
March 30, 2015 Flow-Sensitive Alias Analysis 1

Flow-sensitive Alias Analysis

Last time

– Client-Driven pointer analysis

Today

– Demand DFA paper

– Scalable flow-sensitive alias analysis

March 30, 2015 Flow-Sensitive Alias Analysis 2

Recall Previous Flow-Sensitive Solution

Iterative data-flow analysis

– We’ve seen how IDFA could be use to compute May Points-to and Must

Points-to information

– This solution does not scale– can only analyze C programs with 10’s of

thousands of lines of code

March 30, 2015 Flow-Sensitive Alias Analysis 3

The Problem

p = r6

...3 ...4

r = &s;2

1 p = &r

...

x = p

y = *x

5

7

8

Conservative propagation

– Need to push data-flow facts
across every node

March 30, 2015 Flow-Sensitive Alias Analysis 4

The Problem (cont)

Conservative propagation

– The analysis doesn’t know which nodes require pointer information ⇒
must propagate information to all reachable nodes

– We need to store, propagate, and compute transfer functions for all pointer

information at all program points

How large can this information be?

– For programs with 100K to 1M LOC

– 100’s of thousands of program points

– Two points-to graphs per program point (for In and Out sets)

– Each points-to graph can contains 10’s of thousands of pointers

(nodes)

– Each points-to set can contain 100’s or 1000’s of elements (edges)

March 30, 2015 Flow-Sensitive Alias Analysis 5

Exploiting Sparsity

Traditional solution

– Employ a sparse analysis,

propagating information

directly from defs to uses

– What if this

code were in

a loop?

Catch-22

– We need pointer

information to compute

the def-use chains that

would enable a sparse

analysis

p = r6

...3 ...4

r = &s;2

1 p = &r

...

x = p

y = *x

5

7

8

March 30, 2015 Flow-Sensitive Alias Analysis 6

Previous Work

Dynamically compute def-use information [Chase et al, ’90, Tok & Lin’06]

– High overhead limits scalability

– Scales to 70K LOC

Semi-Sparse Analysis [Hardekopf & Lin ’09]

– Separate pointers into two groups: Top-level and Address-taken

– Top-level variables

– Addresses are never taken

– Can easily put these variables into SSA form

– Address-taken variables

– Use traditional IDFA

– Scales to 300K LOC

A Better Solution

Staged Flow-Sensitive Analysis [Hardekopf & Lin ’11]

March 30, 2015 Flow-Sensitive Alias Analysis 7

Auxiliary
Pointer Analysis

Flow-Sensitive
Pointer Analysis

Inclusion-based

Pointer Analysis
Precision

– The precision of the auxiliary analysis impacts performance but not

precision– as long as the auxiliary analysis is sound

– Use inclusion-based pointer analysis as auxiliary analysis, since it’s the

most accurate of the flow-insensitive analyses

March 30, 2015 Flow-Sensitive Alias Analysis 8

Staged Analysis– Performance Problem

High overhead

– The number of def-use chains computed by inclusion-based analysis can

result in 100’s of thousands of def-use edges for programs with > 1M

LOC

Optimization

– Identify access equivalent variables, those whose def-use chains are

identical

– Collapse their def-use chains

– Reduces number of def-use edges by an order of magnitude

March 30, 2015 Flow-Sensitive Alias Analysis 9

Example: CFG

6

*q = x2 *r = y3

*p = w1

t = *z6

u = *v4 s = *z5

Auxiliary analysis

p {a}

q {b, c, d, e, f}

v {e, f}

r {a, b, d}

z {a, b, c, d}

March 30, 2015 Flow-Sensitive Alias Analysis 10

*r = y

a2=χ(a1); b2=χ(b0)

d2=χ(d0)

*q = x

b1=χ(b0); c1=χ(c0)

d1=χ(d0); e1=χ(e0)

f1=χ(f0)

s = *z

μ(a2);μ(b2)

μ(c0);μ(d2)

u = *v

μ(e1);μ(f1)

Example: SSA Form

2 3

*p = w

a1 = χ(a0)
1

t = *z

μ(a3);μ(b3) μ(c2);μ(d3)

6

4 5

a3=ϕ(a1,a2); c2=ϕ(c1,c0)
b3=ϕ(b1,b2); d3=ϕ(d1,d2)

6’

Auxiliary analysis

p {a}

q {b, c, d, e, f}

v {e, f}

r {a, b, d}

z {a, b, c, d}

Terminology

χ(a0) is a May Def

μ(b2) is a May Use

March 30, 2015 Flow-Sensitive Alias Analysis 11

Example: Def-Use Graph

*p = w1

t = *zs = *z u = *v

a

a b d a b d b c d e f

3 2

5 6 4

a

*r = y *q = x

March 30, 2015 Flow-Sensitive Alias Analysis 12

Example: Optimized Def-Use Graph

*p = w

t = *zs = *z u = *v

a

a bd a bd b cd ef

Applying the transfer functions

– Use IFDA, but only propagate a variable’s points-to sets across edges

whose label contains that variable

– Because def-use graph is an over-approximation, we might propagate

information unnecessarily

– Imprecision in a sound Auxiliary analysis affects performance, not

precision

1

3 2

5 6 4

*r = y *q = x

March 30, 2015 Flow-Sensitive Alias Analysis 13

Evaluation

Comparison against state-of-the art

– Staged Flow-Sensitive Analysis (SFS)

– Semi-Sparse Flow-Sensitive Analysis (SSO)

Details

– Implemented in LLVM using shared code base

– Both analyses are field-sensitive

– Both use BDDs to store points-to sets

New algorithm

Prior state-of-the-art

March 30, 2015 Flow-Sensitive Alias Analysis 14

Benchmarks Name Description LOC

197.parser parser 11K

300.twolf place and route simulator 20K

ex text processor 34K

255.vortex object-oriented database 67K

254.gap group theory interpreter 71K

sendmail email server 74K

253.perlbmk PERL interpreter 82K

nethack text-based game 167K

python interpeter 185K

176.gcc C language compiler 222K

vim text processor 268K

pine e-mail client 342K

svn source code control 344K

ghostscript Postscript viewer 354K

gimp image manipulation tool 877K

tshark wireless network analyzer 1,946K

March 30, 2015 Flow-Sensitive Alias Analysis 15

Results Name SSO (s) SFS (s) Speedup

197.parser 0.41 0.37 1.11

300.twolf 0.23 0.41 0.56

ex 0.35 0.40 0.88

255.vortex 0.60 0.62 0.97

254.gap 1.28 1.29 0.99

sendmail 1.21 1.00 1.21

253.perlbmk 2.30 1.57 1.46

nethack 3.16 2.64 1.20

python 120.16 6.62 18.15

176.gcc 3.74 3.46 1.08

vim 61.85 5.53 11.18

pine 347.53 82.00 4.24

svn 185.10 10.69 17.32

ghostscript OOT 31:56.29 ∞

gimp OOT 20:22.27 ∞

tshark OOT 13:48.47 ∞

Conclusions?

March 30, 2015 Flow-Sensitive Alias Analysis 16

Results (cont)

Big picture

– Two orders of

magnitude

improvement

2006: 70K LOC

2011: 2,000K LOC

Small

programs

Medium

programs

Large

programs

March 30, 2015 Flow-Sensitive Alias Analysis 17

Related Work

Previous staged pointer analyses

– Auxiliary analysis partitions the program [Kahlon ’08]

– Auxiliary analysis prunes the program [Guyer & Lin ’03, Fink et al ’06]

– Complementary to this solution

Future Work

Stage the Client-Driven Pointer Analysis

– A sparse FICI will be much more scalable than the current implementation

March 30, 2015 Flow-Sensitive Alias Analysis 18

March 30, 2015 Flow-Sensitive Alias Analysis 19

Wild Idea

Staged Flow-Sensitive Pointer Analysis: A family of algorithms

– We can select other Auxiliary analyses

– Instead of inclusion-based (FICI), consider a FICS analysis

– Resulting analysis would be more precise than a FSCI analysis

– How scalable?

– How precise?

FI FS

CI

CS

Steens

Anders

SSO

SFS

Whaley Client

March 30, 2015 Flow-Sensitive Alias Analysis 20

The Big Picture

Many dimensions of pointer analysis precision

– Flow-sensitive

– Path-sensitive

– Heap model

– Field-based

– Arrays

Language effects

– Different languages have different usage patterns

– eg. C often passes pointers to functions (why?)

– Das’ Steensgaard’s analysis with one-level flow [Das ’00]

– Modern languages (Python, Java) add more dynamicism

– Context-sensitive

– Field-sensitive

– Object-based

– Shape analysis

March 30, 2015 Flow-Sensitive Alias Analysis 21

Cottage Industry

Could churn out endless number of new analyses

– Language precision dimension (huge space)

March 30, 2015 Flow-Sensitive Alias Analysis 22

The Problem

Practical use

– Pointer analyses are difficult to reuse

– Pointer analyses are difficult to write and debug

– “Around 20 pointer analyses available in LLVM”

– How much precision do you need?

– Depends on the client and the program

– Eg. Cisco’s question: To parallelize IOS, which pointer analysis

should we use?

– We need to better understand the impact on clients

– It’s hard to do this without already having multiple pointer analyses

March 30, 2015 Flow-Sensitive Alias Analysis 23

The Vision

Turnkey Pointer Analysis

– We need pointer analysis that is so easy to use that everyone can use it

– Should be client-driven

– Needs to be much more adaptive than Guyer’s Client-Driven analysis,

which only looked at two dimensions of precision

– Requires careful study of multiple clients

– If successful, would be a game changer

A Step Towards a Solution

Tunable Pointer Analysis (TPA)

– Decouples control flow sensitivity from core pointer analysis algorithm

Diagnostic tool:

– TPA can simulate other pointer analysis algorithms

– TPA can be used to learn about the precision needs of client analyses

– TPA can be used to help develop and test new pointer analyses by

providing a set of known results

March 30, 2015 Flow-Sensitive Alias Analysis 24

Tunable Pointer Analysis

Useful pointer analysis:

– Sufficiently scalable for clients such as model checking and software

verification

Valuable research tool:

– Guide the research community: What precisions are important?

– Identify new techniques for applying adaptive precision

March 30, 2015 Flow-Sensitive Alias Analysis 25

March 30, 2015 Flow-Sensitive Alias Analysis 26

Next Time

Lectures

– Modern uses of compilers

– Traditional uses of compilers

Projects

– You should have received feedback from me

– Submit next iteration of proposals by Friday April 3rd

Assignments

– Assignment 4 due Friday April 10th

