
Calvin Lin, The University of Texas at Austin 1

CS380P Lecture 1 Introduction 1

CS380P Parallel Systems

 Calvin Lin

 January 14, 2013

CS380P Lecture 1 Introduction 2

What Are We Getting Ourselves Into?

 Let’s look at a parallel program

– Consider a simple problem

– Use what many people consider the most convenient programming model
because of its similarity to sequential programming, namely, threads

Calvin Lin, The University of Texas at Austin 2

CS380P Lecture 1 Introduction 3

Multithreading

 Threads
– Each thread has its own process state, but threads share memory and file

state

Process

Thread

Memory state

File state

Process state

Program counter

Stack pointer

G.P. registers

Thread

Process state

Program counter

Stack pointer

G.P. registers

CS380P Lecture 1 Introduction 4

Symmetric Multiprocessors

 Symmetric Multiprocessor
– Processors share physical memory, and all physical memory is equidistant

from all processors
– Multiple threads can execute in parallel on multiple processors, and threads

can communicate through shared memory

Memory

P P P P

Processors

Calvin Lin, The University of Texas at Austin 3

CS380P Lecture 1 Introduction 5

Simple Example

 Count the number of 3’s in an array.

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0v

n=16 count=5

Serial code:

int *v;
int n;
int count;

void count3s () {
count = 0;
for (int i=0; i<n; i++)

if (v[i]==3)
count++;

}

CS380P Lecture 1 Introduction 6

Simple Example: Parallelization

 Each thread is responsible for counting the 3’s in some portion of the
array.

 With n elements and t threads, each thread is responsible for n/t array
elements.

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0v

n=16 t=4

 Thread 0 Thread 1 Thread 2 Thread 3

Calvin Lin, The University of Texas at Austin 4

CS380P Lecture 1 Introduction 7

Simple Example—First Try

int t;

void count3s() {
count = 0;

/* Create t threads */
for (i=0; i<t; i++)

/*
* Each thread calls count3s_thread with
* parameter i
*/

thread_create(count3s_thread, i);

/* Wait for threads to terminate */
for (i=0; i<t; i++)

thread_join();
}

CS380P Lecture 1 Introduction 8

Simple Example—First Try (cont)

void count3s_thread(int id) {

/* Determine portion of array to work on */
int n_per_thread = n/t;
int start = id * n_per_thread;

/* Count the 3’s in my portion of array */
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3)
count++;

}

 This code will not work because of a data race at the increment of count

 Are there any problems with this code?

 extra
 work

Calvin Lin, The University of Texas at Austin 5

CS380P Lecture 1 Introduction 9

Data Races

Definition

A data raceoccurs when two or more threads can modify the same memory

location at the same time

Example
The statement count++ is actually translated into 3 instructions:

1. Load count in register

2. Increment register contents
3. Store register in count

Thread 1 Thread 2

 time

 count = 0

 count = 1

load

increment
store

load
increment

store
 count = 1

CS380P Lecture 1 Introduction 10

Mutual Exclusion

 Solution

– To prevent the data race, we must ensure that at all times at most one
thread is executing the count++ statement

– We refer to such a condition as mutual exclusion, and we refer to such a
statement as a critical section

– Mutual exclusion is achieved with a data object called a mutex

Calvin Lin, The University of Texas at Austin 6

CS380P Lecture 1 Introduction 11

Mutexes

 Definition

– A mutex (also called a lock) is a data object with
– 2 states: locked and unlocked

– 2 methods: lock and unlock

– When a thread locks a mutex, it must wait until the mutex is unlocked,
and then it sets the mutex to the locked state

mutex m;

mutex_lock(m);

mutex_unlock(m);

 critical
 section

CS380P Lecture 1 Introduction 12

Simple Example—Second Try

mutex m;

void count3s_thread(int id) {
/* Count 3’s in portion of array */

for (i=start; i<start+n_per_thread; i++)
if (v[i]==3) {

mutex_lock(m);
count++;
mutex_unlock(m);

}
}

 Does this code work correctly? Yes.

Calvin Lin, The University of Texas at Austin 7

CS380P Lecture 1 Introduction 13

Simple Example—Second Try

mutex m;

void count3s_thread(int id) {
/* Count 3’s in portion of array */

for (i=start; i<start+n_per_thread; i++)
if (v[i]==3) {

mutex_lock(m);
count++;
mutex_unlock(m);

}
}

 Locking overhead is killing performance

Execution time in seconds
on SPARCstation 20

n=8 million, count=2 million

 Performance

 serial try2

 0.91

 5.02

 6.81

 t=1 t=2

CS380P Lecture 1 Introduction 14

Performance Metrics

 Notation

– Ts denotes the execution time of the serial program

– Tp denotes the execution time of the parallel program running on P
processors

 Definition

– Ts/T1 is the efficiency of the parallel program. Efficiency is always less
than 1.0. We want efficiency close to 1.0

– For any number of P processors, T1/TP is the speedupof the parallel
program on P processors. We want speedup close to P. If the speedup on
P processors equals P, we have linear speedup.

 1

 1.00

 2

 0.50

 3

 0.33

 4

 0.25

 P

 T1/TP
 execution

 time

Calvin Lin, The University of Texas at Austin 8

CS380P Lecture 1 Introduction 15

Simple Example—Third Try

int private_count[16];

void count3s_thread(int id) {
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3)
private_count[id]++;

mutex_lock(m);
count += private_count[id];
mutex_unlock(m);

}

Execution time in seconds
on SPARCstation 20

n=8 million, count=2 million

 We have false sharing
 Performance

 serial try2

 0.91 1.15

 t=1 t=2

 0.91

 Each thread counts in a private counter, then combines at the end

 What’s going on?

CS380P Lecture 1 Introduction 16

False Sharing

 Cache consistency

– On SMP’s, caches are kept consistent

– False sharing occurs when 2 or more threads modify different data on the
same cache line

Memory

P P

Cache Cache
 private_count[0]

 private_count[1]

 Thread modifying
 private_count[0]

 Thread modifying
 private_count[1]

 The effort expended to maintain consistency can hurt performance

 private_count[0]

 private_count[1]

Calvin Lin, The University of Texas at Austin 9

CS380P Lecture 1 Introduction 17

Simple Example—Success at Last

struct padded_int {
int value;
char padding[32];

} private_count[16];

void count3s_thread(int id) {
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3)
private_count[id].value++;

mutex_lock(m);
count += private_count[id].value;
mutex_unlock(m);

}
Execution time in seconds

on SPARCstation 20
n=8 million, count=2 million

 Performance

 serial try2

 0.91
 0.51

 t=1 t=2

 0.91

 Allocate padding between private counters

CS380P Lecture 1 Introduction 18

Lessons

 Parallel programming is difficult

– The parallel code can be considerably more complicated than its sequential
counterpart

– There’s often more work to do in the parallel solution

– Getting things right can be tricky

– Getting good performance can be trickier

– Getting good performance can require knowledge of low-level details

 Next class

– Architecture and micro-architecture

Calvin Lin, The University of Texas at Austin 10

CS380P Lecture 1 Introduction 19

Next Class

No Free Lunch

– Read Chapter 1 of the text book for Wednesday

– Read No Free Lunch paper for Wednesday

– Assignment:

– Discuss anything that you found interesting or surprising

– What are the main differences between Chapter 1 and the paper?

– Read Chapter 6 (pp.145-187) for Monday

– Sign up for TACC account

