An efficient Coq Tactic for Deciding Kleene Algebras

<u>Thomas Braibant</u> et Damien Pous (Grenoble)

ITP 2010

 Ease the formalisation of proofs dealing with binary relations in Coq (bisimulations ...)

- Ease the formalisation of proofs dealing with binary relations in Coq (bisimulations ...)
- [Tarski et al.]: no finite axiomatisation
- A lot of partial axiomatisations
 - non-commutative monoids
 - semi-lattices
 - non-commutative idempotent semirings
 - Kleene algebras
 - Residuated semi-lattices
 - Action algebras (Pratt)
 - Allegories (Freyd & Scedrov)
- In each case, different decidability / complexity properties

 $(\cdot, 1)$ (+, 0) $(\cdot, +, 1, 0)$ $(\cdot, +, \star, 1, 0)$ $(\cdot, +, /, \setminus, 1, 0)$ $(\cdot, +, /, \backslash, \star, 1, 0)$ $(\cdot, +, \wedge, /, \backslash, \overline{\cdot}, 1, 0)$

- Ease the formalisation of proofs dealing with binary relations in Coq (bisimulations ...)
- [Tarski et al.]: no finite axiomatisation
- A lot of partial axiomatisations
 - non-commutative monoids
 - semi-lattices
 - non-commutative idempotent semirings
 - Kleene algebras
 - Residuated semi-lattices
 - Action algebras (Pratt)
 - Allegories (Freyd & Scedrov)
- ► In each case, different decidability / complexity properties
- Tools and theorems rather than the algebraic hierarchy itself

 $(\cdot, 1)$ (+, 0)

 $(\cdot, +, 1, 0)$

 $(\cdot, +, \star, 1, 0)$

 $(\cdot, +, /, \setminus, 1, 0)$

 $(\cdot,+,/,\setminus,\star,1,0)$

 $(\cdot, +, \wedge, /, \backslash, \overline{\cdot}, 1, 0)$

- Ease the formalisation of proofs dealing with binary relations in Coq (bisimulations ...)
- [Tarski et al.]: no finite axiomatisation
- A lot of partial axiomatisations
 - non-commutative monoids
 - semi-lattices
 - non-commutative idempotent semirings
 - Kleene algebras
 - Residuated semi-lattices
 - Action algebras (Pratt)
 - Allegories (Freyd & Scedrov)
- (Pratt) $(\cdot, +, /, \setminus, \star, 1, 0)$ d & Scedrov) $(\cdot, +, \wedge, /, \setminus, \overline{\cdot}, 1, 0)$
- In each case, different decidability / complexity properties
- Tools and theorems rather than the algebraic hierarchy itself

 $(\cdot, 1)$ (+, 0)

 $(\cdot, +, 1, 0)$

 $(\cdot, +, \star, 1, 0)$

 $(\cdot, +, /, \setminus, 1, 0)$

Kleene algebras

- Models of Kleene algebras : regular languages, binary relations, ...
- Example: "Weak confluence implies the Church-Rosser property"
 - Standard (hand-waving) proof
 - Naive formalisation
 - Algebraic formalisation
 - Algebraic formalisation with tools

Church-Rosser

Church-Rosser (Diagrammatic proof)

Church-Rosser (Diagrammatic proof)

Church-Rosser (more formally)

$$\begin{array}{l} (\forall p, r, q, pRr, rS^{\star}q \Rightarrow \exists s, pS^{\star}s \land sR^{\star}q) \\ \Rightarrow \qquad (\forall p, q, p(R \cup S)^{\star}q \Rightarrow \exists s, pS^{\star}s \land sR^{\star}q) \end{array}$$

Church-Rosser (more formally)

$$\begin{array}{l} (\forall p, r, q, pRr, rS^{\star}q \Rightarrow \exists s, pS^{\star}s \land sR^{\star}q) \\ \Rightarrow \qquad (\forall p, q, p(R \cup S)^{\star}q \Rightarrow \exists s, pS^{\star}s \land sR^{\star}q) \end{array}$$

 $R \cdot S^{\star} \subseteq S^{\star} \cdot R^{\star} \Rightarrow (R \cup S)^{\star} \subseteq S^{\star} \cdot R^{\star}$

Church-Rosser, with points

```
Variable P: Set.
Variables R S: relation P.
```

```
(** notations for reflexive and transitive closure,
  and for union of relations **)
Notation "R *" := (clos_refl_trans_1n _ R).
Notation "R + S" := (union _ R S).
```

```
\begin{array}{l} \texttt{Definition WeakConfluence} := \\ \forall \texttt{prq}, \texttt{Rpr} \rightarrow \texttt{S}^{\star} \texttt{rq} \rightarrow \exists \texttt{s}, \texttt{S}^{\star} \texttt{ps} \land \texttt{R}^{\star} \texttt{sq}. \end{array}
```

```
Definition ChurchRosser :=
\forall p q, (R+S)^* p q \rightarrow \exists s, S^* p s \land R^* s q.
```

Church-Rosser, with points

```
(** naive proof **)
Theorem WeakConfluence is ChurchRosser0:
  WeakConfluence → ChurchRosser.
Proof
intros H p q Hpq.
induction Hpq as [p | p q q' Hpq Hqq' IH].
  ∃p. constructor. constructor.
  destruct Hpg as [Hpg Hpg].
  destruct IH as [s' Hqs' Hs'q'].
  destruct (H p q s' Hpq Hqs') as [s Hps Hss'].
  \exists s. assumption.
  apply trans_rt1n.
  apply rt trans with s':
  apply rt1n trans:
  assumption.
  destruct IH as [s Hqs Hsq].
  ∃s.
  apply rt1n_trans with q;
  assumption.
 assumption.
```

Qed.

P : Set R : relation P S : relation P H : WeakConfluence p : P q : P q' : P Hpq : S p q Hqq' : (R + S)* q q' s : P Hqs : S* q s Hsq' : R* s q'

 $\exists s0 : P, S^* p s0 \land R^* s0 q'$

Church-Rosser, no points, no tools

Not yet a short proof, but readable context

```
Context '{KA: KleeneAlgebra}.
```

```
Variable A: T
Variables R S: X A A.
(**
    \subseteq is the inclusion of relations

\stackrel{\leftarrow}{\star} is the reflexive and transitive closure
    · is the composition
    + is the union
**)
Theorem WeakConfluence is ChurchRosser1:
  R \cdot S^* \subset S^* \cdot R^* \rightarrow (R+S)^* \subset S^* \cdot R^*.
Proof.
intro H
star_left_induction.
rewrite dot_distr_left.
repeat apply plus_destruct_leq.
 do 2 rewrite \leftarrow one_leq_star_a.
 rewrite dot_neutral_left. reflexivity.
 rewrite dot assoc. rewrite H.
 rewrite \leftarrow dot assoc.
   rewrite (star_trans R).
   reflexivity.
 rewrite dot assoc.
   rewrite a_star_a_leg_star_a.
   reflexivity.
6 e G
```

 $R \cdot (S^* \cdot R^*) \subseteq S^* \cdot R^*$

Church-Rosser, no points, no tools

Not yet a short proof, but readable context

```
Context '{KA: KleeneAlgebra}.
```

```
Variable A: T
Variables R S: X A A.
(**
    \subseteq is the inclusion of relations

\stackrel{\leftarrow}{\star} is the reflexive and transitive closure
    · is the composition
    + is the union
**)
Theorem WeakConfluence is ChurchRosser1:
  R \cdot S^* \subset S^* \cdot R^* \rightarrow (R+S)^* \subset S^* \cdot R^*.
Proof.
intro H
star_left_induction.
rewrite dot_distr_left.
repeat apply plus_destruct_leq.
 do 2 rewrite \leftarrow one_leq_star_a.
 rewrite dot_neutral_left. reflexivity.
 rewrite dot assoc. rewrite H.
 rewrite \leftarrow dot assoc.
   rewrite (star_trans R).
   reflexivity.
 rewrite dot assoc.
   rewrite a_star_a_leg_star_a.
   reflexivity.
6 e G
```

```
G : Graph
Mo : Monoid_Ops
SLo : SemiLattice_Ops
Ko : Star_Op
KA : KleeneAlgebra
```

(R \cdot S^{*}) \cdot R^{*} \subseteq S^{*} \cdot R^{*}

With high-level tactics, we can skip the administrative steps

```
Theorem WeakConfluence_is_ChurchRosser2:

R \cdot S^* \subseteq S^* \cdot R^* \to (R+S)^* \subseteq S^* \cdot R^*.

proof.

intro H.

star_left_induction.

\blacksquare semiring_normalize.

repeat apply plus_destruct_leq.

do 2 rewrite \leftarrow one_leq_star_a.

monoid_reflexivity.

rewrite H. monoid_rewrite (star_trans R).

reflexivity.

rewrite a_star_a_leq_star_a. reflexivity.

Oed.
```

11/34

With high-level tactics, we can skip the administrative steps

```
Theorem WeakConfluence_is_ChurchRosser2:

R \cdot S^* \subseteq S^* \cdot R^* \rightarrow (R+S)^* \subseteq S^* \cdot R^*.

proof.

intro H.

star_left_induction.

semiring_normalize. 

repeat apply plus_destruct_leq.

do 2 rewrite \leftarrow one_leq_star_a.

monoid_reflexivity.

rewrite H. monoid_rewrite (star_trans R).

reflexivity.

rewrite a_star_a_leq_star_a. reflexivity.

Oed.
```

With high-level tactics, we can skip the administrative steps

```
Theorem WeakConfluence_is_ChurchRosser2:

R \cdot S^* \subseteq S^* \cdot R^* \rightarrow (R+S)^* \subseteq S^* \cdot R^*.

proof.

intro H.

star_left_induction.

semiring_normalize.

repeat apply plus_destruct_leq.

do 2 rewrite \leftarrow one_leq_star_a.

\blacksquare monoid_reflexivity.

rewrite H. monoid_rewrite (star_trans R).

reflexivity.

rewrite a_star_a_leq_star_a. reflexivity.

Ged.
```

 $\begin{array}{l} G: Graph \\ Mo: Monoid_Ops \\ SLo: SemiLattice_Ops \\ Ko: Star_Op \\ KA: KleeneAlgebra \\ A:T \\ R: X AA \\ S: X AA \\ H: R \cdot S^* \subseteq S^* \cdot R^* \\ \hline \hline \end{array}$

With high-level tactics, we can skip the administrative steps

```
Theorem WeakConfluence_is_ChurchRosser2:

R \cdot S^* \subseteq S^* \cdot R^* \rightarrow (R+S)^* \subseteq S^* \cdot R^*.

proof.

intro H.

star_left_induction.

semiring_normalize.

repeat apply plus_destruct_leq.

do 2 rewrite \leftarrow one_leq_star_a.

monoid_reflexivity.

rewrite H. \blacksquare monoid_rewrite (star_trans R).

reflexivity.

rewrite a_star_a_leq_star_a. reflexivity.

Ged.
```

 $\begin{array}{l} G:Graph\\ Mo:Monoid_Ops\\ SLo:SemiLattice_Ops\\ Ko:Star_Op\\ KA:KleeneAlgebra\\ A:T\\ R:X A A\\ S:X A A\\ H:R \cdot S ^{C} S ^{*} \cdot R ^{*}\\ star_trans: \forall R, R ^{*} \cdot R ^{*} == R ^{*}\\ \hline\end{array}$

 $(S^* \cdot R^*) \cdot R^* \subseteq S^* \cdot R^*$

Church-Rosser, with better tools

We can do better: equationnal theory of Kleene Algebras is decidable

```
\begin{array}{l} \textbf{Theorem WeakConfluence_is_ChurchRosser3:}\\ \textbf{R}\cdot\textbf{S}^{\star}\subseteq\textbf{S}^{\star}\cdot\textbf{R}^{\star}\rightarrow(\textbf{R}+\textbf{S})^{\star}\subseteq\textbf{S}^{\star}\cdot\textbf{R}^{\star}.\\ \textbf{Proof.}\\ \textbf{intro H.}\\ \textbf{star_left_induction.}\\ \textbf{semiring_normalize.}\\ \textbf{rewrite H.} \end{array}
```

Church-Rosser, with better tools

We can do better: equationnal theory of Kleene Algebras is decidable

```
Theorem WeakConfluence_is_ChurchRosser3:

R \cdot S^* \subseteq S^* \cdot R^* \rightarrow (R+S)^* \subseteq S^* \cdot R^*.

Proof.

intro H.

star_left_induction.

semiring_normalize.

rewrite H.

kleene_reflexivity.

Qed.
```

 $\begin{array}{l} G: Graph \\ Mo: Monoid_Ops \\ SLo: SemiLattice_Ops \\ Ko: Star_Op \\ KA: KleeneAlgebra \\ A: T \\ R: X A \\ S: X A \\ S: X A \\ H: R \cdot S^* \subseteq S^* \cdot R^* \\ \hline \hline \\ 1 + S^* \cdot R^* \cdot R^* + S \cdot S^* \cdot R^* \subseteq S^* \cdot R^* \end{array}$

Objectives

- The algebraic view improves:
 - goals readability;
- but we saw the need for :
 - b decision tactics (à la ring, omega) :
 kleene_reflexivity, monoid_reflexivity,
 semiring_reflexivity...
 - simplification tactics (ring_simplify) : semiring_normalize, aci_normalize...
 - rewriting tactics (modulo A, modulo AC): monoid_rewrite

btw, we now have a dedicated plugin for rewriting modulo AC

Outline

Motivations

Deciding Kleene Algebras in Coq

Underlying parts of the development

Conclusions and perspectives

Let α and β be two regular expressions $(+, \cdot, 0, 1, \star)$.

Scott '50 α and β represent the same language iff the corresponding minimal automata are isomorphic.

Let α and β be two regular expressions $(+, \cdot, 0, 1, \star)$.

Scott '50 α and β represent the same language iff the corresponding minimal automata are isomorphic.

Kozen '94 Initiality of this model for Kleene algebras: If α and β lead to the same automata, then $\mathcal{A} \vdash \alpha = \beta$, for any Kleene algebra \mathcal{A} .

Scott vs. Kozen (again) Initiality of the model of regular languages

Scott '50 : We deduce $L((a + b)^*) = L(a^* \cdot (b \cdot a^*)^*)$. Kozen '94 : We go further, we deduce $\mathcal{A} \vdash (a + b)^* = a^* \cdot (b \cdot a^*)^*$.

Making a reflexive tactic

Theoretical complexity is PSPACE-complete...

- however, tractable in practice...
- ▶ as long as we take some care in the implementation

Making a reflexive tactic

Theoretical complexity is PSPACE-complete...

- however, tractable in practice...
- as long as we take some care in the implementation

► Coq is a programming language, we code the algorithm: Definition decide_Kleene: regexp → regexp → bool := ...

Making a reflexive tactic

Theoretical complexity is PSPACE-complete...

- however, tractable in practice...
- as long as we take some care in the implementation
- ► Coq is a programming language, we code the algorithm: Definition decide_Kleene: regexp → regexp → bool := ...
- We formalize Kozen's proof in Coq:

Theorem Kozen: \forall a b: regexp, decide_Kleene a b = true \leftrightarrow a \equiv b.

($\equiv\,$ is the equality generated by the axioms of Kleene Algebras) $\blacktriangleright\,$ Then we wrap this in a tactic.

The main idea is to represent automata algebraically, with matrices:

$$(\cdots \quad u \quad \cdots) \cdot \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & M & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix} \quad \cdot \begin{pmatrix} \vdots \\ v \\ \vdots \end{pmatrix}$$

The main idea is to represent automata algebraically, with matrices:

$$(\cdots \quad u \quad \cdots) \cdot \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & M & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}^{\star} \cdot \begin{pmatrix} \vdots \\ v \\ \vdots \end{pmatrix}$$

Matrices over a Kleene algebra form a Kleene algebra.

The main idea is to represent automata algebraically, with matrices:

$$(\cdots \quad u \quad \cdots) \cdot \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & M & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}^{\star} \cdot \begin{pmatrix} \vdots \\ v \\ \vdots \end{pmatrix} =_{\mathcal{A}} \alpha$$

Matrices over a Kleene algebra form a Kleene algebra.

The main idea is to represent automata algebraically, with matrices:

$$(\cdots \quad u \quad \cdots) \cdot \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & M & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}^{\star} \cdot \begin{pmatrix} \vdots \\ v \\ \vdots \end{pmatrix} =_{\mathcal{A}} \alpha$$

- Matrices over a Kleene algebra form a Kleene algebra.
- Transcribe and validate the algorithms in this algebraic setting.

The main idea is to represent automata algebraically, with matrices:

$$(\cdots \quad u \quad \cdots) \cdot \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & M & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}^{\star} \cdot \begin{pmatrix} \vdots \\ v \\ \vdots \end{pmatrix} =_{\mathcal{A}} \alpha$$

- Matrices over a Kleene algebra form a Kleene algebra.
- Transcribe and validate the algorithms in this algebraic setting. in this talk, only a glimpse of these

	1	2	3	4
1		а	а	
2				
3				ϵ
4		ϵ		

	1	2	3	4
1		а	а	
2				
3				ϵ
4		ϵ		a,b

About the construction

▶ We prove that the construction is correct algebraically

$$\begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & a & a & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \epsilon \\ 0 & \epsilon & 0 & a^{+}b \end{pmatrix}^{\star} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} =_{\mathcal{A}} a + a \cdot (a^{+}b)^{\star}$$

About the construction

▶ We prove that the construction is correct algebraically

$$\begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & a & a & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \epsilon \\ 0 & \epsilon & 0 & a * b \end{pmatrix}^{\star} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} =_{\mathcal{A}} a * a \cdot (a * b)^{\star}$$

 We use efficient data-structures to represent the automata (Patricia trees for maps and sets vs matrices)

About the construction

▶ We prove that the construction is correct algebraically

$$\begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & a & a & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \epsilon \\ 0 & \epsilon & 0 & a * b \end{pmatrix}^{\star} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} =_{\mathcal{A}} a * a \cdot (a * b)^{\star}$$

 We use efficient data-structures to represent the automata (Patricia trees for maps and sets vs matrices)

 We prove that the constructions in the algebraic setting and the efficient setting are equivalent

The big picture and the datastructures

No minimisation (too costly)

Outline

Motivations

Deciding Kleene Algebras in Coq

Underlying parts of the development

Conclusions and perspectives

Algebraic hierarchy

another one

 We follow the mathematical algebraic hierarchy using Typeclasses:

SemiLattice

```
<: SemiRing <: KleeneAlg <: ...
```

Monoid

We inherit the tools we developped for monoids, lattices, semi-rings, etc...

(e.g., semiring_reflexivity in the context of a Kleene algebra.)

Algebraic hierarchy

another one

 We follow the mathematical algebraic hierarchy using Typeclasses:

SemiLattice

```
<: SemiRing <: KleeneAlg <: ...
```

Monoid

We inherit the tools we developped for monoids, lattices, semi-rings, etc...

```
(e.g., semiring\_reflexivity in the context of a Kleene algebra.)
```

What about matrices ?

Matrices

▶ Infinite fonctions, with a constrained pointwise equality: Definition MX n m := nat \rightarrow nat $\rightarrow X$.

No bound proofs required for the access

Matrices

▶ Infinite fonctions, with a constrained pointwise equality: Definition MX n m := nat \rightarrow nat $\rightarrow X$.

Definition equal n m (M N : MX n m) := \forall i j, i<n \rightarrow j<m \rightarrow M i j \equiv N i j.

- No bound proofs required for the access
- Easy to manipulate (proof/programs separation)

$$(M*N)_{i,j} = \sum_{k=0}^{m} M_{i,k} * N_{k,j}$$

Fixpoint sum k (f: nat $\rightarrow X$) := match k with 0 \Rightarrow 0 | S k \Rightarrow f k + sum k f end.

Matrices

▶ Infinite fonctions, with a constrained pointwise equality: Definition MX n m := nat \rightarrow nat $\rightarrow X$.

Definition equal n m (M N : MX n m) := \forall i j, i<n \rightarrow j<m \rightarrow M i j \equiv N i j.

- No bound proofs required for the access
- Easy to manipulate (proof/programs separation)

$$(M*N)_{i,j} = \sum_{k=0}^{m} M_{i,k} * N_{k,j}$$

Fixpoint sum k (f: nat $\rightarrow X$) := match k with 0 \Rightarrow 0 | S k \Rightarrow f k + sum k f end.

bounds proofs are easy to cope with, in proof mode

no hidden boilerplate 24 / 34

Thanks to typeclasses, we inherit tools and theorems for matrices:

- square matrices built over a semi-ring form a semi-ring;
- square matrices built over a Kleene algebra form a Kleene algebra.

Thanks to typeclasses, we inherit tools and theorems for matrices:

- square matrices built over a semi-ring form a semi-ring;
- square matrices built over a Kleene algebra form a Kleene algebra.

At several places, we need rectangular matrices!

How to deal with rectangular matrices?

- Without extra stuff, we cannot re-use tools for them: rectangular matrices do not form a semiring
 - operations $(\cdot, +, \dots)$ are partial (dimensions have to agree)

```
X: Type.
dot: X \to X \to X.
one: X
plus: X \to X \to X.
zero: X
star: X \to X
dot neutral left:
 \forall x, dot one x = x.
```

How to deal with rectangular matrices?

Without extra stuff, we cannot re-use tools for them: rectangular matrices do not form a semiring

• operations $(\cdot, +, \dots)$ are partial (dimensions have to agree)

Х: Туре.	$\begin{array}{l} T: \mbox{ Type.} \\ X: \mbox{ T} \rightarrow \mbox{ T} \rightarrow \mbox{ Type.} \end{array}$
dot: $X \to X \to X$. one: X.	dot: \forall n m p, X n m \rightarrow X m p \rightarrow X n p. one: \forall n, X n n.
plus: $X \to X \to X$. zero: X.	$\begin{array}{l} \texttt{plus:} \ \forall \ \texttt{n} \ \texttt{m}, \ \texttt{X} \ \texttt{n} \ \texttt{m} \rightarrow \texttt{X} \ \texttt{n} \ \texttt{m} \rightarrow \texttt{X} \ \texttt{n} \ \texttt{m}. \\ \texttt{zero:} \ \forall \ \texttt{n} \ \texttt{m}, \ \texttt{X} \ \texttt{n} \ \texttt{m}. \end{array}$
star: X \rightarrow X.	star: \forall n, X n n \rightarrow X n n.
dot_neutral_left: $\forall x, dot one x = x.$	dot_neutral_left: $\forall n m (x: X n m), dot one x = x.$

How to deal with rectangular matrices?

Without extra stuff, we cannot re-use tools for them: rectangular matrices do not form a semiring

• operations $(\cdot, +, \dots)$ are partial (dimensions have to agree)

Х: Туре.	T: Type. X: T \rightarrow T \rightarrow Type.
dot: $X \to X \to X$.	dot: \forall n m p, X n m \rightarrow X m p \rightarrow X n p.
one: X.	one: \forall n, X n n.
plus: $X \to X \to X$.	plus: \forall n m, X n m \rightarrow X n m \rightarrow X n m.
zero: X.	zero: \forall n m, X n m.
$\mathtt{star}: \mathtt{X} \to \mathtt{X}.$	$\texttt{star:} \ \forall \ \texttt{n}, \ \texttt{X} \ \texttt{n} \ \texttt{n} \rightarrow \texttt{X} \ \texttt{n} \ \texttt{n}.$
dot_neutral_left:	dot_neutral_left:
$\forall x, dot one x = x.$	$\forall n m (x: X n m), dot one x = x.$

Introduce typed structures from the beginning

We handle heterogeneous relations (X A B := A \rightarrow B \rightarrow Prop), as well as matrices:

Here, we deal with typed structures

All theorems are inherited at the matricial level.

We handle heterogeneous relations (X A B := A \rightarrow B \rightarrow Prop), as well as matrices:

Here, we deal with typed structures

- All theorems are inherited at the matricial level.
- What about extending decision procedures to deal with typed structures?

$$a \cdot (b \cdot a)^* \stackrel{?}{=} (a \cdot b)^* \cdot a$$

We handle heterogeneous relations (X A B := A \rightarrow B \rightarrow Prop), as well as matrices:

Here, we deal with typed structures

- All theorems are inherited at the matricial level.
- What about extending decision procedures to deal with typed structures?

 $a: A \rightarrow B, b: B \rightarrow A$

We handle heterogeneous relations (X A B := A \rightarrow B \rightarrow Prop), as well as matrices:

Here, we deal with typed structures

- ► All theorems are inherited at the matricial level.
- What about extending decision procedures to deal with typed structures?

 $\begin{array}{cccc} a \cdot (b \cdot a)^{\star} & \stackrel{?}{=} & (a \cdot b)^{\star} \cdot a & : & A \to B \\ & & & & \\ & & & & \\ \bullet & & & = & \bullet \end{array}$

 $a: A \rightarrow B, b: B \rightarrow A$

tackle the problem differently... let's erase types!

Untyping The general scheme

Untyping The general scheme

Depending on the algebraic structure:

${\mathcal A}$	
semi-lattices	trivial
monoids	rather easy
semirings	tricky
Kleene algebras	same as for semirings
residuated lattices	with constraints
action algebras/lattices	?
	So, everything is fine.

Outline

Motivations

Deciding Kleene Algebras in Coq

Underlying parts of the development

Conclusions and perspectives

Conclusions

• A decision tactic for Kleene algebras (available on the web):

- ► reflexive
- efficient (first version:40 symbols, now:1000)
- correct and complete
- $ightarrow \sim$ 7000 lines of spec (definitions, functions)
- $\blacktriangleright~\sim$ 7000 lines of proofs
- ▶ 182 Kb of compressed .v files using gzip (current trunk)

Conclusions

► A decision tactic for Kleene algebras (available on the web):

- ► reflexive
- efficient (first version:40 symbols, now:1000)
- correct and complete
- $ightarrow \sim$ 7000 lines of spec (definitions, functions)
- \blacktriangleright ~ 7000 lines of proofs
- ▶ 182 Kb of compressed .v files using gzip (current trunk)
- Other tools for the underlying structures:
 - various algebraic structures,
 - matrices

Learnings

- Finite sets/Finite maps:
 - used a lot in our development
 - Patricia trees rule for binary positive numbers
 - mixing proofs and programs hinders performances (slightly)
- Typeclasses:
 - much more supple to use than modules
 - overhead due to the inference of implicit arguments
- Interfaces:
 - in order to compute, cannot hide a module behind a signature (coercions)
 - break proofs when changing the implementation
 - example: going from AVL based FSets to Patricia trees

What's coming next ?

- Kleene algebras with tests (automation for Hoare logic)
- Merging the equivalence check and the determinisation
- Back-end for simulation proof obligations ?

Thanks you for your attention

Any Questions ? http://sardes.inrialpes.fr/~braibant/atbr/

Determinisation

- Construct the powerset automata
- ► Let X be the decoding matrix of the accessible subsets of the automata (u, M, v):

$$X_{sj} \triangleq j \in s$$

• We can define \overline{M} and \overline{u} such that:

$$\overline{M}^{\star} \cdot X = X \cdot M^{\star} \qquad \overline{u} \cdot X = u$$

We deduce

$$\overline{u} \cdot \overline{M}^* \cdot X \cdot v = \overline{u} \cdot X \cdot M^* \cdot v$$
$$= u \cdot M^* \cdot v$$