Semi-Robust Detection and Following of Individuals
Michael Brenan, Saket Sadani, Victoria Zhou

Abstract

Currently, the robots involved in the Building Wide Intelligence (BWI) program do not
have the ability to follow a given individual. To rectify this tragic fact, we introduce and describe
our implementation of a PCL-based person detection, tracking, and following program known as
Creeper. The system is capable of continuously detecting and tracking individuals in point
clouds (provided by depth-enabled cameras), and following specific targets despite some
unreliable readings and brief interruptions from other individuals.

Background & Introduction

The primary goal of this project was to implement a program on the BWI segbot
machines which could detect and follow individuals using the available sensors on the machine.
Of course, the fundamental act of attempting to “follow” an individual is nontrivial, and can be
split into three distinct aspects: detection, tracking, and movement.

Person Detection, which is simply the process of finding people/ individuals in a frame
of sensory data, is a classic field of research and one of the oldest problems in computer vision.
The numerous solutions, nearly all based on machine learning methods such as Support Vector
Machines (“SVM?”) and Neural Networks, differ largely on the features and dimensionality of
data used for detection. While relatively robust solutions have existed in the two-dimensional
domain for many years (such as component-based detection in [1]), many new interesting point
cloud approaches have arose to take advantage of the abundance of information provided by
depth-enabled cameras, such as Point Cloud Library’s people detector in [2].

Person Tracking, a natural extension of the detection problem, involves tracking
individuals across sensory input frames (in essence, by attributing each detected person in each
frame an identity which may be shared across frames). As the problem arose at nearly the same
time as detection, the solution space is also rich; at a basic level, however, most solutions operate
on similarity metrics, such as distance between detections, color content of detections, or other
identifying features in order to track individuals or objects over time, examples of which are seen
in [3].

Movement is simply the orienting and movement of the robot towards the tracked
individual (though the act of doing that can certainly be anything but simple).

Due to the smaller scope of our report and project, we specifically focus on the
aforementioned problems in the three-dimensional domain using the Point Cloud Library (or
“PCL”). To this end, we develop and explain the Creeper program, which is responsible for

1



collecting point cloud data from the Microsoft Kinect sensor [4], performing person detection
and tracking using operations from PCL, and sending movement goals to the BWI robot’s
movement goal system (which also handles low-level movement and obstacle avoidance). As in
many robotic projects, our system is based on the Robot Operating System (ROS), and our
discussion presupposes knowledge of basic ROS topics such as topics and nodes.

Methodology & Implementation
Much like the problem itself, our implementation is split into three distinct and separate
phases: detection, tracking, and movement, where information from the previous phase is fed

into the next phase. We explain each in detail:

Person Detection - PCL “people” classifier

Due to the limited time constraints of the project, we make use of
background person_detector, a lightweight ROS node from the BWI Experimental package
which thinly wraps PCL’s people detector/classifier. PCL’s detector operates by attempting to
find a “floor plane”, and then detecting distinct point clouds (or “objects”) on top of the floor
plane; each object is passed to a SVM (Support Vector Machine) which has been trained on
thousands of samples of standing people, and which marks “matching” objects as people [5]. The
background person detector node simply repeatedly calls PCL’s detector on point cloud data
provided by a Microsoft Kinect mounted on the robot each frame, and then publishes both poses
and point clouds for the detected humans at a frequency of about 2 Hz.

%) People Viewer

Figure 1: Example of background person _detector detecting an individual. A green bounding
box is drawn around person.



Person Tracking - Trivial Classification & Color Classification

Person Tracking is implemented on top of person detection, and takes advantage of the

point clouds associated with each person. The two solutions provided with our implementation

are the Trivial classifier and the Color classifier.

The Trivial classifier is, as the name implies, the minimum viable classifier, and simply
identifies every input human cloud as a single person. This classifier works quite well
when only a single person is present to be followed, but can quickly become
nondeterministic when multiple people enter the scene.

The Color classifier is a slightly more sophisticated classifier which uses the average
color of the input human clouds to differentiate between people, giving a decent heuristic
for differentiating between people with reasonably different clothing, hair, or skin color.
The previous average color of each person cloud is stored, and then the best match is
determined by comparing the average color of the current input cloud to all of the
average colors of the people being tracked. The closest match (by Euclidian distance) is
chosen, as long as the difference is within a specified threshold; if the distance is not
within the threshold, the cloud is assumed to be a new person and a new classifier and
person with that color is created. Of course, the classifier is very sensitive to background
noise and to false positives in detection.

Movement - Rotation & Following

The third aspect (and the one people actually see), is to have the robot actually act to

follow the individuals which the program is tracking. For our purposes, the actual person to

follow depends on the classifier being used - it is simply the first person detected in the frame if

using the Trivial classifier, and it is the first person originally detected when the program started

if using the Color classifier.

Movement operates in a tight loop, and repeats the same set of checks each iteration:
Check if anyone has been detected in the first place. If not, then rotate to the left (in an
attempt to find someone), and return to the beginning of the loop.

Check if any new information (eg, information which the robot hasn’t acted on) is
available for the person being followed. If no information has been available for a short
time, the detector has likely lost track of the person, so wait a brief time and then begin
rotating to search for the person.

Assuming we have new information for the robot to act on, determine the person’s
relative location from the frame of reference of the camera in terms of distance and angle
(using some relatively straightforward trigonometry), and then send a move base goal to
the robot to carry out.



Evaluations

Fortunately, we achieved the basic goal of the project: the robot can follow an individual
relatively seamlessly, even if the individual temporarily goes out of sight or goes around sharp
corners. Testing done on the 3rd floor of the GDC where the robot followed one individual
(without other individuals showing up) all around were generally quite successful; however, the
color tracking had serious problems with data noisiness which made the proposed
multi-individual tracking infeasible. And, as in any Al project, there are a list of limitations and
shortcomings to be address in possible future iterations:

Limitations

There are several limitations of the presented solution, regarding PCL perception, robot
obstacle avoidance, and robot movement:

PCL perception

PCL perception is computationally expensive and therefore very slow (i.e. frames are
updated every 2HZ), which can cause a notable lag in response time when the robot is first trying
to track an individual (though fortunately, the effect is not nearly as prevalent once the robot
starts moving towards the person directly).

In addition, PCL’s person detector is not completely robust. If the individual is too far
away, it only detects a person at certain orientations. For example, if the individual is standing
far enough and if any significant portion of the individual is black (i.e. hair, jacket, pants, etc.),
the scanner will fail to detect the black portions, and by extension, the person. Far more
interestingly, background person_detector will consider whiteboards to be a person as well.

Poophe Viewar

Figure 2: The green bounding box, indicates that a person has been found; however, in this case,
a whiteboard has been determined to be a “person”.

4



Robot obstacle avoidance

The robot’s obstacle avoidance protocol holds precedence over our program, making
movements often times jerky and causing occasional random rotations as the robot scans its
surroundings. In addition, when robot gets too close to a person, it will turn slightly as to “avoid”
the person altogether, resulting in random swerves at close range.

Robot Movement

The robot’s (default) movement is quite slow so the person being followed can not walk
too fast or else Creeper will no longer be able to detect the individual. However, this can
potentially be changed by changing the default speed when sending goals to the robot’s
/base_link.

Future Work

Better differentiation between multiple people

Instead of relying on dominant point cloud color to classify people, we could instead
actually track the movement of the figures from frame to frame. This would not rely on any
feature (eg, color) of a given individual, but just on the assumption that each individual will stay
in relatively the same position from frame to frame (i.e. not jump across the room). Tracking
movement from frame to frame could be done through the combined techniques of using the
Harris detector[6] to find interest points (which, in addition, should not rely on having entire
person in frame) and using SURF (Speed Up Robust Features) to find correspondence between
the descriptors found using Harris detector across several frames. [7]

Use less computationally expensive method of finding people (using openCV in a useful way)
OpenCV already has a library with pre-trained HOG and SVM detector (pyimage).

Combining this tool with techniques, such as triangle similarity, to calculate distance from a
given 2D image, it should be possible to use openCV to track and follow individuals. In addition,
openCV is less computationally expensive as it only has to process two-dimensional data in
comparison to PCL’s three-dimensional data, making it a potential candidate for a revamped
detector. Even though openCV does not give depth data, as it is only processing 2D images,
there are techniques to track object movements [8] and determine object’s distance from the
camera using triangle similarity [9], which we hope to look into.



Conclusion

While certainly not perfect, we accomplished the core goals of our original proposal, and
successfully implemented a program for detecting, tracking, and following individuals using 3D
point cloud data as well as PCL utilities. Wrestling with ROS documentation, configuration, and
setup was certainly challenging (and was probably harder than the actual algorithms we used!),
but the end result was quite nice to see and certainly worth the effort.

Acknowledgements

Thanks Jivko for general advice and Shih-Yun for guiding us through the initial stages of
our project (telling us OpenCV wouldn’t work as well without significant extra effort).
Also, thank you to the mentors for opening up the lab to us and patiently answering our
questions.

References

[1] Mohan, A., Papageorgiou, C., & Poggio, T. (2001). Example-based object detection in
images by components. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
23(4), 349-361.

[2] Rusu, Radu Bogdan, and Steve Cousins. "3d is here: Point cloud library (pcl)." Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011

[3] Comaniciu, D., Ramesh, V., & Meer, P. (2000). Real-time tracking of non-rigid objects using
mean shift. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference
on (Vol. 2, pp. 142-149). IEEE.

[4] Han, J., Shao, L., Xu, D., & Shotton, J. (2013). Enhanced computer vision with microsoft
kinect sensor: A review. Cybernetics, IEEE Transactions on,43(5), 1318-1334.

[5] Aldoma, A., Marton, Z. C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B, ... &
Vincze, M. (2012). Point cloud library. IEEE Robotics & Automation Magazine, 1070(9932/12).

[6] Harris, C., & Stephens, M. (1988, August). A combined corner and edge detector. In Alvey
vision conference (Vol. 15, p. 50).

[7] Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In
Computer vision—ECCV 2006 (pp. 404-417). Springer Berlin Heidelberg.

6



[8] Rosebrock, A. (2015). OpenCV Track Object Movement - PylmageSearch. Retrieved May
09, 2016, from http://www.pyimagesearch.com/2015/09/21/opencv-track-object-movement/

[9] Rosebrock, A. (2015). Find distance from camera to object using Python and OpenCV.
Retrieved May 09, 2016, from
http://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-op

encv/


http://www.pyimagesearch.com/2015/09/21/opencv-track-object-movement/
http://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
http://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/

