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Kleene algebras

» Models of Kleene algebras : regular languages, binary
relations, . ..

» Example: “Weak confluence implies the Church-Rosser
property”

Standard (hand-waving) proof

Naive formalisation

Algebraic formalisation

Algebraic formalisation with tools

v

v vy
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Church-Rosser

implies
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Church-Rosser (Diagrammatic proof)
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Church-Rosser (more formally)

N - /Mx/\
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Church-Rosser, with points

Variable P: Set.
Variables R S: relation P.

(** notations for reflexive and transitive closure,
and for union of relations **)

Notation "R *" := (clos_refl_trans_1in _ R).

Notation "R + S" := (union _ R S).

Definition WeakConfluence :=
Vprq Rpr -S*rq—3s,8"ps AR " sq

Definition ChurchRosser :=
Vpq (R+S)*pq—3s, S ps AR s q.
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Church-Rosser, with points
Do not read this slide!

(** naive proof )
Theorem WeakConfluence_is_ChurchRosserQ:
WeakConfluence —> ChurchRosser.

Proof.
: u
intros H p q Hpq. P : Set
induction Hpq as [p | p q q' Hpq Hqq' IH]. R : relation P
Jp. constructor. constructor. : ;slzz:l.oxflll?
destruct Hpq as [Hpq|Hpq]. Paa onttuence
destruct IH as [s' Hgs' Hs'q']. P P
destruct (H p q s’ Hpq Hgs') as [s Hps Hss']. :,'_ P
Js. assumption. :
o Hpq:Spaq

apply trans_rtin. ' * f
apply rt_trans with s’; l'slq.qp. (R+5)" aq
apply 1;1:'1n_trans; Hgs : S* g 's
assumption. Hsq' :R* s q'

destruct IH as [s Hqs Hsq']. B
Js. . * * '
apply rtin_trans with q; Js0 . P, 57 psO AR 50 q
assumption.
assumption.

Qed.
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Church-Rosser, no points, no tools
Not yet a short proof, but readable context

Context '{KA: KleeneAlgebra}.

Variable A: T.
Variables R S: X A A.

(s
C is the inclusion of relations
* is the reflexive and transitive closure n
- is the composition
~+ is the union

#x)

Theorem WeakConfluence_is_ChurchRosserl:

G : Graph
Mo : Monoid_Ops
SLo : SemiLattice_Ops

* * * * * * Ko : Star_0Op
Prl:ofs c* R (RES)TCs R KA : KleeneAlgebra
. A:T
intro H.
star_left_induction. l; i ﬁ ﬁ
Teurite dot_distr_left. M e

repeat apply plus_destruct_leq.
do 2 rewrite <— one_leq_star_a.
rewrite dot_neutral_left. reflexivity.
M revwrite dot_assoc. rewrite H.
rewrite <— dot_assoc.
rewrite (star_trans R).
reflexivity.
rewrite dot_assoc.
rewrite a_star_a_leq_star_a.
reflexivity.
Qed.

B
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Church-Rosser, with tools

With high-level tactics, we can skip the administrative steps

Theorem WeakConfluence_is_ChurchRosser2:
R-S* Cs* .R* - (R+S)* C s* - R*.

Proof.

intro H.

star_left_induction.

B semiring_normalize.

repeat apply plus_destruct_leq.

do 2 rewrite <— one_leq_star_a.
monoid_reflexivity.

rewrite H. monoid_rewrite (star_trans R).
reflexivity.

rewrite a_star_a_leq_star_a. reflexivity.

Qed.

||

G : Graph

Mo : Monoid_Ops

SLo : SemiLattice_Ops
Ko : Star_Op

KA : KleeneAlgebra
A:T

R:XAA

S:XAA
H:R-S*Cs* R*

1+®R+S)-(S*R*)Cs*RrR*
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Church-Rosser, with tools

With high-level tactics, we can skip the administrative steps

u
G : Graph
Mo : Monoid_Ops

Theorem WeakConfluence_is_ChurchRosser2:
R-S* Cs* .R* - (R+S)* C s* - R*

E:Z:‘:H SLo : SemiLattice_Ops
) . . Ko : Star_Op

star_left_induction. KA : KleeneAlgebra
semiring_normalize. AT
repeat apply plus_destruct_leq. R:XAA
do 2 rewrite <— one_leq_star_a. S:XAA

. monoid_ref]:exivity'. H:R-S*C§S* R*
rewr11791‘81-11;1:}::13::;-&_1'9“'11:9 (star_trans R). star_trans : VR, R *- R *==R *
rewrite a_star_a_leq_star_a. reflexivity.
Qed. (S*~R*)<R*CS*-R*
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Church-Rosser, with better tools

We can do better: equationnal theory of Kleene Algebras is decidable

||

G : Graph
Theorem WeakConfluence_is_ChurchRosser3: Mo : Monoid_Ops

R-S* Cs* .R* — (R+S)* C s* - R*. SLo : SemiLattice_Ops

Proof. Ko : Star_Op
intro H. KA : KleeneAlgebra
star_left_induction. A:T
semiring_normalize. R:XAA
rewrite H. W S:XARA

H:R-S* Cs* . R*

1+4+s* R* R*+5s5-58* R* Cs* . R*
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Objectives

» The algebraic view improves:
» goals readability;
> but we saw the need for :
» decision tactics (3 la ring, omega) :

» simplification tactics (ring_simplify) :

» rewriting tactics (modulo A, modulo AC):

13/34



Outline

Motivations

Deciding Kleene Algebras in Coq

Underlying parts of the development

Conclusions and perspectives
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Scott vs. Kozen

Let « and 3 be two regular expressions (+,-,0,1,*).

Scott '50 « and [ represent the same language iff the corresponding
minimal automata are isomorphic.
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Scott vs. Kozen

Let « and 3 be two regular expressions (+,-,0,1,*).

Scott '50 « and [ represent the same language iff the corresponding
minimal automata are isomorphic.

Kozen '94 Initiality of this model for Kleene algebras:
If « and 3 lead to the same automata,
then AF o = 3, for any Kleene algebra A.
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Scott vs. Kozen (again)

Initiality of the model of regular languages

*
(a+b)* a*-(b-a*)
construction § § construction
e-removal ! ¢ ] e-removal
determinisation § § determinisation
minimisation é é minimisation
a,b o = o

Q a,b

Scott '50 : We deduce L((a + b)*) = L(a* - (b- a*)").
Kozen '94 : We go further, we deduce At (a+ b)* = a* - (b-a*)".
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Making a reflexive tactic

» Theoretical complexity is PSPACE-complete. ..

» however, tractable in practice. ..
» as long as we take some care in the implementation
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Making a reflexive tactic

» Theoretical complexity is PSPACE-complete. ..
» however, tractable in practice. ..
» as long as we take some care in the implementation
» Coq is a programming language, we code the algorithm:
Definition decide_Kleene: regexp — regexp — bool := ...
» We formalize Kozen's proof in Coq:
Theorem Kozen: V a b: regexp, decide_Kleene a b = true <+ a =b.
( = s the equality generated by the axioms of Kleene Algebras)
» Then we wrap this in a tactic.
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Kozen's Proof

» The main idea is to represent automata algebraically, with
matrices:
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Construction

A variant of lllie and Yu's

a+a- - (ath)*
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Construction

A variant of lllie and Yu's

a+ a- (ath)*

(atb)*
1 2 3
1 a a
2
3
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Construction

A variant of lllie and Yu's

BN =
)
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About the construction

» We prove that the construction is correct algebraically

0
1t o 0o 0|5
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o
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About the construction

» We prove that the construction is correct algebraically

0 a a O0\* /o
1 o o 0)- g g g 2 4(11 =4 ata- (ath)*
0 ¢ 0 a 0

» We use efficient data-structures to represent the automata
(Patricia trees for maps and sets vs matrices)

|1 2 3 4 R
a a 1= {2,3}
42 (4}
€ 42 (4

3 5 {4}
45 {2}

B W=
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About the construction

» We prove that the construction is correct algebraically

0\ *
2 . =4 a+a- (ath)™
+b

» We use efficient data-structures to represent the automata
(Patricia trees for maps and sets vs matrices)

-

o

o

2
ocooo
mnoOo®
ocoow
o
O OO

[1 2 3 4

15 {2,3
1 a a a{ﬂ} 35{4}
2 4 — {4} 46{2}
-
3 € FRLN
4 € a,b

» We prove that the constructions in the algebraic setting and
the efficient setting are equivalent
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The big picture

and the datastructures

regex
Construction
eNFA.t

Epsilon removal
NFA.t
Determinisation

DFA.t

19
I ®

\\<\ %

eval > el g
[

eval U H eval B,
i

eval eval
A3 R V> — A= <v . B3
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Outline

Underlying parts of the development
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Algebraic hierarchy

another one

» We follow the mathematical algebraic hierarchy using
Typeclasses:
Semil attice
<: SemiRing <: KleeneAlg <: ...
Monoid
» We inherit the tools we developped for monoids, lattices,
semi-rings, etc. ..

(e.g., semiring_reflexivity in the context of a Kleene algebra.)
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Matrices
» Infinite fonctions, with a constrained pointwise equality:

Definition MX n m := nat —nat —X.

Definition equalnm (MN: MX nm) :=
Vij i<n —>j<m—Mij = Nij.

» No bound proofs required for the access
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Definition equalnm (MN: MX nm) :=
Vij i<n —>j<m—Mij = Nij.

» No bound proofs required for the access
» Easy to manipulate (proof/programs separation)

(M * N); ZM,k*de
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Matrices cont.

Thanks to typeclasses, we inherit tools and theorems for matrices:
» square matrices built over a semi-ring form a semi-ring;

» square matrices built over a Kleene algebra form a Kleene
algebra.
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How to deal with rectangular matrices?

» Without extra stuff, we cannot re-use tools for them:
rectangular matrices do not form a semiring
» operations (-, +,...) are partial (dimensions have to agree)

X: Type.

dot: X - X —X.
one: X.

plus: X =X —X.
zero: X.

star: X —X.

dot_neutral_left:
VY x, dot one x = x.
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How to deal with rectangular matrices?

» Without extra stuff, we cannot re-use tools for them:
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» operations (-, +,...) are partial (dimensions have to agree)

T: Type.

X: Type. X: T —T — Type.
dot: X —X —X. dot: Vonmp, Xnm—Xmp —Xnp.
one: X. one: Vn, Xnn.
plus: X =X —X. pPlus: Vom Xnm —Xnm —Xnm
zero: X. zero:Vnm Xnm
star: X — X. star:Vn, Xnn —Xnn.
dot_neutral_left: dot_neutral_left:
V x, dot one x = x. Vom(x: Xnm), dot one x = x.

> Introduce structures from the beginning
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Typed structures

We handle heterogeneous relations (X A B := A — B — Prop),
as well as matrices:

MxSemilLattice : SemilLattice — SemiLattice.
MxSemiRing : SemiRing — SemiRing.
MxKleeneAlgebra : KleeneAlgebra — KleeneAlgebra.

Here, we deal with typed structures

» All theorems are inherited at the matricial level.
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Untyping

The general scheme

untyped setting: decide

erase types] lrebuild types

o

typed setting: o

28 /34



Untyping

The general scheme

untyped setting: decide
erase types} lrebuild types
typed setting: o ? o
» Depending on the algebraic structure:
A

semi-lattices trivial

monoids rather easy
semirings tricky

Kleene algebras same as for semirings
residuated lattices with constraints
action algebras/lattices ?

28/ 34



Outline

Conclusions and perspectives
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Conclusions

» A decision tactic for Kleene algebras (available on the web):
reflexive

efficient (first version:40 symbols, now:1000)

correct and complete

~ 7000 lines of spec (definitions, functions)

~ 7000 lines of proofs

182 Kb of compressed .v files using gzip (current trunk)

v

vV vy vy VvYy
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» Other tools for the underlying structures:

» various algebraic structures,
» matrices

30/34



Learnings

» Finite sets/Finite maps:

» used a lot in our development

» Patricia trees rule for binary positive numbers

» mixing proofs and programs hinders performances (slightly)
» Typeclasses:

» much more supple to use than modules

» overhead due to the inference of implicit arguments
> Interfaces:

» in order to compute, cannot hide a module behind a signature
(coercions)

» break proofs when changing the implementation

» example: going from AVL based FSets to Patricia trees
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What's coming next ?

» Kleene algebras with tests (automation for Hoare logic)
» Merging the equivalence check and the determinisation

» Back-end for simulation proof obligations 7
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Thanks you for your attention

Any Questions ?
http://sardes.inrialpes.fr/“braibant/atbr/
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http://sardes.inrialpes.fr/~braibant/atbr/

Determinisation

» Construct the powerset automata
subsets of the

> Let X be the decoding matrix of the

automata (u, M, v):

ijéjes
» We can define M and @ such that:
M- X=X-M T-X=u
» We deduce
T-M-X-v=T-X-M-v
—u-M v

34 /34
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