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ABSTRACTIn this paper, we address the following question: given aspei� plaement of wireless nodes in physial spae anda spei� traÆ workload, what is the maximum through-put that an be supported by the resulting network? Unlikeprevious work that has foused on omputing asymptotiperformane bounds under assumptions of homogeneity orrandomness in the network topology and/or workload, wework with any given network and workload spei�ed as in-puts.A key issue impating performane is wireless interferenebetween neighboring nodes. We model suh interferene us-ing a onit graph, and present methods for omputingupper and lower bounds on the optimal throughput for thegiven network and workload. To ompute these bounds, weassume that paket transmissions at the individual nodesan be �nely ontrolled and arefully sheduled by an om-nisient and omnipotent entral entity, whih is unrealis-ti. Nevertheless, using ns-2 simulations, we show that theroutes derived from our analysis often yield notieably bet-ter throughput than the default shortest path routes evenin the presene of unoordinated paket transmissions andMAC ontention. This suggests that there is opportunity forahieving throughput gains by employing an interferene-aware routing protool.
Categories and Subject DescriptorsC.2.1 [Computer-Communiation Networks℄: WirelessNetworks|Multi-hop, Interferene
General TermsAlgorithm, Performane
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1. INTRODUCTIONMulti-hop wireless networks have been a subjet of muhstudy over the past few deades [1℄. Muh of the originalwork was motivated by military appliations suh as battle-�eld ommuniations. More reently, however, some inter-esting ommerial appliations have emerged, suh as \om-munity wireless networks" [2, 26℄, and sensor networks [7℄.A fundamental issue in multi-hop wireless networks is thatperformane degrades sharply as the number of hops tra-versed inreases. For example, in a network of nodes withidential and omnidiretional radio ranges, going from a sin-gle hop to 2 hops halves the throughput of a ow beausewireless interferene ditates that only one of the 2 hops anbe ative at a time.The performane hallenges of multi-hop networks havelong been reognized and have led to a lot of researh onthe medium aess ontrol (MAC), routing, and transportlayers of the networking stak. In reent years, there hasalso been a fous on the fundamental question of what theoptimal throughput of a multi-hop wireless network is. Theseminal paper by Gupta and Kumar [13℄ showed that ina network omprising of n idential nodes, eah of whihis ommuniating with another node, the throughput pernode is �( 1pn log n ) assuming random node plaement andommuniation pattern and �( 1pn ) assuming optimal nodeplaement and ommuniation pattern. Subsequent work [9,10, 18℄ has onsidered alternative models and settings, suhas the presene of relay nodes and mobile nodes, and loal-ity in inter-node ommuniation, and their results are lesspessimisti.This paper also deals with the problem of omputing theoptimal throughput of a wireless network. However, a keydistintion of our approah is that we work with any givenwireless network on�guration and workload spei�ed as in-puts. In other words, the node loations, ranges et. aswell as the traÆ matrix indiating whih soure nodes areommuniating with whih sink nodes are spei�ed as theinput. We make no assumptions about the homogeneity ofnodes with regard to radio range or other harateristis,or regularity in ommuniation pattern. This is in ontrastto previous work that has foused on asymptoti boundsunder assumptions suh as node homogeneity and randomommuniation patterns.We use a onit graph to model the e�ets of wirelessinterferene. The onit graph indiates whih groups of



links mutually interfere and hene annot be ative simulta-neously. We formulate a multi-ommodity ow problem [4℄,augmented with onstraints derived from the onit graph,to ompute the optimal throughput that the wireless net-work an support between the soures and the sinks. Weshow that the problem of �nding optimal throughput is NP-hard, and present methods for omputing upper and lowerbounds on the optimal throughput.We show how our methodology an aommodate a diver-sity of wireless network harateristis suh as the availabil-ity of multiple non-overlapping hannels, multiple radios pernode, and diretional antennas. We also show how multipleMAC protool models as well as single-path and multi-pathrouting onstraints an be aommodated.We view the generality of our methodology and the on-it graph framework as a key ontribution of our work.To ompute bounds on the optimal throughput, we as-sume that paket transmissions at the individual nodes anbe �nely ontrolled and arefully sheduled by an omnisientand omnipotent entral entity. While this is learly an un-realisti assumption, it gives us a best ase bound againstwhih to ompare pratial algorithms for routing, mediumaess ontrol, and paket sheduling. Moreover, ns-2 simu-lations show that the routes derived from our analysis oftenyield notieably better throughput than the default short-est path routes, even in the presene of real-world e�etssuh as unoordinated paket transmissions and MAC on-tention. In some ases, the throughput gain is over a fatorof 2. The reason for this improvement is that in optimizingthroughput, we tend to �nd routes that are less prone towireless interferene. For instane, a longer route along theperiphery of the network may be piked instead of a shorterbut more interferene prone route through the middle of thenetwork.We use our tehnique to evaluate how the per-node through-put in a multi-hop wireless network varies as the number ofnodes grows. Previous work (e.g., [13℄) suggests that theper-node throughput falls as the number of nodes grows.But this result is under the assumption that nodes alwayshave data to send and are ready to transmit as fast as theirwireless onnetion will allow. In a realisti setting, however,soures tend to be bursty, so nodes will on average transmitat a slower rate than the speed of their wireless link. In suha setting, we �nd that the addition of new nodes an atuallyimprove the per-node throughput beause the riher onne-tivity provides inreased opportunities for routing aroundinterferene \hotspots" in the network. This more than o�-sets the inrease in traÆ load aused by the new nodes.The rest of this paper is organized as follows. In Setion 2,we disuss related work. In Setion 3, we present details ofour onit graph model and methods for omputing boundson the optimal network throughput. In Setion 4, we presentresults obtained from applying our model to di�erent net-work and workload on�gurations. Setion 5 onludes thepaper.
2. RELATED WORKA number of papers have been published on the problem ofestimating the throughput of a multi-hop wireless network.Here, we onsider the work that is most losely related toours.In their seminal paper [13℄, Gupta and Kumar studied thethroughput of wireless networks under two models of inter-

ferene: a protool model that assumes interferene to be anall-or-nothing phenomenon and a physial model that on-siders the impat of interfering transmissions on the signal-to-noise ratio. They show that in a network omprising ofn idential nodes, eah of whih is ommuniating with an-other node, the throughput per node is �( 1pn log n ) assumingrandom node plaement and �( 1pn ) assuming optimal nodeplaement and ommuniation pattern. These results areshown under the protool model, but the latter result alsoholds in the ase of the physial model under reasonable as-sumptions. Aording to the intuitive explanation in [18℄,while the overall one-hop throughput of the network growsas O(n), the average path length grows as O(pn), so thethroughput per node is O( 1pn ).Li et al. [18℄ have extended the work of Gupta and Ku-mar [13℄ by onsidering the impat of di�erent traÆ pat-terns on the salability of per node throughput. They pointout that a random traÆ pattern represents the worst asefrom the viewpoint of per-node throughput. They also showthat for traÆ patterns with power law distane distribu-tions, the per-node throughput stays roughly onstant asthe network size grows, provided the distane distributiondeays more rapidly than the square of the distane. Li etal. also onsider the interations of paket forwarding withthe 802.11 MAC and show that the use of 802.11 instead ofa global sheduling sheme does not a�et the asymptotibound on per-node throughput derived in [13℄.In [10℄, Grossglauser and Tse introdue mobility into themodel presented in [13℄, and show that the average long-termthroughput per soure-destination pair an be kept onstanteven as the number of nodes per unit area inreases, pro-vided that we allow for delays on the order of the time-saleof mobility. This is ahieved by exploiting mobility to keepdata transfers loal, and transmitting only when the trans-mitter and reeiver are lose to eah other, at a distane ofO( 1pn ), thereby reduing total resoure usage and interfer-ene. While this is enouraging, in many pratial situationssuh as ommunity wireless networks, mobility may be tooinfrequent or even non-existent to be exploitable.Gastpar and Vetterli [9℄ extend the work of Gupta andKumar [13℄ in a di�erent diretion. Instead of the simplepoint-to-point oding assumption made in [13℄, whih treatseah transmitter-reeiver pair as being independent of otherpairs, they onsider a network oding model where nodesould ooperate in arbitrary ways, for instane, to boost thetransmit power. Further, they assume that there is a singlesoure and single destination piked at random, and that therest of the nodes at as relays. They show that the through-put of the network under these onditions is O(log n), om-pared to O(1) for the point-to-point oding model of [13℄.While the use of network oding in this ontext is a promis-ing line of researh, we note that the point-to-point od-ing model orresponds to urrent radio tehnology suh as802.11.The reent work of De Couto et al. [5℄, based on two exper-iments in a 802.11b-based multi-hop wireless testbed showsthat minimizing the hop ount of an end-to-end path is notsuÆient for ahieving good performane. The reason theypoint out is that link quality an vary widely and long hopsmay be inluded in \short" paths, resulting in a high paketerror rate. In our work, we also reah the same onlusionregarding the limitations of the hop ount metri, but for a



somewhat di�erent reason | beause wireless interferenelimits throughput, a iruitous but less interferene-proneroute, say along the periphery of a network, may performbetter than the shortest hop ount route.In [21℄, Nandagopal et. al. use a onstrut similar to on-it graphs, alled ow ontention graph to apture inter-ferene in wireless networks. However, as the name implies,the onstrut is de�ned on ows rather than on links. More-over, the aim of that paper is to study MAC fairness issues,rather than to derive optimal throughput bounds.Yang and Vaidya [27℄ also use the notion of a \onitgraph" in the ontext of their work on priority sheduling inwireless ad ho networks. However, like [21℄, their onitgraph is also de�ned on ows rather than links. The graphis used only to interpret experimental results showing thatthe 802.11 MAC auses ows with a high degree of onitto su�er disproportionately ompared to ows with a lowdegree of onit. There is no attempt to analyze the onitgraph to derive throughput bounds.In [17℄, Kodialam and Nandagopal onsider the problemof omputing optimal throughput for a given wireless net-work with a given traÆ pattern. They assume a limitedmodel of interferene in whih the only onstraint is thatnode may not transmit and reeive simultaneously. Withthis onstraint, they model the problem as a graph olor-ing problem. They provide a polynomial time algorithmthat omputes routes and shedules suh that the resultingthroughput is guaranteed to be at least 67% of the optimalthroughput. The model we onsider in this paper is muhmore general and exible. Our model an take into aountinterferene from neighboring nodes, impat of diretionalantennas, availability of multiple non-interfering hannelset. This generality makes the problem harder, so our al-gorithm only provides upper and lower bounds on optimalthroughput.In summary, there is a large body of work on the multi-hopwireless throughput problem, muh of it foused on asymp-toti bounds under assumptions suh as node homogeneityand random ommuniation patterns. In ontrast, our workfouses on omputing throughput bounds for a given wire-less network and traÆ workload, using a onit graph tomodel the onstraints imposed by wireless interferene. Wedo not onsider how fators suh as mobility [10℄ or od-ing [9℄. And like [13℄, we do not ompute the informationtheoreti apaity of the network.
3. COMPUTING BOUNDS ON OPTIMAL

THROUGHPUTWe now present our framework for inorporating the on-straints imposed by interferene in a multi-hop wireless net-work and then present methods for omputing bounds onthe optimal throughput that a given network an supportfor a given traÆ workload. We begin with some bakgroundand terminology.
3.1 Background and TerminologyConsider a wireless network with N nodes arbitrarily lo-ated on a plane. Let ni; 1 � i � N denote the nodes, anddij denote the distane between nodes ni and nj . Eah node,ni, is equipped with a radio with ommuniation range Riand a potentially larger interferene range R0i. For ease ofexplanation, we start by onsidering the ase of a single wire-

less hannel. (We will generalize the model in Setion 3.5.)We onsider two models, the Protool Model and the Physi-al Model , to de�ne the onditions for a suessful wirelesstransmission. These models are similar to those introduedin [13℄.Protool Model: In the protool model, if there is a singlewireless hannel, a transmission is suessful if both of thefollowing onditions are satis�ed:1. dij � Ri2. Any node nk, suh that dkj � R0k, is not transmittingNote that the seond requirement implies that a node maynot send and reeive at the same time nor transmit to morethan one other node at the same time. Note also that thismodel di�ers from the popular 802.11 MAC in an importantway | it requires only the reeiver to be free of interferene,instead of requiring that both the sender and the reeiverbe free of interferene. We disuss how to adapt the modelfor an 802.11-style MAC in Setion 3.5.Physial Model: Suppose node ni wants to transmit tonode nj . We an alulate the signal strength, SSij , ofni's transmission as reeived at nj . The transmission issuessful if SNRij � SNRthresh, where SNRij denotesthe signal-to-noise ratio at the node nj for transmissionsreeived from node ni. The total noise, Nj , at nj onsistsof the ambient noise, Na, plus the interferene due to otherongoing transmissions in the network. Note again that thereis no requirement that the noise level at the sender also below.Our goal is to model wireless interferene using a generalframework that would enable us to ompute the optimalthroughput the wireless network an support for a giventraÆ workload. We assume that the workload onsists ofgreedy soures and destinations, i.e. the soures always havedata to send and the destination nodes are always ready toaept data. The ommuniation between the soures anddestinations an be either diret or be routed via interme-diate nodes. We assume that paket transmissions at theindividual nodes an be �nely ontrolled and sheduled byan omnisient and omnipotent entral entity.We say that a network throughputD is feasible if there ex-ists a shedule of transmissions suh that no two interferinglinks are ative simultaneously, and the total throughput forthe given soure-destination pairs is D. In our problem for-mulation here, we fous on maximizing the total throughputbetween soure-destination pairs.In the rest of this setion, we onsider the following threesenarios in detail: (i) multipath routing under the protoolinterferene model, (ii) multipath routing under the phys-ial interferene model, and (iii) single-path routing underboth models. We end the setion by disussing several othergeneralizations, and summarizing our framework.
3.2 Multipath Routing Under the Protocol In-

terference ModelGiven a wireless network with N nodes, we �rst derivea onnetivity graph C as follows. The verties of C orre-spond to the wireless nodes (NC) and the edges orrespondto the wireless links (LC) between the nodes. There is a di-reted link lij from node ni to nj if dij � Ri and i 6= j. Weuse the terms \node" and \link" in referene to the onne-tivity graph while reserving the terms \vertex" and \edge"for the onit graph presented in Setion 3.2.1.



max Xlsi2LC fsiSubjet To:Xlij2LC fij = Xlji2LC fji ni 2 NC n fns; ndg < 1 >Xlis2LC fis = 0 < 2 >Xldi2LC fdi = 0 < 3 >fij � Capij 8i; j j lij 2 LC < 4 >fij � 0 8i; j j lij 2 LC < 5 >Figure 1: LP formulation to optimize the through-put for a single soure-destination pair.Let us �rst onsider ommuniation between a single soure,ns, and a single destination, nd. In the absene of wirelessinterferene (e.g., on a wired network), �nding the maximumahievable throughput between the soure and the destina-tion, given the exibility of using multiple paths, an beformulated as a linear program orresponding to a max-owproblem, as shown in Figure 1. Here, fij denotes the amountof ow on link lij , Capij denote the apaity of link lij , andLC is a set of all links in the onnetivity graph.The maximization states that we wish to maximize thesum of ow out of the soure. The �rst onstraint representsow onservation, i.e., at every node, exept the soure andthe destination, the amount of inoming ow is equal tothe amount of outgoing ow. The seond onstraint statesthat the inoming ow to the soure node is 0. The thirdonstraint states that the outgoing ow from the destinationnode is 0. The fourth onstraint indiates the amount of owon a link annot exeed the apaity of the link. The �nalonstraint restrits the amount of ow on eah link to benon-negative.Note that the above formulation does not take wirelessinterferene into aount. We turn to this issue next.
3.2.1 Conflict GraphTo inorporate wireless interferene into our problem for-mulation, we de�ne a onit graph, F , whose verties or-respond to the links in the onnetivity graph, C. There isan edge between the verties lij and lpq in F if the links lijand lpq may not be ative simultaneously. Based on the pro-tool interferene model desribed in Setion 3.1, we drawsuh an edge if any of the following is true: diq � R0i ordpj � R0p. This enompasses the ase where a onit arisesbeause links lij and lpq have a node in ommon (i.e., i == por i == q or j == p or j == q). Note, however, that wedo not draw an edge from a vertex to itself in the onitgraph.Before we disuss how to use the onit graph to addinterferene onstraints in the linear program in Figure 1,we need to state a hardness result and a few de�nitions.
3.2.2 Hardness ResultWe present a hardness result for omputing the optimal

throughput under the protool interferene model. Givena graph H with vertex set VH , an independent set is a setof verties suh that there is no edge between any two ofthe verties. The independene number of graph H is thesize of the largest independent set in H. Then, we have thefollowing hardness result.Theorem 1. Given a network and a set of soure anddestination nodes, it is NP-hard to �nd the optimal through-put under the protool interferene model. Moreover, it isNP-hard to approximate the optimal throughput.It an be shown that the problem of �nding the indepen-dene number of a graph, whih is a known hard problemeven to approximate, an be redued to the optimal through-put problem. Moreover, this redution is approximation pre-serving. Hene the above hardness result. We desribe theredution in Appendix A.Sine it is NP-hard to approximate the optimal through-put, we now look at heuristis for obtaining lower and upperbounds on the optimal throughput. For this, we need to de-�ne some more terms. An independent set I of a graph Han be haraterized using an independene vetor, whih isa vetor of size jVH j. This vetor is denoted by xI . Thejth element of this vetor is set to 1 if and only if the ver-tex vj is a member of the independent set I, otherwise it iszero. We an think of xI as a point in a jVH j-dimensionalspae. The polytope de�ned by onvex ombination of in-dependene vetors is alled the independent set polytope orthe stable set polytope.
3.2.3 Lower BoundThe problem of deriving a lower bound is equivalent tothe problem of �nding a network throughput D that has afeasible shedule to ahieve it. We make the following ob-servation. Links belonging to a given independent set inonit graph F an be sheduled simultaneously. Supposethere are a total of K maximal independent sets in graphF . A maximal independent set is one that annot be grownfurther. Let I1; I2; : : : IK denote these maximal independentsets, and �i; 0 � �i � 1 denote the fration of time alloatedto the independent set Ii (i.e., the time during whih thelinks in Ii an be ative). If we add the shedule restri-tions imposed by the independent sets to the original linearprogram (Figure 1), the resulting throughput always has afeasible shedule, and therefore onstitutes a lower boundon the maximum ahievable throughput.We formalize our above observation as follows. Given aonit graph F , we de�ne a usage vetor, U , of size jVF j,where Ui denotes the fration of time that the link i an beative. A usage vetor is shedulable if the orrespondinglinks an be sheduled, onit free, for the fration of thetime indiated in the usage vetor. If we think of the usagevetor as a point in a jVF j-dimensional spae, we have thefollowing theorem.Theorem 2. A usage vetor is shedulable if and onlyif it lies within the independent set polytope of the onitgraph.The proof is given in Appendix B.Theorem 2 implies that the optimal network throughputproblem is a linear program, no matter how many sender-reeiver pairs we have. In fat, the problem is that of max-imizing a linear objetive funtion over a feasible polytope.



This feasible polytope an be desribed as the intersetionof two polytopes | the ow polytope and the independentset polytope of the onit graph. The ow polytope is theolletion of feasible points desribed by the ow onstraints(Figure 1), ignoring wireless onits. The ow polytope isa simple struture on whih a linear objetive funtion aneasily be optimized. Independent set polytope, on the otherhand, is a diÆult struture and no simple haraterizationof it is known beause there may be exponentially manyindependent sets.Theorem 2 implies that any onvex ombination of in-dependene vetors is shedulable. In general, however, anarbitrary point inside the independent set polytope will be aonvex ombination of an exponentially many independenevetors. To get around this omputational problem, we onlywant to pik \easy" points in the independent set polytope.An obvious notion of \easy" is that the point piked shouldbe a onvex ombination of a small number of (i.e., polyno-mially many) independene vetors. We will be using thisnotion expliitly in the algorithm as follows. We derive alower bound on the optimal throughput by �nding K0 in-dependene vetors in the onit graph F , and adding thefollowing onstraints to the LP formulation shown in Fig-ure 1.� PK0i=1 �i � 1 (beause only one maximal independentset an be ative at a time)� fij �Plij2Ii �iCapij (beause the fration of time forwhih a link may be ative is onstrained by the sumof the ativity periods of the independent sets it is amember of).Note the solution produed by solving this linear programis always feasible (i.e., shedulable). This is due to the fatthat all links belonging to independent set Ii an be simulta-neously ative for �i fration of time, and we have requiredthat the PK0i=1 �i � 1. Moreover, Theorem 2 assures usthat when we inlude all independent sets, the solution willbe exat, i.e., this will be the maximum value of D that isfeasible. To help tighten the lower bound more quikly, weshould onsider using maximal independene sets. While�nding all maximal independent sets is also NP-hard [8℄,the lower bound obtained by onsidering a subset of themaximal independent sets has the nie property that as weadd more onstraints, the bound beomes tighter, eventu-ally onverging to the optimal (i.e., the maximum feasible)throughput when we add all the onstraints.
3.2.4 Upper BoundIn this setion, we derive an upper bound on the networkthroughput. Consider the onit graph. A lique in theonit graph is a set of verties that mutually onit witheah other. Theorem 2 implies that the total usage of thelinks in a lique is at most 1. This gives us a onstraint onthe usage vetor. We an �nd many liques and write or-responding onstraints to de�ne a polytope. We an thenmaximize the throughput over the intersetion of this poly-tope with ow polytope. This will give us an upper boundon the throughput.Unfortunately, it is omputationally expensive to �nd allthe liques, and even if we ould �nd them all, there is stillno guarantee that our upper bound will be tight. This anbe illustrated by the following example. Suppose the onit
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Figure 2: A pentagon and its omplementgraph. The former is an odd hole, and thelatter is an odd anti-hole.
 

Figure 3: An example that shows it isnot suÆient even if we add all lique,hole, anti-hole onstraints.graph is the pentagon depited in Figure 2. As we an see,the only liques in the graph are formed by the adjaentpairs of nodes. Adding the lique onstraints alone to theLP would suggest that a sum of link utilization equal to 2.5is ahievable. But atually at most 2 links an be ativeat a time. This suggests that we need to add onstraintsorresponding to odd holes and odd anti-holes. An odd holeis a yle formed by an odd number of edges, without ahord in between. For example, the pentagon in Figure 2 isan odd hole. The sum of the link utilizations in an odd holeontaining k verties an be no more than b k2 . An odd anti-hole is the omplementary graph of an odd hole. Figure 2shows an example of an anti-hole with 5 nodes. The sum oflink utilizations in an odd anti-hole an be no more than 2.Unfortunately, even if we onsider the onstraints imposedby the odd holes and odd anti-holes (in addition to thoseimposed by the liques), we are not guaranteed to have afeasible solution. For example, onsider the onit graph,as shown in Figure 3. We an assign a utilization of 0.4to all the verties on the pentagon and 0.2 to the enter ofthe pentagon, while satisfying all lique, hole, and anti-holeonstraints. But there is no feasible shedule to ahieve this,beause this solution does not lie in the stable-set polytope.In fat, the upper bound based only on lique onstraints istight only for a speial lass of onit graphs alled perfetgraphs. Perfet graphs are the graphs without any odd holesor odd anti-holes. Thus, in our present formulation, theupper bounds may not always be tight. We will disuss thisfurther in Setion 5.
3.3 Multipath Routing Under the Physical In-

terference ModelAs before, we begin by reating a onnetivity graph C,whose verties orrespond to the nodes in the network. Basedon the physial interferene model, there exists a link, lij ,from ni to nj if and only if SSij=Na � SNRthresh (i.e., theSNR exeeds the threshold at least in the presene of justthe ambient noise).Using the onnetivity graph, we an write an LP formu-



lation to optimize network throughput for a wired network.As disussed before, the solution to the linear program, asshown in Figure 1, provides an upper bound on networkthroughput. However, this bound is not very useful sine itdoes not take interferene e�ets into aount.To take interferene e�ets into aount, we onstrut aonit graph F . Unlike in the protool model, onits inthe physial model are not binary. Rather, the interferenegradually inreases as more neighboring nodes transmit, andbeomes intolerable when the noise level reahes a thresh-old. This gradual inrease in interferene suggests that weshould have a weighted onit graph, where the weight ofa direted edge from verties lpq to verties lij (denoted bywpqij ) indiates what fration of the maximum permissiblenoise at node nj (for link lij to still be operational) is on-tributed by ativity on link lpq (i.e., node np's transmissionto node nq). Spei�ally, we havewpqij = SSpjSSijSNRthresh �Nawhere SSpj and SSij denote the signal strength at nodenj of transmissions from nodes p and i, respetively, andSSijSNRthresh � Na is the maximum permissible interferenenoise at node nj that would still allow suessful reeptionof node ni's transmissions. The edges of the onit graphare direted, and in general wpqij may not be equal to wijpq .
3.3.1 Lower BoundIn the protool model, we derive a lower bound on the net-work throughput by �nding independent sets in the onitgraph F , and adding the onstraints assoiated with the in-dependent sets to the LP for the wired network. Analogousto independent sets, we introdue the notion of shedulablesets in the physial model. A shedulable set Hx is de�nedas a set of verties suh that for every vertex lij 2 Hx,Plpq2Hx wpqij � 1. It follows that all links in a shedulableset an be ative simultaneously. Suppose we shedule thelinks belonging to Hx for time �x; 0 � �x � 1. We nowtake the original LP for the wired network (in Figure 1),and inlude the following onstraints:� PK0x=1 �x � 1, where K0 is the number of shedulablesets found� fij �Plij2Hx �xCapijTo tighten the bound, we should onsider using maximalshedulable sets in graph F (i.e., a shedulable set suh thatadding additional verties to the set will violate the shedu-lable property). We have the following theorem, whih issimilar to the Theorem 2 in the protool model.Theorem 3. A usage vetor is shedulable if and only ifit lies in the shedulable set polytope of the onit graph.The proof is similar to that of Theorem 2.
3.3.2 Upper BoundTo derive an upper bound, we onsider maximal sets ofverties in F suh that for any pair of verties lpq and lij ,wpqij � 1. These orrespond to the liques in the protoolinterferene model. Therefore for eah suh set, we add aonstraint that the sum of their utilization has to be no morethan 1.

These onstraints may result in a loose bound sine theremay not be very many liques. To tighten the upper bound,we further augment the linear program with the followingadditional onstraints. After we �nd a maximal shedula-ble set, say verties v1, v2, ..., vt, adding any additionalvertex, denoted as va, to the set will make the set un-shedulable. Therefore we have the following onstraint:U1 + U2 + :::Ut + Ua � t, where as before Ui denotes thefration of time for whih physial link li (orrespondingto vertex vi in the onit graph) is ative. By adding asmany suh onstraints as possible, we an tighten the upperbound. Still, the bound is not guaranteed to onverge to theoptimal even if we inlude all suh sets.
3.4 Single-path RoutingSo far we have onsidered multipath routing. As manyexisting routing algorithms [15, 25, 24, 23℄ are on�ned tosingle-path routing, it is useful to derive a throughput boundfor single-path routing so that we an ompare how muhthe urrent protools deviate from the theoretial ahievablethroughput under the same routing restrition. The waywe enfore the single-path restrition for the ow from asoure to a destination is by adding the following additionalonstraints to the LP problem for the wired network (shownin Figure 1):� For eah link lij , fij � Capij � zij , where zi;j 2 f0; 1g� At eah node ni,P zij � 1Here zij is a 0{1 variable that indiates whether or notlink lij is used for transmissions, and fij is the amount ofow on the link. The basi intuition for these onstraints isthat in a single-path routing, at any node in the network,there is at most one out-going edge that has a non-zero ow.Sine zij an have only one of two values, either 0 or 1, thetwo onditions ensure that at node ni at most one zij willhave a value of 1.In theory, solving integer linear program is a NP-hard [8℄,but in pratie, software suh as lp solve [3℄ and CPLEX [6℄an solve mixed-integer programs.
3.5 Other GeneralizationThe basi onit graph model is quite exible, and anbe generalized in many ways.Multiple soure-destination pairs: We an extend ourformulations in the previous setions from a single soure-destination pair to multiple soure-destination pairs using amulti-ommodity ow formulation [4℄ augmented with on-straints derived from the onit graph. We assign a onne-tion identi�er to eah soure-destination pair. Instead of theow variables fij , we introdue the variable fijk to denotethe amount of ow for onnetion k on link lij . Referringto Figure 1, the ow onservation onstraints at eah nodeapply on a per-onnetion basis (onstraint <1>); the totalinoming ow into a soure node is zero only for the onne-tion(s) originating at that node (onstraint <2>); likewise,the total outgoing ow from a sink node is zero only for theonnetion(s) terminating at that node (onstraint <3>);and the apaity onstraints apply to the sum of the owsover all onnetions traversing a link (onstraint <4>).Multiple wireless hannels: It may be the ase that in-stead of just one hannel, eah node an tune to one of Mhannels,M � 1. This an be easily modeled by introduing



M links between nodes i and j, instead of just 1. In gen-eral, links orresponding to di�erent hannels do not onitwith eah other, reeting the fat that the hannels do notmutually interfere. However, the links emanating from thesame node do onit, reeting the onstraint that the sin-gle radio at eah node an transmit only on one hannel ata time.Multiple radios per node: Eah wireless node may beequipped with more than one radio. If eah node has Mradios, this an be modeled by introduingM links betweeneah pairs of nodes. If we assume that eah of these radiosis tuned to a separate hannel, and that a node an ommu-niate on multiple radios simultaneously, then the onitgraph will show no onit among the M links between apair of nodes.Diretional antennas: We an ombine the use of dire-tional antennas with the basi protool model of ommunia-tion. Instead of speifying a range for eah node, we simplyspeify a list of nodes (or points in spae) where transmis-sions or interferene from this node an be pereived. Theonnetivity graph and the onit graph are modi�ed totake this into aount.Multirate radios: Many wireless tehnologies support mul-tirate radios, whih an swith between a set of disrete datarates depending on the quality of the RF hannel. For in-stane, 802.11b supports 4 rates: 1, 2, 5.5, and 11 Mbps.We an model this in our framework by reating multiple\virtual" links orresponding to a physial link in the on-netivity graph, one for eah rate. The onit graph is aug-mented to reet the fat that only one of the virtual linksorresponding to a physial link an be ative at a time. Theweights assigned to the edges of the onit graph (under thephysial interferene model) would reet the spei� noisetolerane of the virtual link orresponding to eah rate.Other models of interferene: In the simple example,we onsidered an optimisti model of interferene that didnot require the sender to be free of interferene. But a morerealisti model, whih more losely reets the situation in802:11, would require both the sender and the reeiver tobe free of interferene. This reet the fat that 802:11 mayperform virtual arrier sensing using an RTS{CTS exhange,and that for suessful ommuniation, the sender must beable to hear the link layer aknowledgment transmitted bythe reeiver. Therefore, we draw an edge in the onitgraph between verties lij and lpq if dab � R0a for ab =iq; qi; ip; pi; jp; pj; jq; or qj.Non-greedy soures or destinations: We an easily a-ommodate the ase where the rate at whih nodes generatedata or are willing to aept data is bounded. We do so byreating a virtual soure or sink node and onneting it tothe real soure or sink via a virtual link of speed equal to thesoure or sink rate. The virtual link is speial in that it isassumed not to interfere with any other link in the network.The virtual link is just a onvenient onstrut to help usmodel the bound on the soure or sink rate.Other objetive funtions: Our framework is not lim-ited to maximizing the total network throughput. We anaommodate any objetive that an be expressed as a linearfuntion. For example, we an assign a linear revenue fun-tion to eah soure-destination pair, and then maximize therevenue instead of maximizing the total network through-put. We an also maximize the minimum throughput arossall soure-destination pairs, to provide a degree of fairness.

3.6 SummaryIn this setion, we presented the onept of a onitgraph, and disussed how it ould be used to derive up-per and lower bounds on the optimal throughput that awireless network an support, for a given set of soures anddestinations. We show that the onit graph model an begeneralized to handle a wide range of senarios. We haveshown that the lower bound derived from our framework isalways shedulable, and will be optimal one all the inde-pendent set onstraints are inorporated. If the upper andlower bounds are equal, then these orrespond to the opti-mal solution.
4. RESULTSThis setion presents several results based on our model.The setion is organized as follows. In Setion 4.1, wepresent illustrative results that demonstrate the exibilityof our model. In Setion 4.2, we use our model to provideinsights into the tradeo� between the riher onnetivityprovided by the inrease in the size of a wireless mesh net-work and the inrease in umulative traÆ load due to thenew mesh partiipants. In Setion 4.3, we illustrate howoptimal routing an bring bene�ts even in absene of opti-mal sheduling (i.e., in the presene of MAC ontention andother ineÆienies). In Setion 4.4, we disuss the issue ofonvergene of the upper and lower bounds to the optimalthroughput. Finally, in Setion 4.5, we present a disussionof the omputational osts of our model.
4.1 Illustrative ResultsIn this setion, we present several illustrative results todemonstrate the apabilities of our model. We begin byde�ning a metri for omputational e�ort. In Setion 3, wehave desribed the proedure for �nding upper and lowerbounds on throughput. Let us onsider the protool modelof interferene, and fous on the lower bound. We haveshown that as we inlude more distint independent sets, thelower bound beomes progressively tighter. In other words,the more e�ort we spend looking for independent sets in ouronit graph, the better the bound will be. Sine we annot always hope to �nd optimal solutions, any upper or lowerbounds disovered by our model need to be presented alongwith the amount of e�ort required to �nd those bounds.Thus we require a metri to measure this e�ort. We use thefollowing simple algorithm to �nd distint independent sets:1. Start with an empty independent set IS.2. Consider a random ordering of verties in the onitgraph.3. Consider the verties of the graph in that order. Al-ways add the �rst vertex to IS.4. Add a new vertex if and only if it does not have anedge to any of the verties added to IS so far. Onewe onsider all the verties, IS will be of size at leastone.5. We hek to see if we have previously disovered thisindependent set, and if not, we add onstraints basedon this independent set to our linear program. Other-wise we disard the set.
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Figure 4: 3x3 Grid
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Lower BoundFigure 5: Throughput with a bidiretional MACWe onsider this entire sequene as one unit of e�ort. Notethat one unit of e�ort does not always result in addition ofa onstraint or variable to the linear program. Moreover,there is a omplex relationship between the number of vari-ables and onstraints in a linear program, and the amountof time required to solve it. Thus, the metri is only a roughguide for the amount of atual time (or CPU yles) spentwhile �nding the bound. In Setion 4.5, we will providefurther disussion about the relationship between the e�ortmetri and atual time spent in omputation. The e�ortmetri is de�ned in a similar manner by onsidering liquesin ase of searhing for the upper bound, and by onsideringshedulable sets in ase of the physial model.

4.1.1 A Simple TopologyWe onsider the topology shown in Figure 4. The net-work onsists of 9 nodes, plaed in a 3x3 grid. We make nolaims that this topology is representative of typial wire-less networks. We have deliberately hosen a small, simpletopology, to failitate detailed disussion of the results.We start with several simplifying assumptions. We willrelax these assumptions as we proeed through the setion.We assume that the range of eah node is one unit, i.e., justenough to reah its lateral neighbors, but not the diagonalones. We also assume that the interferene range is equal
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Figure 6: Neighborhood Mapto the ommuniation range. We assume an 802.11-like pro-tool model of interferene desribed in Setion 3.5. Thismodel requires both the sender and the reeiver to be freeof interferene for suessful ommuniation. We term thisa bidiretional MAC. The resulting onit graph for thissenario is shown in the matrix form in Table 1. A 0 indi-ates that the links are not in onit with eah other, while1 indiates otherwise. For example, when node 0 is trans-mitting to node 3, node 1 an hear these transmissions, andhene an not transmit to node 2. Thus, links 1 (0 ! 3)and 3 (1! 2) are in onit.We allow multipath routing. We assume that all wirelesslinks have an idential apaity (i.e., speed) of 1 unit andthat all nodes have in�nite bu�ers. We designate node 0 tobe the sender, and node 8 to be the reeiver. The senderalways has data to send, and the reeiver is always willingto onsume the data.In this senario, it is easy to see that the optimal through-put is 0.5. A onvenient way to visualize the optimal trans-mission shedule is to imagine that time is divided into slotsof equal size, and in eah slot we an transmit one paket be-tween neighboring nodes, subjet to onstraints imposed bythe onit graph. Then, the following transmission shed-ule will ahieve optimal throughput: (i) 0 ! 1 (ii) 1 ! 2(iii) 0 ! 3 and 2 ! 5 (iv) 3 ! 6 and 5 ! 8 (v) 0 ! 1and 6 ! 7 (vi) : : : We an ontinue in this manner inde�-nitely. It is easy to see that in alternate timeslots, node 0gets to transmit to either node 1 or 3. Hene the optimalthroughput is 0.5.In Figure 5, we show the upper and lower bound on through-put alulated by our model, as we devote inreasing amountof e�ort. As shown, the upper bound quikly onverges tothe stable value of 0.667, whih is somewhat higher thanthe optimal value. This is a lear indiation of the fat thatlique onstraints alone are not suÆient to guarantee opti-mality, even in suh a small graph, as noted in Setion 3.2.4.The lower bound, on the other hand, steadily onverges tothe optimal value of 0.5. We have veri�ed that our pro-gram has disovered all independent sets and liques with100 units of e�orts.



link 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 01 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 02 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 03 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 04 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 06 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 17 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 08 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 110 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 112 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 113 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 114 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 115 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 116 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 117 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 118 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 119 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 120 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 121 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 122 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 123 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0Table 1: Conit Graph in matrix form

0

250

500

750

1000

0 250 500 750 1000

M
et

er
s

Meters

House with wireless connection
Wireless links

Internet access point
Senders

Figure 7: Mesh formation in the neighborhood
4.1.2 Community Networking ScenarioOur model an also inorporate single path routing, mul-tiple soure-destination pairs, multiple hannels as well asmultiple radios. We demonstrate this exibility with a om-munity mesh networking senario, in whih multiple usersshare an Internet onnetion, using a multi-hop wireless net-work. We onsider a map of a real suburban neighborhoodshown in Figure 6. There are 252 houses in an area of 1square kilometer. We selet 35 of these houses at random,and assume that these houses are equipped with hardwarethat enables them to partiipate in a wireless mesh network.We assume that ommuniation range of the wireless teh-nology is 200 meters, while the interferene range is 400 me-ters. In Figure 7, we show the resulting network. We seleta node that is roughly at the enter of the area and designateit as the Internet aess point. We assume that there arefour senders, loated as shown in the Figure. All the sendersommuniate with the Internet aess point, and the metriof interest is the umulative throughput of these senders.We assume that all wireless links are of unit apaity.We begin with a baseline ase, for whih we assume a

Senario Optimal ThroughputI 0.5II 0.5III 1IV 1Table 2: Throughput for neighborhood mesh in var-ious senariosbidiretional MAC and single path routing. Our linear pro-gram is set to optimize the sum of the throughputs of thefour ows, with no onsideration of fairness. In this ase,with about 5000 units of e�ort, upper and lower bounds on-verge, and our model indiates that the maximum possibleumulative throughput is 0.5.We may now ask what we an do to improve the umula-tive throughput. We onsider four possibilities: (I) Employmulti-path routing. (II) Double the range of eah radio.We also double the interferene range. (III) Leave the radiorange unhanged, but use two non-overlapping hannels in-stead of one. A node may ommuniate on only one of thetwo hannels at any given time, but may swith betweenhannels as often as neessary. (IV) Use two radios insteadof one at eah node. The radios are assumed to be tuned totwo �xed, non-overlapping hannels, so a node may ommu-niate on the two hannels simultaneously. The throughputbounds in eah of the four senarios are shown in Table 2.In eah ase, the upper and the lower bounds onverge tothe same value, whih indiates that the solution is optimal.The results indiate that neither multipath routing nordoubling the range of the radio inreases umulative through-put in the senario we onsidered. On the other hand, byusing two hannels instead of one, the network may ahievethe maximum possible throughput of 1. The maximum pos-sible throughput is 1 beause the Internet aess point hasonly one radio. On the other hand, even if we use two radios,the throughput remains at one. It is not hard to see why.The situation is equivalent to having two separate opies ofthe baseline network, and then adding up their throughputs.These senarios illustrate that the model we have developedan be used as a tool for analysis and apaity planning ofwireless multi-hop networks.
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4.2 Tradeoff Between Connectivity and Through-

putIn Setion 3, we disussed how our model an aommo-date nodes whih do not send data in a greedy fashion,i.e. they have a lower send rate. In [14, 18℄, the authorshave shown that the per node throughput in the networkdereases as the number of nodes in the network goes up.These results, however, were derived under the assumptionthat eah node sends data as fast as it an. In other words,the desired sending rate of the node is assumed to be 1.However, if eah node has a lower desired sending rate, theriher onnetivity provided by additional nodes might helpinrease per node throughput, by allowing better routes tobe disovered. We now explore this hypothesis using ourmodel.We onsider a 7x7 grid, whose nodes are 200 meters aparthorizontally, and vertially. We assume that the ommuni-ation range is 250 meters, and the interferene range is 500meters. We set the link apaity to 1. We assume a bidire-tional MAC, similar to the one used to plot Figure 5. Weuse single-path routing.We pik N nodes from the 49 available nodes, at random,and without replaement. Half of these nodes are designatedas senders, and the other half are designated as reeivers.The senders and the reeivers form N=2 ows in the net-work. Eah sender is paired with only one reeiver. We�rst alulate the fration of ows for whih the soure andthe destination lie in the same onneted omponent of thetopology. We all this fration the onnetivity ratio. Theonnetivity ratio for various values of N is shown in Fig-ure 8. The results show that after 24 nodes (i.e. 12 ows)are seleted, the onnetivity ratio beomes 1.We then assign a sending rate of D to eah sender. Then,using our model, we alulate the optimal throughput usingsingle-path routing. We divide the umulative throughputby the number of ows (i.e. N=2) to obtain average per-owthroughput, and normalize it further by dividing it by D.The resulting normalized per-ow throughput for variousvalues of N and D is plotted in Figure 9.Note that when the sending rate is 0.01, the normalizedper-ow throughput ontinues to rise even after the onne-tivity has reahed 1. This means that the riher onnetivity
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Figure 9: Normalized per-ow throughputprovided by additional nodes allows for newer routes, andallows extra traÆ to be sent through the network. How-ever, if eah node sends at rate 1, the node might have littleapaity left to forward traÆ from other nodes. Thus, theaverage per-ow throughput peaks early (i.e the network issaturated), and then delines slowly, as new nodes join thenetwork, but fail to transmit most of their desired traÆ.For sending rate of 0.1, the results are between these twoases. Note that the non-monotoni nature of the graphs isdue to utuation in random runs. As part of our futurework, we plan to verify the generality of this result using awide variety of topologies.We stress that these results have been derived by assumingoptimal routing, as well as optimal sheduling of pakets. Inthe next setion, we further disuss the impat of these twoassumptions.
4.3 Benefits of Optimal Routing in Absence of

Optimal SchedulingAs shown in the previous setions, the optimal through-put is ahieved by seleting optimal routes and shedulingthe links on the routes appropriately. A natural questionto ask is how muh performane improvement is due to theoptimal route seletion, and how muh is due to the optimalsheduling. Motivated by this question, we empirially ex-amine four senarios shown in Figure 10. They orrespondto (i) optimal routing with optimal sheduling, (ii) shortest-path routing with optimal sheduling, (iii) \optimal" rout-ing under 802.11 MAC 1, (iv) shortest-path routing under802.11 MAC. We �rst briey desribe the approah we useto derive throughput for eah ase, and then present theresults.Given a network topology, we apply the algorithm de-sribed in Setion 3 to ompute the optimal throughput un-der single-path routing. This orresponds to senario (i).To derive the performane of optimal routing under 802.11,we run ns-2 [22℄ simulations. To ensure that the paketsfollow the optimal routes, we speify the optimal routesobtained in Senario (i) as the stati routes in ns-2. The1This means routes derived in (i) used with 802.11 MAC. Itmay also be possible to derive optimal routes for ontention-based sheduling, but that is not our intent here.
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Figure 10: Four senarios.throughput numbers from these simulations orrespond tosenario (iii).We then repeat our simulation using AODV [25℄, a stan-dard shortest path routing protool. The resulting through-put orresponds to the performane of the senario (iv).To minimize the impat of AODV routing overhead, allnodes are stati and simulations are run for 50 seonds, longenough to make the initial route setup overhead negligible.Based on the AODV simulation results, we obtain a setof links that are used in the shortest paths between souresand destinations. We then modify the LP formulation inSetion 3 to ompute bounds on the optimal throughputby exluding all but those links that lie on one or more ofthe shortest paths. We do so by setting the apaity of theexluded links to zero. We solve the resulting LP, and obtainthe throughput for senario (ii).Our aim is to ompare throughput in senario (i) to through-put in senario (ii). Similarly, we ompare senarios (iii)and (iv) against eah other. Note that we do not omparethe throughput obtained by solving the LP model with thethroughput obtained from ns-2 simulations.We onsider these four senarios in a 7x7 grid (49 nodes).The horizontal and vertial separation between adjaent nodesis 200 meters. We assume the ommuniation range to be250 meters, and the interferene range to be 500 meters. Allother parameters are at their default settings in ns-2. Foreah simulation run, we randomly pik a few pairs of nodesas soures and destinations; the soure sends pakets to theorresponding destination at a onstant bit rate equal to thewireless link apaity.Table 3 shows the throughput ratios between optimal rout-ing and shortest path routing, under optimal sheduling.These numbers are derived from our LP formulation. In allases, optimal routing yields omparable or better through-put than the shortest path routing when optimal shedulingis used. The bene�t of optimal routing varies with the num-ber of ows, as well as with the loations of ommuniatingnodes. For instane, when the two ows are far apart anddo not interfere with eah other, the optimal path ahievesthe same throughput as the shortest path (e.g., numFlow=2and run=1, 5); when the two ows interfere with eah other,the optimal path takes a detour, whih results in reduedinterferene and hene higher throughput (e.g., the ase ofnumFlow=2 and run= 2, 3, 4).Table 4 shows the throughput ratios between \optimal"routing and shortest path routing, under under the 802.11

numFlow run 1 run 2 run 3 run4 run 52 1.00 1.25 1.60 1.38 1.004 1.41 1.00 1.44 1.43 1.148 2.10 1.00 1.05 1.11 1.11Table 3: Throughput ratios between optimal rout-ing and shortest path routing, both under optimalsheduling in a 7x7 grid.numFlow run 1 run 2 run 3 run4 run 52 1.08 2.43 1.53 1.80 1.194 1.07 1.54 0.79 1.02 1.558 3.55 1.22 0.50 1.14 0.40Table 4: Throughput ratios between \optimal"path routing and shortest path routing, both under802.11 MAC in a 7x7 grid.MAC. These numbers are based on ns-2 simulations. Op-timal path outperforms the shortest path even under the802.11 MAC when number of ows in the network is small.On the other hand, the optimal path routing does not alwaysoutperform the shortest path routing under 802.11 MACwhen the number of ows is higher. This ours beauseas network load inreases, it is harder to �nd paths thatdo not interfere with other ows in the absene of optimalsheduling.The above results are enouraging, and suggest that thereis a potential to improve throughput by making route sele-tion interferene-aware. In ongoing work, we are ontinuingto investigate the bene�ts of interferene-aware routing un-der a wider range of senarios.
4.4 Convergence of Upper and Lower BoundsIn most of the previous results in this setion, the upperand the lower bounds onverged, assuring us of the opti-mality of the solution. When they did not onverge, e.g.,Figure 5, we were able to assure ourselves of optimality ofthe lower bound by manual veri�ation. In general, how-ever, the bounds may not onverge, as there is no guaranteethat even after adding all the lique onstraints the upperbound will be shedulable. This leads to the question: howdo we deide when to stop looking for even tighter bounds?Given that the onit graph may have an arbitrarily om-plex struture, we annot wait until the upper and lowerbounds are within a small perentage of eah other sinethis may never happen. Even after all the liques are found,the upper bound may still be well above the optimal feasiblesolution. Thus, there is no easy way to deide when to stopthe alulations. The data we present next does indiate,however, that onvergene is quite good in many senarios.
4.5 Computational CostsIn Setion 4.1, we mentioned that the e�ort metri pro-vides only a rough indiation of the omputational osts of�nding the bounds. We now provide more data in this re-gard. Note that muh of the data provided is for the MAT-LAB [19℄ solver to whih we had ready aess; as notedbelow, the CPLEX [6℄ solver redued the omputation timeby a fator of 7, albeit on a somewhat faster CPU. Unfortu-nately, we only had limited aess to the CPLEX resoure



Grid Size Lower Bound Upper Bound Time (minutes)3x3 0.25 0.25 25x5 0.5 0.5 27x7 0.495 0.5 259x9 0.474 0.5 3511x11 0.479 0.5 40Table 5: Lower and upper bounds after 150,000units of e�ortE�ort Lower Bound Upper Bound Time (minutes)10000 0.443 0.5 250000 0.48 0.5 5100000 0.49 0.5 13150000 0.495 0.5 25200000 0.5 0.5 41Table 6: Lower and upper bounds after varying ef-fort for a 7x7 gridand were able to use it for only a few of our experiments.So it is important to note that there is the potential forsigni�ant improvements over the omputational osts (forMATLAB) reported here.In Table 5, we onsider the relationship between the sizeof the network and the amount of time required to omputeupper and lower bounds. The table shows the bounds om-puted after 150,000 units of e�orts for several grid sizes, andthe time required to ompute them. In eah ase, there isa single ow in the network, with its soure and destinationnodes at diagonally opposite orners of the grid. The restof the parameters are similar to those used to plot Figure 5.Note that the upper and lower bounds are not equal in allases (but they are all lose), whih indiates that we mightnot have found the optimal solution in all ases. The om-putations were done using MATLAB 6.1 [19℄, on a mahinewith 1.7Ghz Pentium proessor, and 1.7GB of RAM.In Table 6, we onsider the relationship between the amountof e�ort, and the loseness of upper and lower bounds, aswell as the time required to ompute those bounds. Theresults are based on the 7x7 grid, with rest of the param-eters similar to those used for Table 5. As we disussedin Setion 4.1, with more e�ort, we are likely to add morevariables as well as more restritive onstraints in the linearprogram. So the bounds beome tighter.In Table 7, we onsider the relationship between the num-ber of ows in the network, and the amount of time requiredto ompute bounds for a given amount of e�ort. The resultsare based on a 7x7 grid, with multiple ows. For eah ow,the soure is in the bottom row of the grid, and it ommuni-Flows Lower Bound Upper Bound Time (minutes)2 0.578 0.583 343 0.707 0.75 314 0.758 0.833 295 0.799 0.875 316 0.849 0.925 347 0.861 1.00 36Table 7: 7x7 grid, multiple ows, 150,000 units ofe�ort

Flows Lower Bound Upper Bound Time (minutes)6 0.849 0.925 57 0.861 1.00 5Table 8: 7x7 grid, multiple ows, 150,000 units ofe�ort, with CPLEXates with a destination loated in the same olumn, but inthe top row. All other parameters are the same as Table 5.The software used to solve the linear program is also asigni�ant fator in the amount of time required to �nd theoptimal solution. In Table 8, we show the amount of timetaken by CPLEX [6℄ to solve the 7x7 grid ase, with 6 and 7ows on a 2.7GHz Pentium mahine, with 3.7GB of RAM.While we an not ompare these entries diretly with theorresponding entries in Table 8, as the mahines used torun MATLAB and CPLEX are di�erent, the speedup is stillquite signi�ant: a redution by a fator of 7, from 34-36minutes down to 5 minutes. Moreover, MATLAB annotsolve the Mixed Integer Programs resulting from the for-mulation of single-path routing. We ould only solve theseusing CPLEX. Unfortunately, we only had limited aess tothe CPLEX software, so we are unable to report the full setof numbers for CPLEX.Sine these numbers are based on a single run, and arebased only on grid graphs, whih have a regular onnetiv-ity pattern, we annot draw general onlusions from them.However, some trends are useful to note. We observe thatfor grid networks, the amount of time required to solve theproblem inreases with the number of nodes. We also seethat for a given e�ort level, the time required to omputethe bounds does not depend signi�antly on the number ofows in the network. However, the di�erene between theupper and lower bounds for a given amount of e�ort tendsto inrease with inrease in the number of ows.In ase of irregular graphs, suh as the neighborhood graphshown in Figure 7, we have observed that the amount of timerequired to solve depends signi�antly on onnetivity andinterferene patterns.Finally, we note that we have not inluded any resultsinvolving physial model of ommuniation in this setion.We have also not inluded results that demonstrate the useof links of di�erent apaities. While we have solved suhnetworks (physial models of interferene, links of di�erentapaities et.), we ould not do a detailed study due toresoure onstraints. Therefore, we have hosen to fous onthe protool model of interferene in this setion.
4.6 Discussion of LimitationsOur results have demonstrated the exibility of our modeland methodology for omputing throughput bounds. How-ever, our work does have some limitations, as we disussbelow.First, our model does not provide an easy means for a-ommodating node mobility. Node mobility would auseboth the onnetivity graph and the onit graph to hangewith time. At present, we do not have a way of dealing withthe hanges inrementally. We ould, in priniple, reom-pute the bounds by working with the new onnetivity andonits from srath, but this is likely to be feasible onlywhen node movement is infrequent, as in a ommunity wire-less network senario.



Seond, time-varying hannels may also pose a problem.Time-varying hannel harateristis ould result either fromthe interferene aused by other nodes or from physial ef-fets, e.g. mobility-indued fading. Our model does aountfor utuations in the noise level at a node due to the in-terfering transmissions of other nodes. However, it doesnot aommodate utuations aused by phenomena suhas fading. As with mobility, it may be feasible to reomputefrom srath if the utuations happen slowly.Finally, the omputational ost numbers presented in Se-tion 4.5 suggest that our methodology is feasible for modestsized networks of the order of a few hundred nodes, whihmay be typial of a neighborhood wireless network. How-ever, the methodology in its urrent form is likely to betoo expensive for large-sale networks ontaining thousandsor millions of nodes, e.g. sensor networks. Sine energyonsumption rather than throughput is often the metri ofinterest in suh large-sale networks, this limitation may bemoot.
5. CONCLUSION AND FUTURE WORKIn this paper we have presented a model and methodologyfor omputing bounds on the optimal throughput that anbe supported by a multi-hop wireless network. A key dis-tintion ompared to previous work is that we work with anygiven wireless network on�guration and workload spei�edas inputs. No assumptions are made on the homogeneityof nodes with regard to radio range or other harateristis,or regularity in ommuniation pattern. We use a onitgraph to model wireless interferene under various onditions(multiple radios, multiple hannels, et.). We view the gen-erality of our methodology and the onit graph frameworkas a key ontribution of our work.Although the bounds that we ompute on the optimalthroughput assume the ability to �nely ontrol and arefullyshedule paket transmissions, the optimal routes yielded byour analysis often outperform shortest path routes even un-der \real-world" onditions suh as unoordinated shedul-ing and MAC ontention. In ns-2 simulations, we have ob-served a throughput improvement of over a fator of 2 insome ases. The reason for this signi�ant improvement isthat the optimal routes often tend to be less interferene-prone than the default shortest path routes.We have also onsidered the impat of new nodes on theper-node throughput in multi-hop wireless networks. Con-trary to previous results, we have found that the additionof new nodes an be bene�ial for all nodes, under the (re-alisti) assumption that eah node is ative for only a smallfration of the time. The riher onnetivity enabled by newnodes presents inreased opportunities for routing aroundinterferene \hotspots" in the network. This more than o�-sets the inrease in traÆ load aused by the new nodes.In ongoing work, we are ontinuing to investigate the ben-e�ts of interferene-aware routing under a wide range of se-narios. Our next step after that would be to design a prati-al interferene-aware routing protool, whih addresses in-teresting hallenges suh as onstruting the onit graphand omputing optimal routes in a distributed manner.
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APPENDIX

A. PROOF OF THEOREM 1Suppose we are given a graph G and we want to omputethe ardinality of its maximum independent set. We nowonstrut a wireless network suh that the optimal through-put it an support under the protool interferene model isthe same as the ardinality of the maximum independent setof G. Create two wireless nodes, a soure s and a reeiverr. For every vertex in G add a wireless link of unit apaitybetween s and r. For every edge between two nodes in G,assume a onit between the orresponding wireless linksin the network. (Suh a network may arise, for instane, ifnodes s and r are eah equipped with multiple radios seteither to the same (i.e., interfering) hannel or to separate(i.e., non-interfering) hannels. It is not hard to see thatthe optimal throughput is ahieved if and only if a maxi-mum independent set in G is sheduled. Thus �nding theoptimal throughput of the wireless network is equivalent to�nding the ardinality of the maximum independent set ofgraph G, whih is known to be a hard problem.The above proof may ome aross as ontrived sine thewireless network we onstruted is unlikely to arise in pra-tie. This raises an interesting question of whether realistiwireless networks ould give rise to omplex onit graphs?Our answer is both yes and no. Our answer is \yes" be-ause the maximum independent set problem is hard due tothe existene of odd holes and odd anti-holes in the givengraph2. As shown in Figure 11, very realisti and simplegrid graphs ould have onit graphs with many odd holesand odd anti-holes. On the other hand, our answer is \no"2If a graph does not have any odd holes or anti-holes thenthe graph is termed perfet [20℄, and for perfet graphs thereare polynomial time algorithms to solve the maximum inde-pendent set problem [11℄.
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ZFigure 11: A 6x6 grid onnetivity graph. ABCDEand VWXYZ are examples of odd holes in the or-responding onit graph, assuming an 802.11-styleMAC, ommuniation range equal to the lateral spa-ing between neighbors, and interferene range equal totwie the ommuniation range. These odd holes alsohappen to be odd anti-holes.beause realisti onit graphs may have some speial prop-erty or struture that ould make the problem of �nding themaximum independent set easy. We have been unable toidentify any suh property, but our failure does not meanthat no suh property exists (though the omplex onitgraphs arising from the simple grid graphs, as in Figure 11,diminish our optimism). In view of this, we believe that theheuristi approah presented in Setion 3 is reasonable.
A.1 Polynomial Time Algorithm in Special CaseEven in speial ases where polynomial time algorithmsmay exist, they may be too expensive to be of pratial in-terest. One suh speial ase arises in the ontext of gridgraphs when the onit radius is zero. By zero onitradius we mean that two links onit if and only if theyshare an endpoint. In this simple and somewhat unrealistisetting, the onit graph is nothing but the line graph ofthe underlying grid network. (The line graph, L(G), of agraph, G, is a graph on the edges of G, i.e., the verties ofL(G) orrespond to the edges of G. There is an edge be-tween two verties of L(G) if the orresponding edges in Ghave a vertex in ommon.) Our network in this ase is agrid. A grid is a bipartite graph, and bipartite graphs areperfet. The line graph of a perfet graph is perfet too.Hene the onit graph of a grid graph with a zero onitradius is a perfet graph. A perfet graph has the prop-erty that its set of lique onstraints de�ne its independentset polytope. So if we write a linear program with all thelique onstraints together with the ow onstraints thenwe an �nd the optimal network throughput. The problem,however, is that the number of liques ould still be expo-nentially many. (Although this does not happen with gridgraphs, it ould very well happen with other perfet graphs.)A solution is to use the ellipsoid algorithm [16℄ to optimizelinear funtions over a polytope. This algorithm does notrequire all the onstraints in an expliit form to optimizea linear funtion over a polytope, hene we do not have to



enumerate the exponentially many lique onstraints. Theellipsoid algorithm only needs a subroutine that given a po-tential solution indiates whether the onstraints are satis-�ed or not, and if not identi�es at least one onstraint whihis not satis�ed. Suh a subroutine is alled separation or-ale. The separation orale for our problem would be onethat �nds a violated lique onstraint given a usage vetor.This an be aomplished using the Grotshel semide�niteprogramming algorithm for �nding the heaviest lique [12℄.However, both the ellipsoid algorithm and the semide�nitealgorithm have a running time of O(n3), so in ombinationtheir running time is O(n6). Thus this polynomial time al-gorithm is not very pratial. As disussed in Setion 2,Kodialam and Nandagopal [17℄ present an approximationalgorithm for this ase.
A.2 Finding Violated Odd Hole ConstraintsNow we present a separation orale that given a onitgraph G and a andidate solution � �nds a violated oddhole onstraint, if any. Suh an orale ould be used toimprove the onvergene rate of the algorithm presented inSetion 3. Note that this separation orale is appliable togeneral graphs; for the perfet onit graph onsidered inSetion A.1 above, there are no odd holes anyway.Consider an odd hole, H, of the given onit graph G.Any vetor � inside the independent set polytope of G mustsatisfy the following: Pi2H �i � (jHj � 1)=2. A violatedodd hole is one for whih this onstraint is not satis�ed.Before attempting to �nd a violated odd hole, we may as-sume that the given � satis�es all the edge onstraints, i.e.,�i + �j � 1 for every edge in G, beause if it does not thenwe an inlude the violated edge onstraint to shrink theupperbounding polytope. After making this assumption wede�ne a weight funtion on the edges. For every edge ij ofthe graph G, we de�ne its weight to be 1 � �i � �j , whihis guaranteed to be non-negative. With this weight fun-tion we �nd the lightest (i.e., least-weight) odd yle in thegraph. The lightest odd yle an be found using a bipartitegraph onstrut as explained in the next paragraph. Let Cbe the lightest odd yle. Pij2C(1� �i � �j) < 1 is equiv-alent to Pi2C �i > jCj�12 . So, if the weight of the lightestodd yle is less than 1 then the yle is a violated odd hole.If the weight of the lightest odd yle is 1 or more then thereis no violated odd hole.Now we ome to the question of eÆiently �nding thelightest odd yle. Let G be the graph in whih we need to�nd the lightest odd yle. We onstrut a bipartite graph,B, as follows. For every vertex v in G we put two vertiesvl and vr in B (the subsripts l and r an oneptually bethought of as representing the left and right \halves" of thethe bipartite graph B). For every edge uv in G we put twoedges ulvr and urvl in B. Now an odd yle in G beomesan odd length path in B e.g., uvwu beomes ulvrwlur. Sofor every vertex u in G we �nd the shortest path from ul tour in B. The shortest suh path in B yields the lightest oddyle in G.

B. PROOF OF THEOREM 2Let us �rst show that a shedulable usage vetor lies inthe independent set polytope of the onit graph. In otherwords, we want to show that the usage vetor is a onvexombination of independene vetors.Consider a shedulable usage vetor, U . Consider oneunit of time, and assume that we have sheduled the linksover frations of this unit time, suh that the usage vetorhas been satis�ed. Sine the vetor is shedulable, suh ashedule must exist. This shedule will tell us whih linksare ative at any given instane of time.Also, sine the usage vetor is shedulable, at any instanein this shedule, the links that are ative are not in on-it with eah other. That is, the verties orrespondingto these links must form an independent set in the onitgraph. Find eah suh independent set I and denote itsindependene vetor by xI (see Setion 3.2.2). De�ne �Ias the fration of the unit time independent set I is ative.Sine the total time is one unit, the sum of �I 's over all theindependent sets equals to one. Thus:U = XI is an independent set�IxI :Now we show that a usage vetor that is a onvex ombi-nation of independene vetors is always shedulable. Con-sider a usage vetor U that is obtained by a onvex ombi-nation of independene vetors:U = XI is an independent set�IxIIt follows that U is shedulable sine eah independent setI an be sheduled for �I fration of the time.


