
Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 1

May 6, 2015 Dynamic Optimizations 1

The Semester in Context

Last time

– Dynamic optimizations with DyC

Today

– Dynamo

– DELI

– The big picture

May 6, 2015 Dynamic Optimizations 2

Dynamic Optimization in Dynamo [Bala, et al. 2000]

Modern systems create obstacles for static compilers

– Objects, small procedures, dynamically linked libraries

Idea

– Dynamically optimize native binaries

– Transparent to the programmer

– No annotations

Mechanism

– Interpret instructions

– Identify hot traces

– Generate native code for traces

– Optimize these traces

– Cache these traces for future use

Slow

Fast

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 2

May 6, 2015 Dynamic Optimizations 3

no

yes

Emit and link
fragment

Dynamo Architecture

Jump to
fragment in

cache

Lookup branch
target in cache

Increment
trace counter

Start-of-trace
condition?

Counter value
exceeds hot

threshold?

Interpret until
taken branch

Create and
optimize new

fragment

End-of-trace
condition?

Fragment Cache

Interpret +

codegen until

taken branch

context

switch

miss

hit no

yes

instructions

yes

no

yes

May 6, 2015 Dynamic Optimizations 4

no

yes

Emit and link
fragment

Dynamo Architecture – Interpretation

Jump to
fragment in

cache

Lookup branch
target in cache

Increment
trace counter

Start-of-trace
condition?

Counter value
exceeds hot

threshold?

Interpret until
taken branch

Create and
optimize new

fragment

End-of-trace

condition?

Fragment Cache

Interpret +
codegen until

taken branchs

context

switch

miss

hit no

instructions

yes

no

identify hot traces

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 3

May 6, 2015 Dynamic Optimizations 5

no

yes

Emit and link
fragment

Dynamo Architecture – Generate and Optimize Traces

Jump to
fragment in

cache

Lookup branch
target in cache

Increment
trace counter

Start-of-trace
condition?

Counter value
exceeds hot

threshold?

Interpret until
taken branch

Create and
optimize new

fragment

End-of-trace
condition?

Fragment Cache

Interpret +
codegen until

taken branch

context

switch

miss

hit no

yes

instructions

yes

noinsert optimized code into Fragment Cache

May 6, 2015 Dynamic Optimizations 6

no

yes

Emit and link
fragment

Dynamo Architecture – Native Execution

Jump to
fragment in

cache

Lookup branch
target in cache

Increment
trace counter

Start-of-trace
condition?

Counter value
exceeds hot

threshold?

Interpret until
taken branch

Create and
optimize new

fragment

End-of-trace

condition?

Fragment Cache

Interpret +
codegen until

taken branch

context

switch

miss

hit no

yes

instructions

yes

no

fast

execution

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 4

May 6, 2015 Dynamic Optimizations 7

no

yes

Emit and link
fragment

Fragment Formation

Jump to

fragment in

cache

Lookup branch
target in cache

Increment

trace counter

Start-of-trace
condition?

Counter value
exceeds hot

threshold?

Interpret until
taken branch

Create and
optimize new

fragment

End-of-trace
condition?

Fragment Cache

Interpret +
codegen until

taken branch

context

switch

miss

hit no

yes

instructions

yes

noinsert optimized code into Fragment Cache

Trace

Dynamic sequence of instructions

May span program boundaries, including

procedure calls, indirect branches (unlike

superblocks)

Fragment

The native code corresponding to a trace

Create and

optimize new

fragment

yes

May 6, 2015 Dynamic Optimizations 8

no

yes

Emit and link

fragment

Identifying Traces

Jump to
fragment in

cache

Lookup branch
target in cache

Increment
trace counter

Start-of-trace
condition?

Counter value
exceeds hot

threshold?

Interpret until
taken branch

End-of-trace

condition?

Fragment Cache

Interpret +
codegen until

taken branch

context

switch

miss

hit no

yes

instructions

no

identify hot traces

Identifying traces

No expensive path or branch profiling

Associate a counter with start-of-trace

points (e.g., target of backward taken

branches)

Trace ends with an end-of-trace condition

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 5

May 6, 2015 Dynamic Optimizations 9

Trace Optimization

Create straightline code fragments

– Remove unconditional branches on the trace

– Remove redundancies exposed by straightening

– Redundant loads and assignments

– Copy propagation, constant propagation, strength reduction, loop

invariant code motion, loop unrolling

H I

J

B

A

C

D

G
E

call

return

CFG

E

A

B

C

D

H

I

J

G

call

return

layout in

application’s

memory

trap to
Dynamo

H

A

C

D

G

J

E

to I

exit stubstoB

Dynamo
fragment

May 6, 2015 Dynamic Optimizations 10

Fragment Linking

Fragments are linked in the Fragment Cache

– Reduces number of exits from the Fragment Cache

– For example, if we create a new fragment B-D-G-I-J-E:

A

C

D

G

H

J

E

to I
trap to

Dynamo

toB

trap to

Dynamo

A

C

D

G

H

J

E

B

D

G

I

J

Eto I

toH

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 6

May 6, 2015 Dynamic Optimizations 11

Performance Results

Methodology

– SPEC int 95

– HP C/C++ commercial compiler

Baselines

– Compared against three baselines

– Intraprocedural optimizations

– Interprocedural optimizations

– Interprocedural optimizations + profiling

Results

– About 9% better with intraprocedural optimizations

– About 11% better with interprocedural optimizations

– No improvement for interprocedural optimizations + profiling

May 6, 2015 Dynamic Optimizations 12

Related Work

Trace caches

– Hardware mechanism for caching sequences of decoded instructions

rePLay [Fahs, et al, Micro 2001]

– Pure hardware solution

ICOP [Chou and Shen ISCA 2000]

– Similar to Dynamo but uses a dedicated co-processor to optimize the

traces

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 7

May 6, 2015 Dynamic Optimizations 13

Dynamo vs. JITs

Isn’t Dynamo just like a JIT?

– Both monitor the executing code to see what’s hot

– Both cache, link, and execute native optimized code

How are the two different?

– Source language

– JIT: Java bytecode (language-dependent)

– Dynamo: native binary (machine-dependent)

– Scope

– JIT: works largely on method-by-method basis

– Dynamo: dynamic traces of instructions (no language barriers)

Another difference

– What if we change the source language for Dynamo? Binary emulation

May 6, 2015 Dynamic Optimizations 14

DELI: Successor to Dynamo [Micro’02]

DELI: Dynamic Execution Layer Interface

– Generalize the idea of Dynamo

– Observe every instruction in the running program

– Provide a new interface for inspecting, modifying, caching, and

inserting code

Program observation
BLT (binary level translation)

HAM (hardware abstraction module)

Hardware

Running program

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 8

VMWare

– Full-system emulation

– eg. Run x86 code on a Sparc

– Fast, transparent

May 6, 2015 Dynamic Optimizations 15

DELI Generalizes a Common Theme

Emulation

Transmeta

– Emulates x86 code on a VLIW core

– Flexible: can change underlying

hardware while retaining binary

compatibility

– Fast, transparent
Running program

Hardware

May 6, 2015 Dynamic Optimizations 16

DELI Generalizes a Common Theme (cont)

DELI

– Can operate transparently as an emulator

– Can also allow native and emulated code to run together

– Facilitates incremental migration across platforms and product

generations

– e.g. Streaming media application:

– Emulate GUI and application

– Execute native MPEG decoder for fast execution

– e.g. Can emulate OS code for a hardware

– Can integrate into emulated code software patches as native code

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 9

May 6, 2015 Dynamic Optimizations 17

Other Uses of DELI

Code decompression

– Can decompress code before emulation

Security

– Decryption

– Virus detection

– Sandboxing

May 6, 2015 Dynamic Optimizations 18

Installing Untrusted Code

Software sandboxing

– Allow sharing within an address space without compromising safety

– e.g., Install an untrusted module into the kernel

– System checks that the untrusted module does not overstep its

boundaries

– Checks branch targets

– Checks addresses of stores

– Provides safety with respect to the memory system

kernel

untrusted code

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 10

May 6, 2015 Dynamic Optimizations 19

Revisiting the question: DELI vs. JITs

Both provide virtualization

– Both provide a fast path and a slow path

– Why?

– We see two systems principles at work:

– Use an extra level of indirection (virtualization)

– Optimize the common case (native execution for the fast path)

Reduces effort and overhead

The Larger Trend

Success disaster

– Mark Weiser’s vision of ubiquitous computing [1988] is coming true

– Computing is pervasive

– Computing is non-invasive

– Computing is woven into the fabric of our lives

– We rely on huge amounts of hardware and software– whose provenance is

unknown– to be correct and secure

– We rely on systems whose complexity is overwhelming

Improving software quality

– Many dimensions to consider . . .

May 6, 2015 Dynamic Optimizations 20

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 11

May 6, 2015 Dynamic Optimizations 21

Compatibility

Binary compatibility

– As the legacy code base increases, compatibility becomes increasingly

important

– Compatibility is a form of quality

– Two ways to get compatibility

– Conform to an existing standard

– Emulation

May 6, 2015 Dynamic Optimizations 22

Correctness

Language trend: “managed code”

– What is managed code?

– Bounds checks

– Sandboxing

– Garbage collection

– . . .

Safety through language support

– Typesafe languages

– Use modern languages and use type theory to prove that all references

are safe

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 12

May 6, 2015 Dynamic Optimizations 23

Security

Limit access to system resources

– A generalization of software sandboxing

– Can some untrusted code inappropriately access the file system?

– Files can have different access privileges, e.g., read, write, execute

– Can some untrusted code inappropriately access the network?

– e.g., The code can access my digital camera but not my microphone

Privacy

– Does privileged information leak to the outside world?

How can compilers help?

May 6, 2015 Dynamic Optimizations 24

Program Checking

Check for partial correctness

– Does the program terminate?

– Does the program use locks correctly?

– Does the program allow information to leak to the outside world?

– . . .

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 13

May 6, 2015 Dynamic Optimizations 25

Program Checking Techniques

Lexical techniques

– Fast, but very superficial (e.g. Lint)

Type systems

– Example: add tainted type qualifier

– Becoming increasingly sophisticated

Model checking and FSMs

– Precise and detailed analysis

– Suffers from state explosion problem

Formal verification

– Requires full formal specification

– Very expensive and not fully automated

Less precise

More precise

Less expensive

More expensive

DFA

May 6, 2015 Dynamic Optimizations 26

Fault Tolerance

Can we protect a program against transient faults?

– An increasingly important issue as feature sizes shrink

– Can insert code that performs redundant computations and checks for

correctness

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 14

May 6, 2015 Dynamic Optimizations 27

Program Understanding

Does a program do what it’s supposed to do?

– Might it do something that is improper?

– Static analysis is useful here

– Folks at the NSA worry about these kinds of things

Is one program derived from another?

– MOSS: uses static analyses

Does a program contain malware?

– Early work: do simple pattern matching to identify code fragments of

known malware

– Use semantic pattern matching (like MOSS)

May 6, 2015 Dynamic Optimizations 28

Protection Against Reverse Engineering

Goal

– Discourage reverse engineering

– More important with the use of bytecodes, which contain considerable

information

Solutions

– Physically restrict access to code

– Encrypt code– tends to limit portability because of special hardware needs

– Code obfuscation

– Make it more costly to reverse engineer a program

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 15

May 6, 2015 Dynamic Optimizations 29

Program Obfuscation

Name obfuscation

– Scramble the names of identifiers (eg. C Shroud)

Data obfuscation

– Change the way that data is encoded

– e.g. Replace i by 8*i+3

int i = 1; int i = 11;

while (i<1000) { while (i<8003) {

. . . A[i] . . .; . . . A[(i-3)8] . . .;

i++; i += 8;

} }

– e.g. Add indirection to access array elements

– Change the organization of data

– e.g. Convert a 2D array into a 1D array

May 6, 2015 Dynamic Optimizations 30

Program Obfuscation (cont)

Control obfuscation

– Disguise control flow

– Inline procedures

– Reverse order of loops

– Insert irrelevant statements (dead code)

– Dismantle high level constructs

– e.g. Java has no goto statement, but the bytecode does

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 16

May 6, 2015 Dynamic Optimizations 31

Program Obfuscation (cont)

Control obfuscation

– Opaque Predicates [Collberg, et al,’98]

– Predicates whose values are opaque to static analysis

– Idea

– Leverage the complexity of alias analysis and shape analysis

– Insert code that manipulates nodes of a tree or a graph

– Maintain invariants about specific pointers into the graph

– eg. p != q

– Use comparisons of these pointers as opaque predicates

if (p==q)

// fake code

else

// real code

May 6, 2015 Dynamic Optimizations 32

Code Size

Embedded Code

– Runs on embedded hardware with limited memory

– Code size is an issue

Two solutions

– Code compression

– Requires decompression

– Code compaction

– Produce binaries that are small (yet still executable)

– Standard optimizations on binary code (CSE, constant
propagation…)

– Code re-factoring

– Find sequences of common code

– Put these into new procedures

– Trades off increased execution time for reduced space

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 17

May 6, 2015 Dynamic Optimizations 33

Concepts

Dynamic compilation

– Runtime constants

– Staged compilation

– Native binary optimization

– Identifying and optimizing commonly executed code fragments

Many dimensions of software quality

– Compatibility

– Correctness

– Security

– Opaqueness

– . . .

Next Time

Final exam

– 9:00am Saturday May 16th GDC 4.304

– You may bring one 8.5” 11” page of notes (double-sided)

Project deadline

– Sunday May 17th, 5:00pm

– Stay tuned to Piazza for details about presentations

May 6, 2015 Dynamic Optimizations 34

