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MPI—Message Passing Interface

 Goals

– Portable application-level interface

– Support efficient communication across a wide variety of machines

– Support heterogeneous computing environments

– Provide a reliable communication interface

 History

– Defined by a large consortium (60 individuals, 40 organizations)

– First standard presented in 1992

– Widely adopted

– Many implementations, including vendor-
specific implementations

– Widely used

– MPI2

– Extensions proposed starting in 1995
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MPI—Message Passing Interface

 History (cont)

– MPI 2.0 (1997) 

– Adds many features

– Process management

– One-sided communication

– Parallel I/O

– Rarely implemented or used
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The Basic Model

 Distributed memory

– Each process sees a local address space

– Processes send messages to communicate with other processes

 SPMD code

– Write one piece of code that executes on each processor

 4 processes
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Basic Model (cont)

 SPMD code

– Write one piece of code that executes on each processor

 SPMD vs. SIMD?

– SIMD is a hardware execution model

– Each instruction executes in lock step

– SPMD is a software execution model– each process executes 
independently

 Local View (4 processes)
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Execution Models

 SPMD execution

– Execute the same binary on each processor

– Can mimic MIMD execution by using control flow that depends on a
process’rank

 MIMD execution

– Execute different binary on different processors

 How do SPMD and MIMD differ?

– Fundamentally, no difference

– MIMD supports heterogeneous processors

– MIMD has lower control flow overhead 

– MIMD has smaller code size

– MIMD code may be easier for a compiler to analyze (?)
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 #include <stdio.h>

 #include “mpi.h”

 int main(argc, argv)

 int argc;

 char ** argv;

 {

 int rank, value, size;

 MPI_Status status;
 

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

 MPI_Comm_size (MPI_COMM_WORLD, &size);
 

 /* do something interesting */
 MPI_Finalize();

 return 0;

 }

MPI Example:  Initialization and Cleanup

 This is a communicator, which is a 
scoping mechanism for grouping sets 
of related communication operators

 The rank is this process’s ID 
within this communicator

 The size is this size of this 
communicator
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/* do something interesting */
 do {

if (rank==0) {

 scanf (“%d”, &value);

 MPI_Send (&value, 1, MPI_INT, rank+1, 0, 

 MPI_COMM_WORLD);

 }

 else {

 MPI_Recv (&value, 1, MPI_INT, rank-1, 0,

 MPI_COMM_WORLD);

 if (rank < size-1)

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 printf (“Process %d got %d\n”, rank, value);

 } while (value >= 0);

MPI Example:  Point-to-Point Communication

 The address of 
the data to send

 The length of 
the data to send

 The type of 
the data

 Message 
destination

 Message 
tag
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Point-to-Point Communication

 MPI_Send

– Blocking send– blocks until the message buffer is safe to reuse

 MPI_Recv

– Blocking receive—blocks until the message buffer is safe to reuse

 Will the following code lead to deadlock?

/* Assume two processes */
MPI_Send (&value, 1, MPI_INT, 1-rank, 0, MPI_COMM_WORLD);

MPI_Recv (&value, 1, MPI_INT, 1-rank, 0, MPI_COMM_WORLD);
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/* do something interesting */
 do {

if (rank==0) {

 scanf (“%d”, &value);

 MPI_Send (&value, 1, MPI_INT, rank+1, 0, 

 MPI_COMM_WORLD);

 }

 else {

 MPI_Recv (&value, 1, MPI_INT, rank-1, 0,

 MPI_COMM_WORLD);

 if (rank < size-1)

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 printf (“Process %d got %d\n”, rank, value);

 } while (value >= 0);

MPI Example:  Point-to-Point Communication (cont)

 What does 
this code do?
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Round Trip Message Latency

 Latency

– Much copying and synchronization 

 Sending Process Receiving ProcessKernel

 send

 recv

Kernel

 latency  network
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Cost of Blocking Communication

 Implications
– Lower latency– e.g. MPI_Send() returns when data has been copied to the 

kernel

 Sending Process Receiving ProcessKernel

 send

 recv

Kernel

 latency

 wait
 network
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Cost of Non-Blocking Communication

 Implications

– Lower latency

– Buffer might be overwritten before being copied to the kernel

 Sending Process Receiving ProcessKernel

 isend

 recv

Kernel

 network

 wait
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Collective Communication

 Barriers

– Pure synchronization

 Gather

– Collect data from all processes to a single process

 Scatter

– Spread data from one process to all other processes

 Reductions

– Compute max, min, sum of values that reside on multiple processes

– Can also compute some user-defined function

 Scans

– Parallel prefix


