
Calvin Lin, University of Texas at Austin 1

CS380P Lecture 4 MPI 1

MPI—Message Passing Interface

 Goals

– Portable application-level interface

– Support efficient communication across a wide variety of machines

– Support heterogeneous computing environments

– Provide a reliable communication interface

 History

– Defined by a large consortium (60 individuals, 40 organizations)

– First standard presented in 1992

– Widely adopted

– Many implementations, including vendor-
specific implementations

– Widely used

– MPI2

– Extensions proposed starting in 1995

CS380P Lecture 4 MPI 2

MPI—Message Passing Interface

 History (cont)

– MPI 2.0 (1997)

– Adds many features

– Process management

– One-sided communication

– Parallel I/O

– Rarely implemented or used

Calvin Lin, University of Texas at Austin 2

CS380P Lecture 4 MPI 3

The Basic Model

 Distributed memory

– Each process sees a local address space

– Processes send messages to communicate with other processes

 SPMD code

– Write one piece of code that executes on each processor

 4 processes

 0 1

 0 1

 0 1

 0 1

 2 3 2 3

 2 3 2 3

CS380P Lecture 4 MPI 4

Basic Model (cont)

 SPMD code

– Write one piece of code that executes on each processor

 SPMD vs. SIMD?

– SIMD is a hardware execution model

– Each instruction executes in lock step

– SPMD is a software execution model– each process executes
independently

 Local View (4 processes)

 0 1

 0 1

 0 1

 0 1

 2 3 2 3

 2 3 2 3

Calvin Lin, University of Texas at Austin 3

CS380P Lecture 4 MPI 5

Execution Models

 SPMD execution

– Execute the same binary on each processor

– Can mimic MIMD execution by using control flow that depends on a
process’rank

 MIMD execution

– Execute different binary on different processors

 How do SPMD and MIMD differ?

– Fundamentally, no difference

– MIMD supports heterogeneous processors

– MIMD has lower control flow overhead

– MIMD has smaller code size

– MIMD code may be easier for a compiler to analyze (?)

CS380P Lecture 4 MPI 6

 #include <stdio.h>

 #include “mpi.h”

 int main(argc, argv)

 int argc;

 char ** argv;

 {

 int rank, value, size;

 MPI_Status status;

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);

 /* do something interesting */
 MPI_Finalize();

 return 0;

 }

MPI Example: Initialization and Cleanup

 This is a communicator, which is a
scoping mechanism for grouping sets
of related communication operators

 The rank is this process’s ID
within this communicator

 The size is this size of this
communicator

Calvin Lin, University of Texas at Austin 4

CS380P Lecture 4 MPI 7

/* do something interesting */
 do {

if (rank==0) {

 scanf (“%d”, &value);

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 else {

 MPI_Recv (&value, 1, MPI_INT, rank-1, 0,

 MPI_COMM_WORLD);

 if (rank < size-1)

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 printf (“Process %d got %d\n”, rank, value);

 } while (value >= 0);

MPI Example: Point-to-Point Communication

 The address of
the data to send

 The length of
the data to send

 The type of
the data

 Message
destination

 Message
tag

CS380P Lecture 4 MPI 8

Point-to-Point Communication

 MPI_Send

– Blocking send– blocks until the message buffer is safe to reuse

 MPI_Recv

– Blocking receive—blocks until the message buffer is safe to reuse

 Will the following code lead to deadlock?

/* Assume two processes */
MPI_Send (&value, 1, MPI_INT, 1-rank, 0, MPI_COMM_WORLD);

MPI_Recv (&value, 1, MPI_INT, 1-rank, 0, MPI_COMM_WORLD);

Calvin Lin, University of Texas at Austin 5

CS380P Lecture 4 MPI 9

/* do something interesting */
 do {

if (rank==0) {

 scanf (“%d”, &value);

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 else {

 MPI_Recv (&value, 1, MPI_INT, rank-1, 0,

 MPI_COMM_WORLD);

 if (rank < size-1)

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 printf (“Process %d got %d\n”, rank, value);

 } while (value >= 0);

MPI Example: Point-to-Point Communication (cont)

 What does
this code do?

CS380P Lecture 4 MPI 10

Round Trip Message Latency

 Latency

– Much copying and synchronization

 Sending Process Receiving ProcessKernel

 send

 recv

Kernel

 latency network

Calvin Lin, University of Texas at Austin 6

CS380P Lecture 4 MPI 11

Cost of Blocking Communication

 Implications
– Lower latency– e.g. MPI_Send() returns when data has been copied to the

kernel

 Sending Process Receiving ProcessKernel

 send

 recv

Kernel

 latency

 wait
 network

CS380P Lecture 4 MPI 12

Cost of Non-Blocking Communication

 Implications

– Lower latency

– Buffer might be overwritten before being copied to the kernel

 Sending Process Receiving ProcessKernel

 isend

 recv

Kernel

 network

 wait

Calvin Lin, University of Texas at Austin 7

CS380P Lecture 4 MPI 13

Collective Communication

 Barriers

– Pure synchronization

 Gather

– Collect data from all processes to a single process

 Scatter

– Spread data from one process to all other processes

 Reductions

– Compute max, min, sum of values that reside on multiple processes

– Can also compute some user-defined function

 Scans

– Parallel prefix

