

CS 309: Autonomous Intelligent Robotics

Instructor: Jivko Sinapov

http://www.cs.utexas.edu/~jsinapov/teaching/cs309_spring2017/

Position and Orientation (in 3D Space)

Announcements

UNDERGRADUATE RESEARCH FORUM

11 am - 3 pm, April 12, 2017 Shirley Bird Perry Ballroom, Texas Union

Homework 5

- If you have not evaluated your solution on the real robot, do so ASAP

Readings For This Week

Bobick, Aaron F. "Movement, activity and action: the role of knowledge in the perception of motion." Philosophical Transactions of the Royal Society of London B: Biological Sciences 352.1358 (1997): 1257-1265.

Poppe, Ronald. "A survey on vision-based human action recognition." Image and vision computing 28.6 (2010): 976-990.

Frintrop, Simone, et al. "Computational visual attention systems and their cognitive foundations: A survey." ACM Transactions on Applied Perception (2010): 6.

How does the robot represent its location in the world?

ROS Pose API

- http://wiki.ros.org/geometry_msgs

Quaternions

Roll - Pitch - Yaw

[http://www.chrobotics.com/library/understanding-quaternions]

Roll - Pitch - Yaw

Roll - Pitch - Yaw

Roll

Converting between Quaternions and RPY

$$
\begin{gathered}
{\left[\begin{array}{l}
\phi \\
\theta \\
\psi
\end{array}\right]=\left[\begin{array}{c}
\arctan \frac{2\left(q_{0} q_{1}+q_{2} q_{3}\right)}{1-2\left(q_{1}^{2}+q_{3}^{2}\right)} \\
\arcsin \left(2\left(q_{0} q_{2}\right)\right. \\
\arctan \frac{2\left(q_{0} q_{2}+q_{1} q_{2}\right)}{1-2\left(q_{2}^{2}+q_{3}^{2}\right)}
\end{array}\right]} \\
\mathbf{q}=\left[\begin{array}{c}
\cos (\phi / 2) \cos (\theta / 2) \cos (\psi / 2)+\sin (\phi / 2) \sin (\theta / 2) \sin (\psi / 2) \\
\sin (\phi / 2) \cos (\theta / 2) \cos (\psi / 2)-\cos (\phi / 2) \sin (\theta / 2) \sin (\psi / 2) \\
\cos (\phi / 2) \sin (\theta / 2) \cos (\psi / 2)+\sin (\phi / 2) \cos (\theta / 2) \sin (\psi / 2) \\
\cos (\phi / 2) \cos (\theta / 2) \sin (\psi / 2)-\sin (\phi / 2) \sin (\theta / 2) \cos (\psi / 2)
\end{array}\right]
\end{gathered}
$$

Why Multiple Frames of Reference?

Why Multiple Frames of Reference?

http://www.pirobot.org/blog/0011/Coordinate\ Frames\ 1_html_adf3112.gif

Why Multiple Frames of Reference?

The Transform Tree in ROS

Project Group Breakout

- Scheduling - set aside weekly time for your group to meet and work on the project
- Take 5-10 minutes to come up with some questions about the robots that are useful for your project

THE END

