
Calvin Lin, The University of Texas at 

Austin

CS380 C Compilers 1

May 6, 2015 Dynamic Optimizations 1

The Semester in Context

Last time

– Dynamic optimizations with DyC

Today

– Dynamo

– DELI

– The big picture
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Dynamic Optimization in Dynamo [Bala, et al. 2000]

Modern systems create obstacles for static compilers

– Objects, small procedures, dynamically linked libraries

Idea

– Dynamically optimize native binaries

– Transparent to the programmer

– No annotations

Mechanism

– Interpret instructions

– Identify hot traces

– Generate native code for traces

– Optimize these traces

– Cache these traces for future use

Slow

Fast
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Trace Optimization

Create straightline code fragments

– Remove unconditional branches on the trace

– Remove redundancies exposed by straightening

– Redundant loads and assignments

– Copy propagation, constant propagation, strength reduction, loop 

invariant code motion, loop unrolling
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Fragment Linking

Fragments are linked in the Fragment Cache

– Reduces number of  exits from the Fragment Cache

– For example, if we create a new fragment B-D-G-I-J-E:
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Performance Results

Methodology

– SPEC int 95

– HP C/C++ commercial compiler

Baselines

– Compared against three baselines

– Intraprocedural optimizations

– Interprocedural optimizations

– Interprocedural optimizations + profiling

Results

– About 9% better with intraprocedural optimizations

– About 11% better with interprocedural optimizations

– No improvement for interprocedural optimizations + profiling
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Related Work

Trace caches

– Hardware mechanism for caching sequences of decoded instructions

rePLay  [Fahs, et al, Micro 2001]

– Pure hardware solution

ICOP  [Chou and Shen ISCA 2000]

– Similar to Dynamo but uses a dedicated co-processor to optimize the 

traces
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Dynamo vs. JITs

Isn’t Dynamo just like a JIT?

– Both monitor the executing code to see what’s hot

– Both cache, link, and execute native optimized code

How are the two different?

– Source language

– JIT:  Java bytecode (language-dependent)

– Dynamo: native binary (machine-dependent)

– Scope

– JIT: works largely on method-by-method basis

– Dynamo: dynamic traces of instructions (no language barriers)

Another difference

– What if we change the source language for Dynamo? Binary emulation
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DELI:  Successor to Dynamo [Micro’02]

DELI: Dynamic Execution Layer Interface

– Generalize the idea of Dynamo

– Observe every instruction in the running program

– Provide a new interface for inspecting, modifying, caching, and 

inserting code

Program observation
BLT (binary level translation)

HAM (hardware abstraction module)

Hardware

Running program
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VMWare

– Full-system emulation

– eg. Run x86 code on a Sparc

– Fast, transparent
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DELI Generalizes a Common Theme

Emulation

Transmeta

– Emulates x86 code on a VLIW core

– Flexible:  can change underlying 

hardware while retaining binary 

compatibility

– Fast, transparent
Running program

Hardware

May 6, 2015 Dynamic Optimizations 16

DELI Generalizes a Common Theme (cont)

DELI

– Can operate transparently as an emulator

– Can also allow native and emulated code to run together

– Facilitates incremental migration across platforms and product 

generations

– e.g. Streaming media application:

– Emulate GUI and application

– Execute native MPEG decoder for fast execution

– e.g. Can emulate OS code for a hardware

– Can integrate into emulated code software patches as native code
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Other Uses of DELI

Code decompression

– Can decompress code before emulation

Security

– Decryption

– Virus detection

– Sandboxing
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Installing Untrusted Code

Software sandboxing

– Allow sharing within an address space without compromising safety

– e.g., Install an untrusted module into the kernel

– System checks that the untrusted module does not overstep its 

boundaries

– Checks branch targets

– Checks addresses of stores

– Provides safety with respect to the memory system

kernel

untrusted code
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Revisiting the question: DELI vs. JITs

Both provide virtualization

– Both provide a fast path and a slow path

– Why? 

– We see two systems principles at work:

– Use an extra level of indirection (virtualization)

– Optimize the common case (native execution for the fast path)

Reduces effort and overhead

The Larger Trend

Success disaster

– Mark Weiser’s vision of ubiquitous computing [1988] is coming true

– Computing is pervasive

– Computing is non-invasive

– Computing is woven into the fabric of our lives

– We rely on huge amounts of hardware and software– whose provenance is 

unknown– to be correct and secure

– We rely on systems whose complexity is overwhelming

Improving software quality

– Many dimensions to consider . . .

May 6, 2015 Dynamic Optimizations 20
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Compatibility

Binary compatibility

– As the legacy code base increases, compatibility becomes increasingly 

important

– Compatibility is a form of quality

– Two ways to get compatibility

– Conform to an existing standard

– Emulation

May 6, 2015 Dynamic Optimizations 22

Correctness

Language trend: “managed code”

– What is managed code?

– Bounds checks

– Sandboxing

– Garbage collection

– . . .

Safety through language support

– Typesafe languages

– Use modern languages and use type theory to prove that all references 

are safe
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Security

Limit access to system resources

– A generalization of software sandboxing

– Can some untrusted code inappropriately access the file system?

– Files can have different access privileges, e.g., read, write, execute

– Can some untrusted code inappropriately access the network?

– e.g., The code can access my digital camera but not my microphone

Privacy

– Does privileged information leak to the outside world?

How can compilers help?

May 6, 2015 Dynamic Optimizations 24

Program Checking

Check for partial correctness

– Does the program terminate?

– Does the program use locks correctly?

– Does the program allow information to leak to the outside world?

– . . .
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Program Checking Techniques

Lexical techniques

– Fast, but very superficial (e.g. Lint)

Type systems

– Example: add tainted type qualifier

– Becoming increasingly sophisticated

Model checking and FSMs

– Precise and detailed analysis

– Suffers from state explosion problem

Formal verification

– Requires full formal specification

– Very expensive and not fully automated

Less precise

More precise

Less expensive

More expensive

DFA
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Fault Tolerance

Can we protect a program against transient faults?

– An increasingly important issue as feature sizes shrink

– Can insert code that performs redundant computations and checks for 

correctness
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Program Understanding

Does a program do what it’s supposed to do?

– Might it do something that is improper?

– Static analysis is useful here

– Folks at the NSA worry about these kinds of things

Is one program derived from another?

– MOSS: uses static analyses

Does a program contain malware?

– Early work:  do simple pattern matching to identify code fragments of 

known malware

– Use semantic pattern matching (like MOSS)
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Protection Against Reverse Engineering

Goal

– Discourage reverse engineering

– More important with the use of bytecodes, which contain considerable 

information

Solutions

– Physically restrict access to code

– Encrypt code– tends to limit portability because of special hardware needs

– Code obfuscation

– Make it more costly to reverse engineer a program
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Program Obfuscation

Name obfuscation

– Scramble the names of identifiers (eg. C Shroud)

Data obfuscation

– Change the way that data is encoded

– e.g. Replace i by 8*i+3

int i = 1; int i = 11;

while (i<1000) { while (i<8003) {

. . . A[i] . . .; . . . A[(i-3)8] . . .;

i++; i += 8;

} }

– e.g. Add indirection to access array elements

– Change the organization of data

– e.g. Convert a 2D array into a 1D array
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Program Obfuscation (cont)

Control obfuscation

– Disguise control flow

– Inline procedures

– Reverse order of loops

– Insert irrelevant statements (dead code)

– Dismantle high level constructs

– e.g. Java has no goto statement, but the bytecode does
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Program Obfuscation (cont)

Control obfuscation

– Opaque Predicates [Collberg, et al,’98] 

– Predicates whose values are opaque to static analysis

– Idea

– Leverage the complexity of alias analysis and shape analysis

– Insert code that manipulates nodes of a tree or a graph

– Maintain invariants about specific pointers into the graph

– eg. p != q

– Use comparisons of these pointers as opaque predicates

if (p==q)

// fake code

else 

// real code
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Code Size

Embedded Code

– Runs on embedded hardware with limited memory

– Code size is an issue

Two solutions

– Code compression

– Requires decompression

– Code compaction

– Produce binaries that are small (yet still executable)

– Standard optimizations on binary code (CSE, constant 
propagation…)

– Code re-factoring

– Find sequences of common code

– Put these into new procedures

– Trades off increased execution time for reduced space
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Concepts

Dynamic compilation

– Runtime constants

– Staged compilation

– Native binary optimization

– Identifying and optimizing commonly executed code fragments

Many dimensions of software quality

– Compatibility

– Correctness

– Security

– Opaqueness

– . . .

Next Time

Final exam

– 9:00am Saturday May 16th GDC 4.304

– You may bring one 8.5”  11” page of notes (double-sided)

Project deadline

– Sunday May 17th, 5:00pm

– Stay tuned to Piazza for details about presentations
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