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ABSTRACT

Construction of large new buildings needs to take into consideration their additional

energy usage. Current models for predicting that usage leaves a “performance gap” that prevents

an accurate estimation of energy use once the building is in use, leading to unexpected energy

costs and additional load on utility grids. It is also imperative for grid operators to have

higher-resolution details on the load of their grid’s buildings to generate power at peak

efficiency. To solve this necessity, the authors have developed a model to better forecast

predicted energy demand precisely, taking into consideration the local weather patterns and

seasonal climates through meteorological time-series data, and the characteristics of the

constructed building. It is discovered that employing an extensive data imputation process to fill

in data gaps - building floor count, year built, seasonal weather data - significantly reduces the

error rate for LGBM modeling.
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1 INTRODUCTION

Large commercial buildings use substantial amounts of energy per floor space for

lighting, heating, and ventilation, and the energy used to power them ranges from electricity to

district energy to chilled water (US Energy Information Administration, 2018). Before

constructing new buildings, developers need to consider the amount of energy that they would

consume when in use. However, current methods of prediction leave a “performance gap”

between the predicted usage and actual usage (Abdellatif and Brady, 2017). This presents an

issue for measuring efficiency and energy costs for large complexes like university campuses and

especially presents a challenge for independent microgrids that generate their own energy such as

the University of Texas at Austin. The campus generates all the energy required for the campus’s

electricity, heating, and cooling using district energy as a cost-saving and efficiency measure

(Malewitz, 2016), so it requires precise metrics of the maximum, minimum, and average energy

load of every building in the campus down to every hour to avoid potentially ruinous energy

deficits and blackouts (Cooper, 2018).

The Great Energy Predictor, a machine learning competition sponsored by ASHRAE, has

an extensive compilation of literature that covers successful approaches to the problem from

various years. The most common methodology for solving this problem extensively employs

tree-based models, specifically gradient boosting machine (GBM), to make effective time-series

forecasts. GBM approaches have been more successful for this problem due to the datasets being

tabular in nature (Miller, Hao, & Fu, 2022). The biggest deficiency with pre-existing

methodologies is the lack of sufficient focus on data pre-processing, specifically for the building

metadata.

A simple correlation analysis on this dataset displays the importance of certain attributes

— floor count and year built — in predicting energy consumption. This solution is novel due to

the extensive data imputation process throughout the weather and building metadata. To solve

the problem of accurately predicting energy loads on power suppliers, the investigators use

weather and temperature data collected at various sites to predict the precise energy usage of

these large buildings based on their characteristics.



4

2 METHODS

2.1 DATA

The publicly available dataset (ASHRAE, 2019) contains 3 different spreadsheets:

building metadata, weather data, and meter readings. The building metadata consists of year

built, floor plan, sq ft, and site location. The weather data is hourly, and on a per-site basis. It

contains precipitation, cloud coverage, air temperature, sea level, and wind speed. The meter

readings include information about the type of meter, as well as the value for every hour during

the year of 2016. The dataset package (ASHRAE, 2019) had several instances of missing data

across its weather data and building metadata. To overcome this, the investigators extensively

utilized data imputation to fill in data gaps and exploited bit memory properties to reduce the

overall memory load of the dataset package to optimize performance. Fig. 1 illustrates the degree

of inconsistency present in our training data. A large percentage of readings are zero or contain

extraneous spikes.

Fig. 1 Example of Meter Reading with outliers, in this from case Building 12

Referencing Sandeep Kumar’s weather cleaning methodology (Kumar, 2020), the

investigators systematically (1) broke up each timestamp into their respective year, month, day,

and hour — a necessary step for LGBM — and (2) imputed missing air temperature, cloud

coverage, due temperature, sea level, and wind speed/direction by taking pertinent means. Some

attributes were dropped entirely, like precipitation depth, due to their typically low correlation

with the response variable according to relevant literature. Past studies typically agree that

temperature is the most important factor regarding energy demand, while factors like
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precipitation are relatively less important - even if a dependence might be present (Fikru &

Gautier, 2015).

The building metadata had a noticeable lack of year-built and floor count properties for a

considerable number of buildings. Missing year-built data was imputed by using the mean of the

buildings on the same site, and correlation was considered between certain building metadata

properties (square footage, building type) and energy properties (average energy consumption vs.

number of floors). A simple multivariate regression model, using the previously noted attributes

as input, predicted the number of floors in a building. It yielded a relatively low RMSE of 2.36,

which was satisfactory for use, though a possible optimization would be to reduce this. This

regression model then systematically imputed the missing floor count values with a low error.

The results are also visually apparent - Fig. 2 illustrates that the overall distribution became a lot

less skewed following our imputation.

Fig. 2 Floor Count distribution before and after imputation

2.2 MODELS

Several approaches were taken to forecast energy consumption by hour for comparison.

Various gradient boosting models — CatBoost, LightGBM, and XGBoost — and time series
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prediction models — Prophet and ARIMA— were considered. CatBoost, on average, is slower

than LightGBM while XGBoost is less intuitive than LightGBM. LightGBM is the kaggle

boosting framework of choice — due to its time complexity of O(0.5 * #feature * #bin) - which,

along with its incredibly fast training turn-around given computing constraints, made it the clear

choice for the multivariate approach. Running with this idea of a quick training turn-around, it

made sense to choose Prophet due to its flexibility with hyperparameter tuning, its pattern-first

design, and its time complexity of O(# simulations * length of forecast). Therefore, the final

selections were Facebook’s Prophet Model as a univariate linear approach and Light Gradient

Boosting as a multivariate approach. Facebook Prophet was selected to compare the results from

a more traditional time series approach that depends primarily on periodic information with final

results. Light Gradient Boosting was selected due to its effectiveness at detecting trends in

complex multivariate data and ability to make complex connections with its estimator terms.

The Facebook Prophet Model (Taylor & Letham, 2017) is comparable to other time series

models like SARIMA in that it relies on deriving trends from past values and seasonalities. At its

core is the following Equation 1, where y(t) is the forecasted output, g(t) is growth, s(t) is

seasonality, h(t) adjusts for holiday, and is error.ϵ
𝑡

𝑦 𝑡( ) = 𝑔 𝑡( ) + 𝑠 𝑡( ) + ℎ 𝑡( ) + ϵ
𝑡

(1)

Overall, the model was limited by the dataset - many meter readings were unavailable,

which made it difficult for a model like Prophet to determine seasonalities. This is because

previous values over periodic intervals are the primary estimator. With many such values

missing, it follows that the model did not have sufficient information to generate accurate

predictions. Fig. 3 shows predictions using the Prophet model.

Fig. 3 Prediction for energy consumed over time using Prophet.
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The LGBM model is a modified version of gradient boosting to reduce memory usage

(Ke, 2017). The investigators followed an approach outlined in a paper by Banerjee on Kaggle.

The core idea is to iteratively improve the model according to an error metric by adding an

estimator term. For the LGBM model, the timestamps were decomposed, turning the year,

month, day, and hour into additional vectors. This also made it possible to predict useful meter

readings for buildings which did not have a meter reading on a given day during the year of

provided training data. A randomized 80/20 train-test split was used. Fig. 4 shows predictions

using the LGBM model after including data imputations and removing outliers, which is

discussed in greater detail in the results section.

Fig. 4 Prediction for energy consumed over time using LGBM.
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3 RESULTS

Prophet RMSE With
Imputation and Outlier Pruning
on Testing Data

LGBM RMSE
With Imputation and Outlier
Pruning on Our Testing Data

LGBM RMSE
With Imputation and without
Outlier Pruning on Testing Data

LGBM RMSE
Without Imputation and with
Outlier Pruning on Testing Data

34.1757 0.1456 0.3579 0.3755

Fig. 5 RMSE on our testing data for each model

The Prophet model framework handles hyperparameter selection automatically, but its

accuracy was quite low with a total RMSE of 34.18. It utilizes a complex L-BFGS optimization,

which itself has a non-trivial time complexity and constant memory. The LGBM model was

trained with a learning rate of 0.1, 2000 boost rounds, and 20 early stopping rounds. The RMSE

was 0.3755 with just outlier removal, 0.3579 with just imputation, and 0.1456 with both. The

training of the model with no outlier removal involved not removing zero-values when feeding

data into the model. The model with no imputation involved not predicting missing values (as

described in the method section above). By running the model with and without these features, a

point of comparison and improval was able to be made for the complete model.

LGBM unsurprisingly outperformed Prophet due to the nature of the problem and the

models. The problem necessitated a multivariate analysis capable of working with a constrained

dataset due to most buildings having long periods of time where their meters were not in

operation. But Prophet, which uses past inputs from the same series based on periodic intervals

to perform predictions, could only perform well when data was present for the whole year.

Prophet also could not make adequate use of other data sources: it needs data over the period of

prediction and would not be able to quickly use a large number of added regressors. LGBM, on

the other hand, could quickly learn from the entire dataset due to its light decision tree design.

The LGBM predictions were submitted to the ASHRAE Great Energy Prediction

competition hosted on Kaggle. Overall, the model with outlier pruning and imputations greatly

outperformed submissions that only implemented one method. The total score came in at 1.283,

which is in the 83rd percentile of participants with a rank of 447/3592. Without imputation, the

score dropped to 1.287, and without pruning, it dropped to 1.474. While it is clear that many

improvements can be made, it is also clear that outlier pruning and data imputation provide a

significant improvement to overall prediction performance.



9

4 DISCUSSION

Regarding results from the Prophet model, the main takeaway is that the missing values

in the time series significantly reduces the predictive power of the model. This is because

Prophet is a more traditional time series, making future predictions based on the same value at

the previous interval. Being denied this data without having access to additional regressors like

weather makes it incredibly difficult to predict with reasonable accuracy. For LGBM, the main

improvement could be made in processing invalid readings through further statistical processing

to remove outliers rather than just detecting and removing missing values and zeros.

5 CONCLUSION

Imputation alone results in an improvement of the RMSE from 0.3755 to 0.3579.

Combining outlier pruning and data imputation improved results to yield an RMSE of 0.1456.

The LGBM model with our data processing regime achieves an RMSE of 0.1456 for forecasting,

outperforming the Prophet model which has an RMSE 34.18. The models can be improved with

focused feature cleaning and enhanced feature imputation. Further work remains to test the

models on sourced real-world non-filtered data from UT and to improve the efficiency of the

models and processing algorithms in training and validation.
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