
2/15/2013

Calvin Lin, University of Texas at Austin 1

CS380P Lecture 9 Parallel Architectures 1

Today’s Plan

 Division of Labor

– RISC vs. CISC

– Exposing parallelism

CS380P Lecture 9 Parallel Architectures 2

 CISC: Complex Instruction Set Computers

– VAX, Intel x86, . . .

– Instruction density was important, so architects were motivated to provide
many features, i.e., lots of instructions

 What do the following VAX instructions do?

– MNEGF

– FFS

– INSQHI

– POLYD

 The VAX had over 300 instructions

– Variable length

– Multiple complex addressing modes

– eg. Load indirect off of an offset

Hidden vs. Exposed Technology: RISC vs. CISC

 Move negated floating point

 Find first set bit

 Insert at head of queue, interlocked

 Polynomial evaluation

2/15/2013

Calvin Lin, University of Texas at Austin 2

CS380P Lecture 9 Parallel Architectures 3

 Change in context

– Fewer hand-coded assembly programs

– More compiled code

– Compilers unable to effectively use complex instructions

– Large memories decrease the benefit of compact code

 Collapsing under its own weight

– Increasingly complex control logic ⇒ increasing use of microcode

– Microcode is flexible: essentially “interpreted control unit”

– Easier to implement than hardwired control

– Slower than hardwired control

Problems with CISC Architectures

CS380P Lecture 9 Parallel Architectures 4

Rise of RISC

 RISC: Reduced Instruction Set Computers

– Fixed-length instructions

– Simple addressing modes

– Load/Store architecture

– Only Loads and Stores access memory

 Advantages of RISC?

2/15/2013

Calvin Lin, University of Texas at Austin 3

CS380P Lecture 9 Parallel Architectures 5

Advantages of RISC Architectures

 Regularity and simplicity provide implementation advantages

– Less complex control logic

– Faster clock rates

– Easier to pipeline operations

– Easier to schedule multiple concurrent operations

– Recall pipelined processors. . .

CS380P Lecture 9 Parallel Architectures 6

Scheduling to Improve Performance

 Code Fragment
 inc x

bz $r1, label // if $r1==0, branch to label

 add $r2,$r3,$r4

time

instructio
n

s

 Pipeline Picture

 Bubbles in pipeline decrease throughput

IF

EX MM WB

ID EX MM

IF ID

WB

IF ID EX MM WB inc x
 bz

EX MM WBIF ID

IF ID EX MM WB bz
 inc x

IF ID EX MM WB add

 Smart scheduling can shrink the bubbles

 add

2/15/2013

Calvin Lin, University of Texas at Austin 4

CS380P Lecture 9 Parallel Architectures 7

Advantages of RISC Architectures

 Compilation advantages

– Easier to compile for

– Simpler optimization model

– No variable length instructions

– Long latency instructions (loads, stores, branches) are exposed

– Can re-order code to hide the latency of loads, stores, and branches

 Don’t pay for what you don’t need

CS380P Lecture 9 Parallel Architectures 8

 If you want parallelism

– Design it into the language, in this case, the ISA

 If you want effective use of your system

– Expose costs

– Load/Store architecture exposes costs

– Complex instructions hide costs

 These lessons apply to languages and programming models as well

Lessons from RISC vs. CISC

2/15/2013

Calvin Lin, University of Texas at Austin 5

CS380P Lecture 9 Parallel Architectures 9

Today’s Plan

 Division of Labor

– RISC vs. CISC

– Exposing parallelism

CS380P Lecture 9 Parallel Architectures 10

 Superscalar view of the world

– The ISA is implicitly sequential

– The hardware then dynamically figures out what can execute in parallel

 The problem

– Each level of the system reduces the amount of available parallelism

Parallelism and the System Stack

 Problem

 Language

 Architecture

 Algorithm

 Compiler

 Hardware

 Moore’s Funnel*

 * [Chuck Moore, c 2003]

2/15/2013

Calvin Lin, University of Texas at Austin 6

CS380P Lecture 9 Parallel Architectures 11

Implicitly Sequential Instruction Stream

 Problems
– Compilers can expose parallelism

– Compilers must eventually emit linear code

– Hardware must then re-analyze code to perform OoO execution

– Hardware loses information available to the compiler

– Compiler and hardware can only communicate through the sequential
stream of instructions, so hardware does redundant work

 How can we solve this problem?

 source code compiler

parallelized
code

 machine code hardware

program

FPU’s

CS380P Lecture 9 Parallel Architectures 12

Explicitly Parallel Instruction Stream

 A solution

– Hardware does not need to re-analyze code to detect dependences

– Hardware does not perform OoO execution

 VLIW: Very Long Instruction Word

– Each instruction controls multiple functional units

– Each instruction is explicitly parallel

 source code compiler

parallelized
code

 parallel machine code hardware

program

FPU’s

2/15/2013

Calvin Lin, University of Texas at Austin 7

CS380P Lecture 9 Parallel Architectures 13

VLIW

Basic idea

– Each instruction controls multiple functional units

– Rely on compilers to perform scheduling and to identify parallelism

– Simplified hardware implementations

 Benefits

– Compiler can look at a larger window of instructions than hardware

– Can improve the scheduler even after a chip has been fabricated

 Problems

– Slow compilation times

– No binary compatibility

– Code is implementation-specific

– Difficult for compilers to deal with aliasing and long latencies

CS380P Lecture 9 Parallel Architectures 14

VLIW and IA-64

 VLIW

– Big in the embedded market

– Binary compatibility is less of an issue

– An old idea

– Horizontal microcode

– Multiflow (1980’s)

– Intel i860 (early 1990’s)

 Terminology

– EPIC: Explicitly Parallel Instruction Computer

– New twist on VLIW

– Don’t make code implementation-specific

– IA-64 is Intel’s EPIC instruction set

– Itanium was the “first” IA64 implementation

2/15/2013

Calvin Lin, University of Texas at Austin 8

CS380P Lecture 9 Parallel Architectures 15

Explicitly Parallel Instruction Sets: IA-64

 IA-64 Design Philosophy

– Break the model of implicitly sequential execution

– Use templatebits to specify instructions that can execute in parallel

– Issue these independent instructions to the FPU’s in any order

– (Templates will cause some increase in code size)

– The hardware can then grab large chunks of instructions and simply feed
them to the functional units

– Hardware does not spend a lot of time figuring out order of
execution; hence, simplified hardware control

– Statically scheduled code

– Hardware can then provide a larger number of registers

– 128 (about 4 times more than current microprocessors)

– Number of registers fixed by the architecture, but thenumber of
functional units is not

CS380P Lecture 9 Parallel Architectures 16

IA-64

 A return to hardware “simplicity”

– Revisit the ideas of VLIW

– Simplify the hardware to make it faster

– Spend larger percentage of cycles doing actual work

– Spend larger percentage of hardware on registers, caches, and FPU’s

– Use larger number of registers to support more parallelism

 Engineering goal
– Produce an “inherently scalable

architecture”

– Design an architecture―an
ISA―for which there can be
many implementations (lBM/360)

– This flexibility allows the implementation
to change for “years to come”

 parallel machine code hardware

program

program

2/15/2013

Calvin Lin, University of Texas at Austin 9

CS380P Lecture 9 Parallel Architectures 17

Two Key Performance Bottlenecks

 Branches

– Modern microprocessors perform good branch prediction

– But when they mispredict, the penalty is high and getting higher

– Penalties increase as we increase pipeline depths

– Estimates: 20-30% of performance goes to branch mispredictions[Intel98]

– Branches also lead to small basic blocks, which restrict latency hiding
opportunities

 Memory latency
– CPU speed doubles every 18 months (60% annual increase)

– Memory speed increase about 5% per year

CS380P Lecture 9 Parallel Architectures 18

−Control dependences inhibit parallelism

− Don’t know whether to execute
instr3 or instr5 until the cmpis
completed

instr1

instr2

. . .

P1,P2 ←←←← cmp(r2,0)

(P2)jump else

instr3

instr4

jump Exit

instr5

instr6

. . .

instr7

Branches Limit Performance

if

then

else

2/15/2013

Calvin Lin, University of Texas at Austin 10

CS380P Lecture 9 Parallel Architectures 19

 Idea

−Add a predicate flag to each instruction

− If predicate is true, the instruction is
executed

− If predicate is false, the instruction is
not executed

− Predicates are simply bits in a register

−Converts control flow into data flow

− Exposes parallelism

− With predicate flags, instr3 – instr7 can
all be fetched in parallel

instr1

instr2

. . .

P1,P2 ←←←← cmp(r2,0)

(P2)jump else

(P1)instr3

(P1)instr4

jump Exit

(P2)instr5

(P2)instr6

. . .

instr7

Predicated Execution

if

then

else

This is calledif-conversion

 Benefits?

−Fewer branches (fewer mispredictions)

−Larger basic blocks

−More parallelism

CS380P Lecture 9 Parallel Architectures 20

The Memory Latency Problem

 Memory Latency
– Writes can be done out of order and can be buffered
– Loads are the problem:processor must wait for loads to complete before

using the loaded value
– Standard latency-hiding trick:issue non-blocking load as early as possible

to hide latency

 The Problem
– Loads typically issued at beginning

of basic block
– Can’t move the Loadoutside the

basic block
– If the Loadwere to cause an

exception when the basic block
is not executed, then the early
Loadcauses an erroneous
exception

instr1

instr2

. . .

(P2)jump else

Load

instr3

jump Exit

2/15/2013

Calvin Lin, University of Texas at Austin 11

CS380P Lecture 9 Parallel Architectures 21

 Benefits?

−More freedom to move code– can now move Loads above branches as
long as the check is in the original basic block

−Complication: What happens if chk.sis issued without a corresponding
load.s?

− This is clearly an error, so we need to be careful about where we
move the load.s

(Control) Speculative Loads

 Split-phase operation

– Issue the load (load.s) as early as you
wish

– Detect any exception and record it
somewhere with the target of the load

– Can later check to see whether the load
completed successfully: chk.s

load.s r13

instr1

instr2

jump P2

load

instr3

chk.s r13

. . .

