported by DPDK).

Experimental Design
Due to the limitations discussed above, we were only able to test for latency on small files.
Stemming from this, we decided to use the HTTP benchmarking tool wrk to test the latency of
retrieval of a certain file. We utilize wrk to run a benchmark that runs for 10 seconds and keeps
a varied number of HTTP connections open to the server. The number of these connections go
from 1 to 64 in powers of 2 and we measure the average latency, 90% latency, and request
throughput of the server.

Results

Figure 1: Average Latency of the Servers given Number of Connections (μs)

When comparing average latency, the results (conveniently) support our hypotheses, with Flaskr
having the worst latency followed by the kernel module and the DPDK service. As anticipated,
due to Apache’s long usage and continuous development, its performance is very good, better
than the kernel server we used, and gets close to matching the DPDK setup at high connection

https://github.com/wg/wrk


6

amounts. This suggests that Apache is optimized to scale to high numbers of requests at once
and handle load-stress scenarios.

Figure 2: 90th Percentile Latency of the Servers given Number of Connections (μs)

The results of the 90th percentile latency response we received from the servers matches up
very well with our previous results of the overall average latency. If a server experiences a lower
average latency, so will its 90th percentile latency response. However, there were still several
interesting things to note. Comparing Apache and DPDK, the difference between DPDK
average latency and 90th percentile latency is quite low, suggesting packets experience a very
uniform treatment through the pipeline, which makes sense as the interrupts that normally occur
are mostly removed, whether that be an interrupt from new packet received or syscalls required
to interact with network stack. Comparatively, Apache’s is much higher, given the reasons
above. Another thing to note is that the Kernel Modules implementation faced absolutely
horrible 99% that hit up to 30 times worse latency compared to the average. Why this is an
issue specific to the kernel implementation compared to userspace and hardware
implementations remains a mystery.



7

Figure 3: Request Throughput of the Servers given the Number of Connections

The results here matched what we expected from the other measures of average latency and
90% latency. The implementations that performed well there perform well here. One interesting
thing to note is how quickly it took to saturate the system given the open HTTP connections for
DPDK versus Apache. DPDK very quickly got saturated at around 3 connections while Apache
lasted up until 10 connections before reaching saturation. This again suggests that Apache has
been optimized for high requests, given its wide adoption in server environments.


