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What Are We Getting Ourselves Into?

 Let’s look at a parallel program

– Consider a simple problem

– Use what many people consider the most convenient programming model 
because of its similarity to sequential programming, namely, threads
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Multithreading

 Threads
– Each thread has its own process state, but threads share memory and file 

state

Process

Thread
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Process state

Program counter

Stack pointer
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Symmetric Multiprocessors

 Symmetric Multiprocessor
– Processors share physical memory, and all physical memory is equidistant 

from all processors
– Multiple threads can execute in parallel on multiple processors, and threads 

can communicate through shared memory

Memory

P P P P

Processors
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Simple Example

 Count the number of 3’s in an array.

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0v

n=16  count=5

Serial code:

int *v;
int n;
int count;

void count3s () {
count = 0;
for (int i=0; i<n; i++)

if (v[i]==3)
count++;

}
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Simple Example: Parallelization

 Each thread is responsible for counting the 3’s in some portion of the 
array.

 With n elements and t threads, each thread is responsible for n/t array 
elements.

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0v

n=16  t=4

 Thread 0  Thread 1  Thread 2  Thread 3
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Simple Example—First Try

int t;

void count3s() {
count = 0;

/* Create t threads */
for (i=0; i<t; i++)

/* 
* Each thread calls count3s_thread with 
* parameter i
*/

thread_create(count3s_thread, i);

/* Wait for threads to terminate */
for (i=0; i<t; i++)

thread_join();
}
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Simple Example—First Try (cont)

void count3s_thread(int id) {

/* Determine portion of array to work on */
int n_per_thread = n/t;
int start = id * n_per_thread;

/* Count the 3’s in my portion of array */
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3)
count++;

}

 This code will not work because of a data race at the increment of count

 Are there any problems with this code?

 extra
 work
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Data Races

Definition

A data raceoccurs when two or more threads can modify the same memory

location at the same time

Example
The statement count++ is actually translated into 3 instructions:

1. Load count in register

2. Increment register contents
3. Store register in count

Thread 1 Thread 2

 time

 count = 0

 count = 1

load

increment
store

load
increment

store
 count = 1
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Mutual Exclusion

 Solution

– To prevent the data race, we must ensure that at all times at most one 
thread is executing the count++ statement

– We refer to such a condition as mutual exclusion, and we refer to such a 
statement as a critical section

– Mutual exclusion is achieved with a data object called a mutex
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Mutexes

 Definition

– A mutex (also called a lock) is a data object with 
– 2 states: locked and unlocked

– 2 methods: lock and unlock

– When a thread locks a mutex, it must wait until the mutex is unlocked, 
and then it sets the mutex to the locked state

mutex m;

mutex_lock(m);

mutex_unlock(m);

 critical 
 section
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Simple Example—Second Try

mutex m;

void count3s_thread(int id) {
/* Count 3’s in portion of array */

for (i=start; i<start+n_per_thread; i++)
if (v[i]==3) {

mutex_lock(m);
count++;
mutex_unlock(m);

}
}

 Does this code work correctly?  Yes.
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Simple Example—Second Try

mutex m;

void count3s_thread(int id) {
/* Count 3’s in portion of array */

for (i=start; i<start+n_per_thread; i++)
if (v[i]==3) {

mutex_lock(m);
count++;
mutex_unlock(m);

}
}

 Locking overhead is killing performance

Execution time in seconds 
on SPARCstation 20

n=8 million, count=2 million

 Performance

 serial  try2

 0.91

 5.02

 6.81

 t=1  t=2
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Performance Metrics

 Notation

– Ts denotes the execution time of the serial program

– Tp denotes the execution time of the parallel program running on P
processors

 Definition

– Ts/T1 is the efficiency of the parallel program.  Efficiency is always less 
than 1.0.  We want efficiency close to 1.0

– For any number of P processors, T1/TP is the speedupof the parallel 
program on P processors.  We want speedup close to P.  If the speedup on 
P processors equals P, we have linear speedup.

 1

 1.00

 2

 0.50

 3

 0.33

 4

 0.25

 P

 T1/TP
 execution

 time
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Simple Example—Third Try

int private_count[16];

void count3s_thread(int id) {
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3) 
private_count[id]++;

mutex_lock(m);
count += private_count[id];
mutex_unlock(m);

}

Execution time in seconds 
on SPARCstation 20

n=8 million, count=2 million

 We have false sharing
 Performance

 serial  try2

 0.91  1.15

 t=1  t=2

 0.91

 Each thread counts in a private counter, then combines at the end

 What’s going on?
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False Sharing

 Cache consistency

– On SMP’s, caches are kept consistent

– False sharing occurs when 2 or more threads modify different data on the 
same cache line

Memory

P P

Cache Cache
 private_count[0]

 private_count[1]

 Thread modifying
 private_count[0]

 Thread modifying
 private_count[1]

 The effort expended to maintain consistency can hurt performance

 private_count[0]

 private_count[1]
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Simple Example—Success at Last

struct padded_int {
int value;
char padding[32];

} private_count[16];

void count3s_thread(int id) {
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3) 
private_count[id].value++; 

mutex_lock(m);
count += private_count[id].value;
mutex_unlock(m);

}
Execution time in seconds 

on SPARCstation 20
n=8 million, count=2 million

 Performance

 serial  try2

 0.91
 0.51

 t=1  t=2

 0.91

 Allocate padding between private counters
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Lessons

 Parallel programming is difficult

– The parallel code can be considerably more complicated than its sequential 
counterpart

– There’s often more work to do in the parallel solution

– Getting things right can be tricky

– Getting good performance can be trickier

– Getting good performance can require knowledge of low-level details

 Next class

– Architecture and micro-architecture
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Next Class

No Free Lunch

– Read Chapter 1 of the text book for Wednesday

– Read No Free Lunch paper for Wednesday

– Assignment:  

– Discuss anything that you found interesting or surprising

– What are the main differences between Chapter 1 and the paper?

– Read Chapter 6 (pp.145-187) for Monday

– Sign up for TACC account


