KRITHIKA SUBRAMANIAN

krithi.subra@gmail.com | Austin, TX | (972) 295-0275 linkedin.com/in/krisub | github.com/krisub

EDUCATION

University of Texas at Austin, Austin, TX

December 2025

Bachelor of Science in Computer Science; GPA: 3.80

Relevant Coursework: Data Structures and Algorithms, Computer Organization and Architecture, Principles of Computer Systems, Machine Learning I, Linear Algebra, Discrete Mathematics, Probability I, Multivariate Calculus

Cornell University May 2025

Machine Learning and Data Science Certification, Break Through Tech AI Scholar

Selected from 3000+ applications for a scholarship program designed to approach relevant business problems and create technical artifacts with large-scale, real-world datasets to develop machine learning models through CRISP-DM

EXPERIENCE

Machine Learning Fellow

August 2024 - present

Google, Break Through Tech

- Developing and fine-tuning ML models to predict viral potential of YouTube videos using early engagement metrics, video metadata, and external factors like social media trends, resulting in a significant increase in predictive accuracy
- Streamlining data preprocessing by cleaning and extracting features from **YouTube Data API** and **Google Trends** dataset and incorporating attributes into classifiers, regressors, and time-series models

Full Stack Intern

June 2024 - August 2024

GlobalSource Collective, AssureSME

- Developed an internal task management system using **Angular** and **NestJS**, improving task tracking efficiency by 50% and enhancing data retrieval speed with a **MySQL** and **MikroORM** database implementation
- Optimized frontend UI/UX performance with lazy loading and code splitting, achieving a user satisfaction score of 9/10
- Integrated ETag headers in a CRUD-designed RESTful API for cache control and optimistic concurrency management
- Migrated client infrastructure to the cloud, achieving a 40% reduction in operational costs and increasing system scalability through optimized resource allocation via **Azure SQL Database**, VMs, and object-based **blob storage**
- Implemented robust cloud security protocols, including IAM roles and policies to enhance data protection
- Automated deployment processes using CI/CD pipelines with Azure DevOps and custom scripts, decreasing deployment times by 70% and minimizing human errors

Department of Astronomy Researcher

August 2023 - present

College of Natural Sciences Research Initiative

- Developing and testing ML models (XGBoost, Random Forest, SVM, Neural Networks) to classify low-surface brightness galaxies into morphological types with advanced Python libraries like **TensorFlow** and **scikit-learn**
- Employing **Astropy** as a statistical analysis tool to process, filter, and crossmatch data from SDSS, Galaxy Zoo, and VLA First catalogs, ensuring data completeness across key photometric features (magnitude bands) and redshift
- Pioneering a novel classification approach by utilizing solely quantifiable data for galaxy type identification, eliminating the need for manual classification, and setting the stage for more efficient large-scale galaxy surveys

PROJECTS

Treatsi: WiCS Annual Hackathon | View

February 2024

- Achieved Best Novice Hack at a highly competitive hackathon, surpassing 210 participants by building a web application to showcase locally-owned restaurants as alternatives to often presented mainstream options
- Implemented real-time data storage and updates using **SQLite** databases and Python, developed **Flask** API endpoints to handle business search and validation, and designed an interactive and appealing user interface with **Figma** and ReactJS

Engineering and Computational Learning of Artificial Intelligence in Robotics | View

August 2023 - January 2024

Beginner's Track Team Lead for Home Automation Project

- Collaborated with a team of 20 students in implementing a full-stack home automation system using Python Flask for the backend and **ReactJS** with **TypeScript** for the frontend web interface
- Enabled users to remotely control home appliances connected to a RPi, streamlining user interaction and functionality
- Leveraged SQLite and RESTful API for seamless communication between layers to significantly reduce latency in execution

 Enhanced system efficiency and optimized real-time appliance management by integrating Whisper API for spoken command interpretation and Raspberry Pi GPIO controls

FIRST Robotics (FRC)

August 2022 - May 2023

Software and Electrical Subteam

- 10th place at FIT Amarillo Event & Judge's Award for Best All-Rounder Team
- Led code reviews and subsystem testing, utilizing Java and the **WPILib** Suite to ensure robust performance and seamless hardware-software integration, including managing cohesive functionality through **Autodesk Inventor** for mechanical design
- Engineered the development of vision processing algorithms for autonomous navigation, leveraging tools like **OpenCV** and **AprilTag** to enhance robot localization accuracy by 25% compared to other competition teams

Handwriting Based Parkinson's Disease Diagnosis | View

June 2022 - April 2023

- Developed a machine learning program using an **LSTM neural network** in Python to diagnose Parkinson's Disease through handwriting analysis, achieving high accuracy with a 0.998 probability in detecting PD
- Converted neural network into a **TensorFlow Lite** model and integrated into a Java-based mobile application, applying object-oriented programming, machine learning, and data analysis skills
- Reduced diagnostic costs by over 50% by developing an inexpensive, novel manual risk identification method through Gaussian curvature and Hausdorff spaces to analyze kinematics and compensate for anomalies

$Determining \ Soil \ Organic \ Matter \ | \ \underline{View}$

June 2021- April 2022

- Created a Java OOP **Android application** that utilized live camera feed and Munsell color features to analyze soil samples and achieved 44.9% accuracy in predicting soil organic matter via an interpretable **linear regression** model
- Improved the efficiency and cost-effectiveness of soil analysis by leveraging RGB color analysis and linear regression ML techniques in **Python**, reducing reliance on expensive spectrometry and environmentally damaging loss-on-ignition tests

Detecting Abnormal Breathing Patterns for COVID-19 Diagnosis

May 2020 - April 2021

- Developed a **mobile app** for self-diagnosing respiratory health using **Java OOP** and computerized sound analysis techniques and attained an average accuracy of 98.8% in determining respiratory rate, comparable to FDA-approved pulse oximeters
- Implemented a smartphone-based solution that improved accessibility of respiratory diagnostics to eliminate the need for expensive lung tests and making self-diagnosis possible for a broad population

TECHNICAL SKILLS

- Programming, Scripting Languages: Java, Python, C, C#, SQL, JavaScript, TypeScript, HTML, CSS, Bash, PowerShell
- Tools, Frameworks/Libraries: Git, Azure, Angular, React, Node, js, NestJS, MySOL, MikroORM, Flask, Figma, Lucid
- ML Tech Stack: TensorFlow, Keras, scikit-learn, pandas, NumPy, Matplotlib, seaborn