
Compiling OO Languages

OO languages create impediments to analysis and optimization

– Dynamism

– Java semantics

– . . .

How might they facilitate optimizations?

– Hint: What are the key ideas behind the OO model?

April 6, 2015 Data Reorganization 1

April 6, 2015 Data Reorganization 2

Code and Data Reorganization

Last time

– Introduction to compiling OO languages

Today

– Specialization

– Exploit encapsulation to improve memory performance

– Data reorganization

April 6, 2015 Data Reorganization 3

Specialization

Idea

– Create multiple versions of methods, one for each potential receiver

– Now each method knows the type of the receiver

– Can optimize each specialized method

Problems

– Overspecialization

– Code explosion

– Code bloat with little benefit because some specialized versions are

almost identical

– Underspecialization

– Some methods that are commonly invoked could be much faster if

they were specialized

April 6, 2015 Data Reorganization 4

Specialization Example

class rectangle:shape {

int length() { ... }

int width() { ... }

int area() { return (length() * width()); }

}

class square:rectangle {

int size;

int length() { return(size); }

int width() { return(size); }

}

Specialize area for rectangle and square

– Can then inline length and width

April 6, 2015 Data Reorganization 5

A Brief History of Specialization

Trellis [1988], Sather [1991]

– Specialize all inherited methods for each receiver class

Self [1989]

– Only compiles (dynamically) code that actually executes

– Only dynamically compiled systems can do this

Cecil [1995]

– Selective specialization: only specialize when benefit is significant

– Use profile-derived weighted call graph to guide specialization

– Specialize for sets of classes with same behavior

– e.g. Create one instance of isConvex() for rectangle and square

– e.g. Create separate instances of area() for rectangle and square

– Specialize on arguments, too

April 6, 2015 Data Reorganization 6

Inlining

Idea

– Replace call site with method body

– Requires class analysis, etc.

Advantages?

– Eliminates method call overhead

– Specializes methods to calling context

– Specializes caller to the callee’s context

Disadvantages?

– Not always possible

– Increases code size

Key to success

– Use profile information to discover where it is beneficial

April 6, 2015 Data Reorganization 7

Call graph w/node weights (DCG)

– Same goal but uses frequency

information

Benefits of Inlining [Arnold,et al 2000]

Static call graph heuristic (SCG)

– Minimize (# of call sites method size)

sp
ee

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

benchmarks

base

SCG

DCG

DCG-E

Dynamic call w/edge weights

(DCG-E)

– Considers individual call site

frequencies

– Can inline some instances of

a method rather than all or

nothing

April 6, 2015 Data Reorganization 8

Inlining Trials [Dean and Chambers’94]

Many indirect benefits of inlining

– Constant propagation, dead code elimination, loop invariant code motion

Indirect benefits of inlining

– Can’t be measured by looking at the call graph, node frequencies, or link

frequencies

– Often depends on information at the call site, such as specific parameters

Idea

– Perform inlining trials to measure cost and benefit of inlining

– Use type group analysis to describe info available at each call site

– Keep database of inlining trials indexed by the type group

– Inline a method if its call site matches a profitable inlining trial

April 6, 2015 Data Reorganization 9

Inlining Trials (cont)

Experimental results

– Primary benefit is reduction in compilation time (20% faster)

– Program execution time essentially the same (1% slower)

– Difficult to compare Self with other systems

– Self uses incremental, dynamic compilation

– Self is a pure object-oriented language

The big picture

– Preserve rich information in a database

– Perform optimization in the large, i.e., across programs

April 6, 2015 Data Reorganization 10

Data Reorganization: Motivation

Memory speeds increasing slower than processor speeds

– Improve cache behavior to improve program performance

Clustering [Chilimbi and Larus 98]

– For small objects, place objects that tend to be accessed together on the

same cache line

The garbage collector can improve locality

Use a copying collector

Cluster while copying

Transparent to programmer and compiler

April 6, 2015 Data Reorganization 11

Limitations of Clustering

Clustering works for small objects

– In Cecil, most objects are < 16 bytes, so multiple objects fit in a cache line

– In Java, most objects are larger

– Average of 24 bytes [Chilimbi, Davidson & Larus 99]

– Clustering is less useful for large objects

– e.g. Can’t cluster 24 byte objects into 32 byte cache lines

What do we do about large objects?

– Reorganize the layout of individual objects

April 6, 2015 Data Reorganization 12

Reorganization of Large Objects [Chilimbi, Davidson, Larus 99]

Encapsulation hides implementation details

– The compiler can change the layout of an object and the programmer can’t

notice

– This is not true in C or C++ where the programmer can access arbitrary

memory locations through pointers and pointer arithmetic

– Exploit encapsulation to improve data cache behavior

Field Splitting

For objects that are about the size of a cache line

Divide the fields into hot fields and cold fields

f2

cache line

f1 f4f3f2Object f1 f3 f4Object’

hot cold

f4

April 6, 2015 Data Reorganization 13

f1 f4f3f2Object

Field Splitting

Hot fields vs. cold fields

– Hot fields are those that are accessed more frequently

– Hot fields can now be clustered for improved cache behavior

– Access to cold fields is slower: requires an extra level of indirection

f2

cache line

f1 f3 f4Object’

hot cold

Two Computer Science Principles

Optimize the common case

You can solve any problem with an extra level of indirection

April 6, 2015 Data Reorganization 14

f1 f4f3f2Object

Field Splitting (cont)

Identifying hot fields

– Use profiling to gather information on field usage

– Results will suffer if they are input-dependent

Identify potential classes to split

– Only consider classes that are commonly accessed

– Define Live Classes as those whose total field accesses exceed some
threshold:

Ai > LS/ (100C), where LS = total field accesses in program

C = total number of classes

Ai = total number of accesses to fields in class i

f2

cache line

f3 f3 f4Object’

hot cold

April 6, 2015 Data Reorganization 15

Identifying Fields to Split

Additional restrictions on Live Classes

– Must have at least two fields

– Must be larger than 8 bytes

Splitting Heuristic

– Our goal is to identify classes with a large temperature difference

between hot and cold fields

– Why?

– Start by identifying cold fields

– An average field would be accessed Ai/Fi times, where Fi is the

number of fields in class i

– Cold fields are those not accessed at least Ai /(2Fi) times

– All other fields are hot fields

April 6, 2015 Data Reorganization 16

Identifying Fields to Split (cont)

Temperature Difference

– Define temperature difference as follows

TD(classi) = (max(hot(classi)) – 2 cold(classi)) / max(hot(classi))

where hot(classi) and cold(classi) are the number of references to the

hot and cold fields of classi, respectively

– The temperature difference identifies at least one really hot field

– Split those classes whose TD > 0.5

– i.e., Split if max(hot(classi)) > 2 cold(classi)

– Can split an object into multiple cold portions if necessary

Lots of magic numbers in these heuristics

April 6, 2015 Data Reorganization 17

class A {

public int a2;

A() {

}

}

class coldA {

public long a1;

public float a3;

}

class A {

public int a2;

public coldA coldAref;

A() {

coldAref = new coldA();

}

}

class coldA {

public long a1;

public float a3;

coldA() { . . .}

}

coldAref.a3 = . . .;

Field Splitting Transformation

Cold fields are placed in a new object

– Cold members are public to allow access by the hot portion of the object

– Translate references to fields in the cold portion

Example

class A {

protected long a1;

public int a2;

public float a3;

A() {

. . .

a3 = . . .;

}

}

Note: Java now supports nested classes

Does this change the implementation?

April 6, 2015 Data Reorganization 18

class b extends A {

public int b2;

public coldB coldBref;

B() {

coldBref = new coldB();

b2 = coldAref.a1 + 7;

}

}

class coldB {

public long b1;

coldB() { . . .}

}

Field Splitting Transformation (cont)

Example with Inheritance

class B extends A {

public long b1;

public int b2;

B() {

. . .

b2 = a1 + 7;

}

}

Treat class b independently

The fields of class b can also be

split

 If class a has been split, class b

has to have access to class a’s

cold fields

April 6, 2015 Data Reorganization 19

Field Splitting Issues

Persistence

– Objects that are copied to or from external devices cannot be transformed

transparently (e.g. RMI)

Splitting into multiple versions

– Can create multiple versions if program exhibits phase behavior with

different hot and cold access patterns

– Is this beneficial?

Stability of heuristics

– How much do the heuristics change from program to program and from

machine to machine?

April 6, 2015 Data Reorganization 20

Performance Results

Benchmarks

Program Lines of Code Description

cassowary 3,400 Constraint solver

espresso 13,800 Drop-in replacement for Java

javac 25,400 Java to bytecode compiler

javadoc 28,471 Java documentation generator

pizza 27,500 Pizza to bytecode compiler

Opportunity

Significant number of classes are large enough to split: 16%-46%

Of these candidates, 26%-100% have profiles that justify splitting

Cold fields

Variables used to handle errors

Fields for storing limit values

Auxiliary objects not on the critical path

April 6, 2015 Data Reorganization 21

Performance Results

Effects of Splitting

– Access to split classes: 45%-64% of accessed fields

– Reduces class sizes by 17%-23%

– High normalized temperature differences

April 6, 2015 Data Reorganization 22

Performance Results

Miss Rates

Program L2 miss

rate

L2 miss

rate (CL)

L2 miss

rate

(CL+CS)

∆(CL) ∆(CL+CS)

cassowary 8.6% 6.1% 5.2% 29.1% 39.5%

espresso 9.8% 8.2% 5.6% 16.3% 42.9%

javac 9.6% 7.7% 6.7% 19.8% 30.2%

javadoc 6.5% 5.3% 4.6% 18.5% 29.2%

pizza 9.0% 7.5% 5.4% 16.7% 40.0%

Sun E5000

1MB L2 cache

64 byte L2 line size
CL: Chilimbi and Larus cache concious

cache co-location by a copying

garbage collector

CS: Class splitting

April 6, 2015 Data Reorganization 23

Performance Results

Execution Time (seconds)

Program base CL CL+CS ∆(CL) ∆(CL+CS)

cassowary 34.46 27.67 25.73 19.7% 25.3%

espresso 44.94 40.67 32.46 9.5% 27.8%

javac 59.89 53.18 49.14 11.2% 17.9%

javadoc 44.42 39.26 36.15 11.6% 18.6%

pizza 28.59 25.78 21.09 9.8% 26.2%

April 6, 2015 Data Reorganization 24

Limitations of Field Splitting

Field Splitting

– Only works for objects that are about the same size as a cache line

– What do we do about objects that are larger than a cache line?

April 6, 2015 Data Reorganization 25

Reorganization of Larger Objects

Field Reordering

– Order the fields within an object so that those that are accessed together

are stored together

– Why might this pay off?

f3

cache line

f1 f2 f3 f4Object f5 f6 f7

f1 f4f2Object’ f5f6 f7

April 6, 2015 Data Reorganization 26

Field Reordering

Basic Idea

– Use profiling to get information about accesses to fields

– Construct field affinity graphs for each object instance

– A field affinity graph is a weighted graph

– Nodes represent fields

– Edges connect fields that are accessed in close temporal

proximity

– Edge weights are proportional to the frequency of

contemporaneous accesses

– Temporal proximity defined to be 100ms

– Results not sensitive to this parameter (as determined by varying

this value between 50ms and 1000ms)

– Combine all instance affinity graphs for an object into a single affinity

graph

– Use the object’s field affinity graph to reorder fields

April 6, 2015 Data Reorganization 27

f3

cache line size

f1 f2 f4layout f1, f2, f3 and f4 are all neighboring fields

Configuration locality computes for each field the sum of its

weighted affinities with neighboring fields in the layout

Two fields are neighboring fields if they lie within a cache line of

each other in the layout

This notion of neighbors is approximate, since alignment may actually

place two neighboring fields on different cache lines

To account for this uncertainty, the weights are scaled inversely with

the distance between two fields

cache line size

Greedy Field Reordering Heuristic

– Start with the two fields with the highest weighted edge in the field

affinity graph

– Iteratively add to the layout the field that maximizes configuration

locality

April 6, 2015 Data Reorganization 28

Field Reordering Performance

Summary of Performance Results

– Results for commercial C programs (Microsoft SQL)

– Improved cache utilization 8%-25%

– Improved execution time 2%-3%

– No experimental results for Java

Data Reorganization Summary

– Field splitting and field reordering are promising ideas

– Encapsulation provides an opportunity to change data organization

April 6, 2015 Data Reorganization 29

Concepts

Specialization

– Costs and benefits

– Inlining trials

Memory behavior

– Memory system performance is important to overall program performance

Exploiting OO features

– Encapsulation provides freedom to rearrange data

April 6, 2015 Data Reorganization 30

Next Time

Lecture

– Field analysis

Assignment 4

– Due Friday

