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Motivations

I Ease the formalisation of proofs dealing with binary relations in
Coq (bisimulations . . . )

I [Tarski et al.]: no �nite axiomatisation

I A lot of partial axiomatisations
I non-commutative monoids (·, 1)
I semi-lattices (+, 0)
I non-commutative idempotent semirings (·,+, 1, 0)
I Kleene algebras (·,+, ?, 1, 0)
I Residuated semi-lattices (·,+, /, \, 1, 0)
I Action algebras (Pratt) (·,+, /, \, ?, 1, 0)
I Allegories (Freyd & Scedrov) (·,+,∧, /, \, ·, 1, 0)

I In each case, di�erent decidability / complexity properties

I Tools and theorems rather than the algebraic hierarchy itself
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Kleene algebras

I Models of Kleene algebras : regular languages, binary
relations, . . .

I Example: �Weak con�uence implies the Church-Rosser
property�
I Standard (hand-waving) proof
I Naive formalisation
I Algebraic formalisation
I Algebraic formalisation with tools
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Church-Rosser (Diagrammatic proof)
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Church-Rosser (more formally)

*

*

*

*

*

* *
*

*

*

p

r

q

s

*
implies p q

s

(∀p, r , q, pRr , rS?q ⇒ ∃s, pS?s ∧ sR?q)
⇒ (∀p, q, p(R ∪ S)?q ⇒ ∃s, pS?s ∧ sR?q)

R · S? ⊆ S? · R? ⇒ (R ∪ S)? ⊆ S? · R?
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Church-Rosser, with points

Variable P: Set.
Variables R S: relation P.

(** notations for reflexive and transitive closure,

and for union of relations **)

Notation "R ?" := (clos_refl_trans_1n _ R).
Notation "R + S" := (union _ R S).

Definition WeakConfluence :=
∀ p r q, R p r → S? r q →∃s, S? p s ∧ R? s q.

Definition ChurchRosser :=
∀ p q, (R+S)? p q →∃s, S? p s ∧ R? s q.
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Church-Rosser, with points
Do not read this slide!

(∗∗ naive proof ∗∗)
Theorem WeakConfluence_is_ChurchRosser0:
WeakConfluence → ChurchRosser.

Proof.
intros H p q Hpq.
induction Hpq as [p | p q q' Hpq Hqq' IH].

∃p. constructor. constructor.
destruct Hpq as [Hpq|Hpq].
destruct IH as [s' Hqs' Hs'q'].
destruct (H p q s' Hpq Hqs') as [s Hps Hss'].
∃s. assumption.
apply trans_rt1n.
apply rt_trans with s';
apply rt1n_trans;
assumption.

destruct IH as [s Hqs Hsq']. �
∃s.
apply rt1n_trans with q;
assumption.
assumption.

Qed.

�
P : Set
R : relation P
S : relation P
H : WeakConfluence
p : P
q : P
q' : P
Hpq : S p q
Hqq' : (R + S)? q q'
s : P
Hqs : S? q s
Hsq' : R? s q'
============================

∃s0 : P, S? p s0 ∧ R? s0 q'

9 / 34



Church-Rosser, no points, no tools
Not yet a short proof, but readable context

Context `{KA: KleeneAlgebra}.

Variable A: T.
Variables R S: X A A.

(∗∗
⊆ is the inclusion of relations
? is the re�exive and transitive closure
· is the composition
+ is the union

∗∗)
Theorem WeakConfluence_is_ChurchRosser1:
R · S? ⊆ S? · R? → (R+S)? ⊆ S? · R?.

Proof.
intro H.
star_left_induction.
rewrite dot_distr_left.
repeat apply plus_destruct_leq.
do 2 rewrite ← one_leq_star_a.
rewrite dot_neutral_left. reflexivity.
� rewrite dot_assoc. rewrite H.
rewrite ← dot_assoc.
rewrite (star_trans R).
reflexivity.

rewrite dot_assoc.
rewrite a_star_a_leq_star_a.
reflexivity.

Qed.

�
G : Graph
Mo : Monoid_Ops
SLo : SemiLattice_Ops
Ko : Star_Op
KA : KleeneAlgebra
A : T
R : X A A
S : X A A
H : R · S ?⊆ S? · R?
============================

R · (S? · R?) ⊆ S? · R?
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Church-Rosser, with tools
With high-level tactics, we can skip the administrative steps

Theorem WeakConfluence_is_ChurchRosser2:
R · S? ⊆ S? · R? → (R+S)? ⊆ S? · R?.

Proof.
intro H.
star_left_induction.
� semiring_normalize.
repeat apply plus_destruct_leq.
do 2 rewrite ← one_leq_star_a.

monoid_reflexivity.
rewrite H. monoid_rewrite (star_trans R).

reflexivity.
rewrite a_star_a_leq_star_a. reflexivity.
Qed.

�
G : Graph
Mo : Monoid_Ops
SLo : SemiLattice_Ops
Ko : Star_Op
KA : KleeneAlgebra
A : T
R : X A A
S : X A A
H : R · S ?⊆ S ?· R ?
============================

1 + (R + S) · (S ?· R ?) ⊆ S ?· R ?
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Church-Rosser, with better tools
We can do better: equationnal theory of Kleene Algebras is decidable

Theorem WeakConfluence_is_ChurchRosser3:
R · S? ⊆ S? · R? → (R+S)? ⊆ S? · R?.

Proof.
intro H.
star_left_induction.
semiring_normalize.
rewrite H. �

�
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A : T
R : X A A
S : X A A
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Objectives

I The algebraic view improves:
I goals readability;

I but we saw the need for :
I decision tactics (à la ring, omega) :

kleene_reflexivity, monoid_reflexivity,
semiring_reflexivity. . .

I simpli�cation tactics (ring_simplify) :
semiring_normalize, aci_normalize. . .

I rewriting tactics (modulo A, modulo AC):
monoid_rewrite

btw, we now have a dedicated plugin for rewriting modulo AC
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Outline

Motivations

Deciding Kleene Algebras in Coq

Underlying parts of the development

Conclusions and perspectives
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Scott vs. Kozen

Let α and β be two regular expressions (+, ·, 0, 1, ?).

Scott '50 α and β represent the same language i� the corresponding
minimal automata are isomorphic.

Kozen '94 Initiality of this model for Kleene algebras:
If α and β lead to the same automata,
then A ` α = β, for any Kleene algebra A.
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Scott vs. Kozen (again)
Initiality of the model of regular languages

(a + b)∗
construction

ε-removal

determinisation

minimisation
��
�O
�O
�O
�O
�O
�O
�O

a∗ · (b · a∗)∗
construction

ε-removal

determinisation

minimisation
��
�O
�O
�O
�O
�O
�O
�O

◦a,b 99 = ◦ a,bee

Scott '50 : We deduce L((a + b)∗) = L(a∗ · (b · a∗)∗).
Kozen '94 : We go further, we deduce A ` (a + b)∗ = a∗ · (b · a∗)∗.
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Making a re�exive tactic

I Theoretical complexity is PSPACE-complete. . .

I however, tractable in practice. . .
I as long as we take some care in the implementation

I Coq is a programming language, we code the algorithm:

Definition decide_Kleene: regexp → regexp → bool := ...

I We formalize Kozen's proof in Coq:

Theorem Kozen: ∀ a b: regexp, decide_Kleene a b = true ↔ a ≡ b.

( ≡ is the equality generated by the axioms of Kleene Algebras)

I Then we wrap this in a tactic.
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Kozen's Proof

I The main idea is to represent automata algebraically, with
matrices:

(
· · · u · · ·

)
·

· · · · · · · · ·· · · M · · ·
· · · · · · · · ·



?

·


...
v
...



=A α

I Matrices over a Kleene algebra form a Kleene algebra.

I Transcribe and validate the algorithms in this algebraic setting.

in this talk, only a glimpse of these
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Construction
A variant of Illie and Yu's

a + a · (a+b)?

/.-,()*+1 /.-,()*+2

1 2

1
2

19 / 34



Construction
A variant of Illie and Yu's

a + a · (a+b)?

/.-,()*+1
a · (a+b)?

==

a

��/.-,()*+2

1 2

1 a
2

19 / 34



Construction
A variant of Illie and Yu's

a + a · (a+b)?

/.-,()*+1

a

��a ///.-,()*+3
(a+b)?

AA
/.-,()*+2

1 2 3

1 a a
2
3

19 / 34



Construction
A variant of Illie and Yu's

a + a · (a+b)?

/.-,()*+1

a

��
a

///.-,()*+3 ε
///.-,()*+4 ε

//

(a+b)

XX
/.-,()*+2

1 2 3 4

1 a a
2
3 ε
4 ε

19 / 34



Construction
A variant of Illie and Yu's

a + a · (a+b)?

/.-,()*+1

a

��
a

///.-,()*+3 ε
///.-,()*+4 ε

//
a

��

b

XX
/.-,()*+2

1 2 3 4

1 a a
2
3 ε
4 ε a,b

19 / 34



About the construction

I We prove that the construction is correct algebraically

(
1 0 0 0

)
·


0 a a 0
0 0 0 0
0 0 0 ε
0 ε 0 a+b


?

·


0
1
0
0

 =A a + a · (a+b)?

I We use e�cient data-structures to represent the automata
(Patricia trees for maps and sets vs matrices)

1 2 3 4

1 a a
2
3 ε
4 ε a,b

1
a−→ {2, 3}

4
a−→ {4}

4
b−→ {4}

3
ε−→ {4}

4
ε−→ {2}

I We prove that the constructions in the algebraic setting and
the e�cient setting are equivalent
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The big picture
and the datastructures

regex

Construction
��

α_

��

A
??

??
??

??

??
??

??
??

β_

��

A

��
��

��
��

��
��

��
��

eNFA.t

Epsilon removal
��

A1_

��

eval // ·

A

·

A

B1
evaloo

_

��
NFA.t

Determinisation
��

A2_

��

eval // ·

A

·

A

B2
evaloo

_

��
DFA.t A3

eval // · A · B3
evaloo

equiv

No minimisation (too costly)
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Algebraic hierarchy
another one

I We follow the mathematical algebraic hierarchy using
Typeclasses:

SemiLattice
<: SemiRing <: KleeneAlg <: . . .

Monoid

I We inherit the tools we developped for monoids, lattices,
semi-rings, etc. . .

(e.g., semiring_reflexivity in the context of a Kleene algebra.)

What about matrices ?
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Matrices
I In�nite fonctions, with a constrained pointwise equality:

Definition MX n m := nat → nat → X.

Definition equal n m (M N : MX n m) :=
∀ i j, i<n → j<m → M i j ≡ N i j.

I No bound proofs required for the access

I Easy to manipulate (proof/programs separation)

(M ∗ N)i ,j =
m∑

k=0

Mi ,k ∗ Nk,j

Fixpoint sum k (f: nat → X) :=
match k with O ⇒0 | S k ⇒f k + sum k f end.

Definition dot n m p (M: MX n m) (N: MX m p) :=
fun i j ⇒sum m (fun k ⇒M i k ∗ N k j).

bounds proofs are easy to cope with, in proof mode

no hidden boilerplate
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bounds proofs are easy to cope with, in proof mode

no hidden boilerplate 24 / 34



Matrices cont.

Thanks to typeclasses, we inherit tools and theorems for matrices:

I square matrices built over a semi-ring form a semi-ring;

I square matrices built over a Kleene algebra form a Kleene
algebra.

At several places, we need rectangular matrices!
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How to deal with rectangular matrices?
I Without extra stu�, we cannot re-use tools for them:

rectangular matrices do not form a semiring
I operations (·,+, . . . ) are partial (dimensions have to agree)

X: Type.

dot: X → X → X.
one: X.

plus: X → X → X.
zero: X.

star: X → X.

dot_neutral_left:
∀ x, dot one x = x.

...

T: Type.
X: T → T → Type.

dot: ∀ n m p, X n m → X m p → X n p.
one: ∀ n, X n n.

plus: ∀ n m, X n m → X n m → X n m.
zero: ∀ n m, X n m.

star: ∀ n, X n n → X n n.

dot_neutral_left:
∀ n m (x: X n m), dot one x = x.

...

I Introduce typed structures from the beginning
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Typed structures
We handle heterogeneous relations (X A B := A → B → Prop),
as well as matrices:

MxSemiLattice : SemiLattice → SemiLattice.
MxSemiRing : SemiRing → SemiRing.
MxKleeneAlgebra : KleeneAlgebra → KleeneAlgebra.

Here, we deal with typed structures

I All theorems are inherited at the matricial level.

I What about extending decision procedures to deal with typed
structures?

a · (b · a)?

�� �O
�O
�O
�O

?
= (a · b)? · a

�� �O
�O
�O
�O

: A→ B

• = •

a : A→ B, b : B → A

tackle the problem di�erently... let's erase types!
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Untyping
The general scheme

untyped setting: • decide •

rebuild types
��

typed setting: ◦

erase types

OO

? ◦

I Depending on the algebraic structure:

A
semi-lattices trivial
monoids rather easy
semirings tricky

Kleene algebras same as for semirings
residuated lattices with constraints

action algebras/lattices ?
So, everything is �ne. . .
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Deciding Kleene Algebras in Coq

Underlying parts of the development
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Conclusions

I A decision tactic for Kleene algebras (available on the web):
I re�exive
I e�cient (�rst version:40 symbols, now:1000)
I correct and complete
I ∼ 7000 lines of spec (de�nitions, functions)
I ∼ 7000 lines of proofs
I 182 Kb of compressed .v �les using gzip (current trunk)

I Other tools for the underlying structures:
I various algebraic structures,
I matrices
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Learnings

I Finite sets/Finite maps:
I used a lot in our development
I Patricia trees rule for binary positive numbers
I mixing proofs and programs hinders performances (slightly)

I Typeclasses:
I much more supple to use than modules
I overhead due to the inference of implicit arguments

I Interfaces:
I in order to compute, cannot hide a module behind a signature

(coercions)
I break proofs when changing the implementation
I example: going from AVL based FSets to Patricia trees

31 / 34



What's coming next ?

I Kleene algebras with tests (automation for Hoare logic)

I Merging the equivalence check and the determinisation

I Back-end for simulation proof obligations ?

32 / 34



Thanks you for your attention

Any Questions ?
http://sardes.inrialpes.fr/~braibant/atbr/

33 / 34
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Determinisation

I Construct the powerset automata

I Let X be the decoding matrix of the accessible subsets of the
automata (u,M, v):

Xsj , j ∈ s

I We can de�ne M and u such that:

M
? · X = X ·M? u · X = u

I We deduce

u ·M? · X · v = u · X ·M? · v
= u ·M? · v

34 / 34
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