

Copyright

by

Anjana Subramanian

2019

The Thesis Committee for Anjana Subramanian

Certifies that this is the approved version of the following Thesis:

Advancing Value Prediction

APPROVED BY

SUPERVISING COMMITTEE:

Calvin Lin, Supervisor

Erez Mattan

Advancing Value Prediction

by

Anjana Subramanian

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2019

Dedicated to my loving family.

 v

Acknowledgements

Firstly, I’d like to thank my advisor, Prof. Calvin Lin for his guidance and

encouragement. He has been influential in helping me discover my interests for computer

architecture research. I’m thankful to him for this truly enriching learning experience.

I’d like to thank Prof. Erez Mattan who readily agreed to be the reader for my

thesis despite his busy schedule.

I’d also like to thank Akanksha Jain, a postdoctoral researcher in Prof. Lin’s

group. From helping me submit jobs on the cluster to discussing advanced research ideas,

she has played a key role in this journey.

I’d like to thank Pawan Joshi, a fellow researcher, for the numerous discussions

we have had on value prediction. I’d also like to acknowledge how weekly meetings with

the larger research group has helped me understand computer architecture research better.

Finally, I am thankful to Amma, Pappa, Karthik and Aayu. If not for their love, I

would not be here.

 vi

Abstract

Advancing Value Prediction

Anjana Subramanian, M.S.E

The University of Texas at Austin, 2019

Supervisor: Calvin Lin

Read after write dependencies form a key bottleneck in single thread

performance. Value prediction [9][10][18] is a speculative technique that overcomes

these dependencies by predicting results of instruction execution, thereby preventing

dependent instructions from stalling. Usually, the penalties for value mispredictions are

extremely high. As a result, value predictors have evolved to prioritize accuracy over

coverage. To improve upon the state-of-the-art, our goals are: (i) to develop more

powerful prediction mechanisms that have a better accuracy-coverage tradeoff (ii) to

maximize performance gains obtained from correct predictions. We present two

independent pieces of work that address each of these.

To achieve the first goal, we design a Heterogeneous Context-based Value

Predictor (HCVP) that combines the use of branch history with value history to represent

program context information. We demonstrate that this combination provides better

predictability than using either of them individually and that it allows for the use of

relatively short value history lengths that provide more coverage than very long ones.

HCVP does not maintain speculative value histories as it more tolerant to the update

 vii

problem that occurs when back to back instances of the same instruction are predicted.

Our predictor performs better than the state-of-the-art value predictors (E VTAGE and

DFCM++) to achieve a 29% speedup over a baseline with no value prediction. When

combined with the E Stride predictor, it achieves a speedup of 46%, which is 9% higher

than that achieved by E VTAGE E Stride (EVES), the winner of the First Championship

Value Prediction.

To achieve the second goal, we exploit the fact that some instructions are more

performance critical than others. We categorize instructions by various parameters to find

one or more classes of instructions that provide high performance benefits for correct

predictions. We find that loads, address producing instructions, and high fanout

instructions are extremely beneficial for value prediction.

 viii

Table of Contents

List of Tables .. xi

List of Figures .. xii

Chapter 1: Introduction ...1

3.1 Goals ...2

3.2 Our Solution ..3

3.3 Contributions ..4

Chapter 2: Related Work ...7

2.1 Computational Predictors ...8

2.1.1 Last Value Predictor (LVP) ...8

2.1.2 Stride Predictor ..8

2.1.3 2-Delta Stride Predictor ...8

2.1.4 gDiff Predictor ...9

2.1.5 Value Estimator ...9

2.2 Context-Based Predictors ...9

2.2.1 Finite Context Method (FCM) Predictor ...9

2.2.2 Differential Finite Context Method (DFCM) Predictor10

2.2.3 Value TAGE (VTAGE) Predictor ...10

2.2.3 Differential Value TAGE (VTAGE) Predictor11

2.3 Hybrid Predictors ..11

2.3.1 Enhanced VTAGE Enhanced Stride (EVES) Predictor11

2.3.2 Differential Finite Context Method++ (DFCM++) Predictor12

 ix

Chapter 3: Improved Context-Based Value Prediction ..13

3.1 Introduction ...13

3.2 Predictability of Context Based Predictors ...15

3.2.1 Divergence ...16

3.2.2 Design Space Exploration ..18

3.2.2.1 Value History: PC Localized Learning, PC Local

Application ...18

3.2.2.2 Differential Value History: PC Localized Learning, PC

Local Application...18

3.2.2.3 Value History: PC Localized Learning, Global Application ...19

3.2.2.4 Differential Value History: PC Localized Learning, Global

Application ...19

3.2.2.5 Branch History: Value Prediction ..20

3.2.2.6 Branch History: Differential Value Prediction20

3.2.2.6 Other Variants ..21

3.2.2.7 Differential Values (Strides) vs Values21

3.2.2.8 Value History vs Branch History ...24

3.2.3 Exploring Tradeoffs Across Value History Lengths27

3.2.3.1 Accuracy vs Coverage ...27

3.2.3.2 Divergence Handling Capability..30

3.3 Improving Predictability using Heterogeneous Context Information35

3.3.1 Combining Branch History with Value History35

3.3.2 Evaluating Predictability ..37

3.3.2.1 Accuracy vs Coverage ...37

3.3.2.2 Divergence Handling Capability..39

 x

3.4 The Update Problem ...42

3.5 Evaluation ...46

3.5.1 Methodology ..46

3.5.2 Comparison with Other Predictors...46

3.5.3 Sensitivity to Value History Length ..48

3.5.4 Sensitivity to Branch History Length ..49

3.5.4 Sensitivity to Confidence Threshold ..50

3.5.6 Hardware Complexity ..51

3.6 Conclusions ...52

3.7 Future Work ..52

Chapter 4: Maximizing Value Prediction Gains ..54

4.1 Introduction ...54

4.2 Methodology ...58

4.2 Results ...60

4.2.1 Classification by Latency of Instruction Execution60

4.2.2 Classification by Instruction Type (opcode) ..63

4.2.3 Classification based on whether values are addresses65

4.2.4 Classification based on Instruction Fanout ..68

4.2.5 Classification based on Distance to Nearest Dependent Instruction ...70

4.3 Conclusions and Future Work ..71

References ...73

Vita ..76

 xi

List of Tables

Table 1: Terminology describing coverage benefits and losses 32

Table 2: Terminology describing inaccuracies dealt / not dealt with 33

Table 3: Additional Terminology describing new coverage benefits 40

Table 4: Execution Latency for Different Instruction Types .. 61

Table 5: Latencies based on Memory Access Type.. 61

Table 6: Classification by Execution Latency .. 61

Table 7: Classification based on whether instructions produce addresses 66

 xii

List of Figures

Figure 1: Generic Structure of a Context-based Predictor .. 16

Figure 2: Update Mechanism for a Context-based Predictor .. 16

Figure 3: Value History: PC Localized Learning, PC Local Application 18

Figure 4: Differential Value History: PC Localized Learning, PC Local Application 19

Figure 5: Value History: PC Localized Learning, Global Application 19

Figure 6: Differential Value History: PC Localized Learning, Global Application 20

Figure 7: Branch History: Value Prediction ... 20

Figure 8: Branch History: Differential Value Prediction .. 21

Figure 9: Evaluation of Differential Values vs Values ... 23

Figure 10: Accuracy Comparison for Predictors using different context information 26

Figure 11: Coverage Comparison for Predictors using different context information 26

Figure 12: Speedup Comparison for Predictors using different context information 26

Figure 13: Accuracy, Coverage and Speedup for Different Value History Lengths 28

Figure 14: Effects of increasing confidence threshold for a value history length of 16 ... 30

Figure 15: Value History: Coverage benefits and losses .. 34

Figure 16: Value History: Inaccuracies dealt/not dealt with .. 35

Figure 17: Predictor design that combines both Value History and Branch History........ 36

Figure 18: Accuracy comparison when branch history is combined with value history .. 37

Figure 19: Coverage comparison when branch history is combined with value history .. 38

Figure 20: Speedup comparison when branch history is combined with value history.... 39

file://///Users/anjanasubramanian/UT_Austin/Academics/Spring%202019/Thesis/Final_Documentation/AnjanaSubramanian_Thesis.docx%23_Toc8152000
file://///Users/anjanasubramanian/UT_Austin/Academics/Spring%202019/Thesis/Final_Documentation/AnjanaSubramanian_Thesis.docx%23_Toc8152007

 xiii

Figure 21: Comparison of coverage benefits and losses ... 41

Figure 22: Comparison of inaccuracies dealt/not dealt with .. 42

Figure 23: Drop in performance when the oracle update mechanism is replaced with an

actual update ... 43

Figure 24: Overall performance when predictions are not made for instructions that share

the same signature with one more inflight instructions .. 45

Figure 25: Speedup comparison across standalone predictors ... 47

Figure 26: Speedup comparison across hybrid predictors .. 48

Figure 27: HCVP Speedup comparison for varying value history lengths 48

Figure 28: HCVP Speedup comparison for varying branch history lengths 49

Figure 29: HCVP Speedup comparison for varying confidence thresholds 50

Figure 30: HCVP Coverage comparison for varying confidence thresholds 51

Figure 31: Variation in speedup by applying perfect value prediction on 10% of the

instructions chosen randomly ... 56

Figure 32: Classification by Instruction Latency: Coverage .. 62

Figure 33: Classification by Instruction Latency: Speedup .. 63

Figure 34: Classification by Instruction Latency: Class Criticality 63

Figure 35: Classification by Instruction Type: Coverage ... 64

Figure 36: Classification by Instruction Type: Speedup... 64

Figure 37: Classification by Instruction Type: Class Criticality 65

Figure 38: Classification based on whether values are addresses: Coverage 67

Figure 39: Classification based on whether values are addresses: Speedup 67

 xiv

Figure 40: Classification based on whether values are addresses: Class Criticality 68

Figure 41: Classification based on instruction fanout: Coverage 69

Figure 42: Classification based on instruction fanout: Speedup 69

Figure 43: Classification based on instruction fanout: Class Criticality........................... 69

Figure 44: Classification based on distance to nearest dependent instruction: Coverage 70

Figure 45: Classification based on distance to nearest dependent instruction: Speedup .. 71

Figure 46: Classification based on distance to nearest dependent instruction: Class

Criticality .. 71

 1

Chapter 1: Introduction

As the benefits of parallel computing are limited by the parallelizability of

software [13] and the migration of the software industry towards parallel application

development has been slow, the need for improving single thread performance continues.

To that end, numerous microarchitectural techniques such as pipelining, out-of-order

execution, branch prediction and superscalar architectures have been explored. The

primary motivation behind these techniques is to improve performance by increasing

instruction-level parallelism (ILP). Despite enhancing hardware designs to achieve ILP,

read after write (RAW) dependencies have to be strictly enforced in most cases. These

dependencies occur when source values of instructions are dependent on the execution

results of previous instructions. Under such circumstances, instructions stall and

execution is serialized. This creates a severe bottleneck in processor performance.

Value prediction [9] [10] [18] is a speculative technique that can potentially

overcome RAW dependencies by predicting results of instructions. These predicted

results can be used as source values for dependent instructions, thereby preventing them

from stalling. This can shorten critical paths in program execution and can lead to better

performance of sequential code. To enforce correctness, a mechanism to recover from

incorrect predictions is required.

Perfect value prediction performed on a set of 135 traces from the CVP

simulation infrastructure [7] achieves a speedup of 2.5 times over a baseline with no

value prediction.

Although value prediction was first explored in the 1990s [9] [10] [18], it has not

been adopted widely. Key concerns have been with respect to accuracy of predictions and

complexity of the pipeline required to support value prediction. However, recent work [1]

 2

[3] introduces predictor designs with extremely high accuracy (~99%), allowing for the

use of simple misprediction recovery mechanisms that impose high penalties. Further,

recent work also demonstrates that value prediction can pave the way for an out-of-order

engine that is less aggressive, thereby reducing pipeline complexity [6]. These

developments have generated renewed interest in pursuing value prediction as a potential

technique to improve hardware performance.

3.1 GOALS

Value prediction is generally considered to be a difficult problem because the

average performance gain per prediction tends to be low while misprediction penalties

tend to be extremely high (~5-50 cycles) [1]. The choice of misprediction recovery

mechanism is usually a tradeoff between hardware complexity and the cost (latency) of

misprediction. To simplify complexity, a pipeline flush is preferred where all instructions

following the mispredicted one are re-fetched and re-executed. To deal with these

challenges, predictor designs have focused on achieving extremely high accuracies

(~99%) [1] [3]. In this process, we believe that predictors have resorted to conservative

mechanisms that compromise on coverage to achieve the desired accuracy.

For instance, the recent DFCM++ [8] predictor tries to capture program context

using PC localized value histories. The predictor learns correlated value patterns and

predicts that the same pattern will occur again when a similar value history is observed.

However, it uses very long value history lengths of 32 and 64. We demonstrate that the

ability to identify patterns and predict the values of a larger number of instructions (i.e.,

coverage) tends to be low at these history lengths, owing to the large training times

involved. However, they are preferred since they provide improved accuracy and hence

better speedup.

 3

Another instance is the VTAGE predictor [5] that chooses to use global branch

history over PC localized value history. Predicting back to back instances of the same

instruction can lead to inaccuracies when value history is used. VTAGE avoids this

problem by using global branch history instead. However, we demonstrate that branch

history is less powerful than value history in detecting patterns. In other words, the use of

branch history trades off coverage for accuracy.

One final example is the use of confidence counters in predictor designs. These

counters are trained based on the correctness of speculated values stored in the table. The

stored values are used only when the counters saturate, indicating high confidence in

prediction. While the counters are still training, coverage is lost. However, accuracy is

prioritized and hence predictors are usually designed to take this hit in coverage.

In summary, the high bar for accuracy has caused the evolution of value predictor

design to take a more defensive approach. Our goal is to improve the aggressiveness of

value predictors through two techniques:

• Improve predictability so that sufficient accuracy can be achieved without hurting

coverage

• Increase the gains per correct prediction so that the bar for accuracy is lowered

This thesis presents two independent pieces of work in an attempt to target each

of these goals.

3.2 OUR SOLUTION

In our first piece of work, we design a predictor with improved prediction

capabilities. We use a systematic approach to explore predictability limits when either

branch history or value history is used to capture program context. We also explore

predictability limits across context lengths. For a value to be predictable,

 4

• it has to follow a context enough number of times to build prediction confidence

• it has to follow the context continuously without being interrupted by another value

that follows the same context. (We use the term divergence to describe a situation

where the same context is followed by different values at different times).

Based on these criteria, we establish that PC localized value histories of lengths 4

to 16 provide the best predictability (i.e., the best coverage and divergence handling

capability). However, it does not translate into the best speedup as a result of insufficient

accuracy.

We explore the use of branch history combined with value history and

demonstrate that it achieves better accuracy and divergence handling capabilities without

significant loss in coverage when compared to using value history alone. We also

demonstrate that it has better tolerance to the update problem that arises when different

instances of the same static instruction have to be predicted back to back. We introduce

the Heterogeneous Context-based Value Predictor (HCVP) designed based on these

observations and empirically compare against other state-of-the-art value predictors.

In our second piece of work, we identify one or more instruction classes that

provide high average performance gain per correct prediction. To study available

headroom, we categorize instructions using different parameters and apply perfect value

prediction on each of them. We find that some instruction classes provide high

performance benefit per correct prediction. Among them, a few provide sufficient

coverage while a few others are so few in number that it is not worthwhile pursuing them

exclusively.

3.3 CONTRIBUTIONS

This thesis makes the following contributions:

 5

• We systematically evaluate the predictability of using either value history or branch

history to represent program context information. While we identify that PC localized

value history with global application provides the best predictability, we also

illustrate how it falls short of its true potential due to inaccuracy and inability to deal

with diverging value streams.

• We demonstrate that combining the use of branch history with value history improves

its divergence handling capability and accuracy resulting in better predictability1 and

performance. It also allows for the aggressive use of shorter value history lengths that

provide better coverage. We introduce the Heterogenous Context-based Value

Predictor (HCVP) based on these principles.

• We experimentally demonstrate that value histories localized by both PC and branch

history are more tolerant to the update problem as opposed to using value histories

localized by PC alone. As a result, HCVP does not maintain any speculative value

histories.

• We show that HCVP performs better than the current state-of-the art value predictors

(E VTAGE and DFCM++), providing a speedup of 29% against a baseline with no

value prediction. When combined with the E Stride predictor, it achieves a speedup of

about 46% which is 9% higher than that of E VTAGE with E Stride (EVES), the

winner of the First Championship Value Prediction (CVP-1).

1 Some of the conclusions on improved predictability using heterogenous context information were arrived

at independently by Pawan Joshi in his thesis as well. While this thesis derives its conclusions from a

systematic analysis of the gaps in performance between realistic and oracle divergence handling

capabilities, Joshi’s work derives them based on the combined benefits of using EVES and DFCM++ and

based on a “variance” metric that roughly estimates divergence.

 6

• In the second piece of work, we empirically find that loads, address producing

instructions, and high fanout instructions are extremely beneficial for value

prediction. While some of these ideas have been known before, we quantify tradeoffs

in coverage and average benefit per correct prediction. Until now, high fanout

instructions have not been specifically targeted for value prediction.

 7

Chapter 2: Related Work

This chapter provides an overview of prior work in value prediction. Value

prediction was introduced independently by Lispasti et al. [9] [18] and Gabbay and

Mendelson [10]. It is based on the observation that programs exhibit value locality. In

other words, results produced by instructions form a predictable pattern. For instance, an

instruction can produce values that are constants or form a strided pattern. Value

predictors have been designed to make predictions based on patterns observed in the past.

Broadly, value predictors can be classified into two categories – computational

predictors and context-based predictors [14]. Computational predictors compute values

by applying a function to previously seen values. Based on previous history, they learn

when it may be suitable to apply one or more functions to predict a value. Context-based

predictors memorize patterns. They learn values that follow a certain context and predict

the same value when the context repeats. Some of the state-of-the-art predictors are

hybrid predictors that combine a context-based predictor with a computational predictor

[3] [8].

Most value predictors employ confidence mechanisms to achieve high prediction

accuracy [3] [8]. This is usually done by maintaining confidence counters for each

prediction stored in the predictor tables. These counters are trained based on whether the

stored predictions match the actual execution results. The stored predictions are used only

when the confidence counters saturate indicating high confidence in prediction.

Section 2.1 describes a few computational predictors while section 2.2 describes a

few context-based ones. Section 2.3 describes the hybrid predictors.

 8

2.1 COMPUTATIONAL PREDICTORS

2.1.1 Last Value Predictor (LVP)

This is the simplest kind of predictor [18]. For a given instruction PC, it predicts

that the value will be same as the value seen during the previous instance of the

instruction. In other words, it performs the identity operation on the last seen value. The

predictor consists of a table that is indexed using the lower bits of the instruction address.

Each entry contains a tag and a last value. The higher bits of the instruction address are

compared against the tag. If a match is found, the corresponding last value is used as the

prediction. After the instruction completes execution, the last value of the corresponding

entry in the table is updated.

2.1.2 Stride Predictor

The stride predictor [10] table is similar to the table used by the Last Value

Predictor, except that entries contain an additional field called stride. The stride value is

added to the last seen value to obtain a prediction. Once an instruction completes

execution, the stride field is updated by computing the difference between the current

result and the last value observed for the instruction. The last value field is then updated

to reflect the current result. This predictor is useful for predicting values of instructions

that exhibit a strided pattern. Examples include loop iteration variables or indexes used

for sequential array accesses.

2.1.3 2-Delta Stride Predictor

The 2-delta stride predictor [21] is a variation of the stride predictor described

above. Each entry consists of two strides instead of one. The first stride is updated always

whereas the second stride is updated only when there is no change in value for the first

 9

stride. The second stride is used for prediction. The predictor is designed this way to

reduce mispredictions for loop iteration variables when new instances of the loops begin.

For every new instance of a loop, the baseline stride predictor will encounter two

mispredictions – one for the first iteration and one for the second iteration. 2-Delta Stride

Predictor will mispredict only for the first iteration.

2.1.4 gDiff Predictor

Unlike the previous predictors, the gDiff predictor [22] looks at global value

history to make a prediction. It computes the differences between the result of an

instruction and the results of the last n instructions. If any of the computed differences

match a previously seen difference, then the matching difference along with the last seen

value of the corresponding instruction in global history is used to make a prediction.

2.1.5 Value Estimator

The Value Estimator [8] tries to infer operations (like addition or subtraction)

based on past history of source and destination values corresponding to instruction PCs. It

applies the inferred operation on the source operands to compute the resultant value. In

case the source operands are not ready, it applies the same mechanism to infer source

values by looking at their producer instructions.

2.2 CONTEXT-BASED PREDICTORS

2.2.1 Finite Context Method (FCM) Predictor

FCM [19] is a two-level predictor that uses local value history to represent

context information. The first level table is called as the Value History Table (VHT) and

is indexed using the instruction address. Each entry in this table contains the last n values

observed for the given instruction. In other words, they contain the local value history.

 10

These values are hashed to index into a second level table called as the Value Prediction

Table (VPT). The Value Prediction Table consists of the actual prediction. After the

instruction executes and the result is known, the corresponding value history and

prediction are updated.

2.2.2 Differential Finite Context Method (DFCM) Predictor

DFCM [15] is a variant of FCM that tracks differences between the values instead

of the values themselves. An entry in the VHT consists of a local history of differences.

A Last Value Table (LVT) is maintained to keep track of the last seen result for a given

instruction address. An entry in the VPT Table contains a difference that needs to be

added to the last seen value to obtain a prediction.

2.2.3 Value TAGE (VTAGE) Predictor

VTAGE [5] derives from the popular ITTAGE Branch predictor [12] and

leverages similarities between branch target prediction and value prediction. It uses

instruction address and global branch history to represent context information. The

predictor consists of a base table and several tagged tables. The base table is indexed

using the instruction address whereas the tagged tables are indexed using a hash of the

instruction address and global branch history. Longer branch history lengths are used to

index higher order tables. Each entry in the base table and tagged tables stores the last

seen value for the given context and a confidence counter. The confidence counter is a

saturating counter that is incremented for correct predictions and decremented for wrong

ones. Predictions are made only when the confidence counter values are high. In addition

to these, the entries in the tagged tables consist of a partial tag and a useful counter. The

 11

partial tag is used to match higher order bits of the indexing value. The useful counter is

used by the replacement policy when entries have to be evicted.

At prediction time, all the tables are searched in parallel. A matching component

that uses the longest branch history is used for the prediction.

2.2.3 Differential Value TAGE (VTAGE) Predictor

The DVTAGE predictor [1] modifies the tables in the TAGE to store strides

instead of values. It also augments it with a Last Value Table (LVT). It predicts values by

adding the predicted stride with the last value for the given PC. It maintains a speculative

window to keep track of last values of inflight instructions.

2.3 HYBRID PREDICTORS

2.3.1 Enhanced VTAGE Enhanced Stride (EVES) Predictor

EVES [3] is the winner of the First Championship Value Prediction [7] in all

categories (i.e., 8kB, 32kB and unlimited). It is a hybrid predictor that combines

enhanced versions of VTAGE and Stride. Some of the enhancements to VTAGE include

the addition of partial tags to the base table and compression of data values. Other

enhancements include careful confidence management and entry allocation based on

expected average performance benefit of a correct prediction.

A key enhancement to the Stride Predictor includes the computation of the

predicted value as a function of not only the last value and the predicted stride, but also of

the number of inflight instructions for the given instruction address.

The VTAGE component is preferred over the Stride component when both of

them provide confident predictions.

 12

2.3.2 Differential Finite Context Method++ (DFCM++) Predictor

The DFCM++ Predictor [8] was the runner up in the unlimited size category of

the first Championship Value Prediction [7]. It augments the DFCM predictor [15] with

several enhancements. It maintains speculative histories of differences and speculative

last seen values to prevent mispredictions due to the delay between making a prediction

and knowing the actual result. It also maintains histories of multiple lengths and chooses

between them dynamically. To keep track of instruction PCs whose values are frequently

mispredicted, it maintains a PC Blacklister.

It combines this component with a Value Estimator and prioritizes the latter if it

can make a confident prediction.

 13

Chapter 3: Improved Context-Based Value Prediction

3.1 INTRODUCTION

Majority of the state-of-the-art value predictors are context-based [1] [3] [5] [8].

They learn values that follow a certain context and predict them when the same context

repeats [14]. Context-based predictors differ in the information they use to represent

program context. Broadly speaking, there have been two categories – ones that use

branch history [1] [3] [5] and ones that use value history [8] [15] [19]. Like any other

design choice in computer architecture, there are tradeoffs in using either one of these for

prediction. For instance, value history-based predictors are more suited to capture any

arbitrarily correlated value pattern while branch history-based predictors are generally

limited to capturing constant or strided patterns. As a result, the former tends to have

greater coverage than the latter. On the other hand, predicting using value history requires

knowledge of recent values. Some of these values may not be available if the

corresponding producer instructions have not completed execution. We call this as the

update problem because it results from the predictor state not being updated in time to

reflect correct value history. Branch history-based predictors don’t suffer from the update

problem [5] as they rely on recent branch history that is always available based on actual

or predicted branch outcomes. A mispredicted branch is not a concern as a pipeline flush

occurs causing instructions to be re-fetched. In other words, branch history-based

predictors do not suffer from prediction inaccuracy due to non-availability of recent

values.

In this chapter, we explore the predictability and performance impacts of using

branch history or value history to represent context information. We explore different

context lengths and quantify tradeoffs in accuracy, coverage and speedup. Our key

 14

contribution is in demonstrating that a combination of branch history with value history

works better than either one of them. It helps achieve the coverage benefits of using value

history while being more tolerant to the update problem. Based on these observations, we

introduce the Heterogenous Context-based Value Predictor (HCVP) that uses value

history localized by both PC and branch history.

While this work focuses on improving context representation for better

predictability and performance, it does not focus on the practicality of predictor

implementation with respect to storage budget. We assume that we have infinite storage

budget and evaluate against the state-of-the-art by selecting winning entries from the

unlimited storage track of the First Championship Value Prediction (CVP-1) [7]. We

consider limiting predictor table sizes as future work.

Our key contributions can be summarized as follows:

1. We explore the design space for context-based predictors to evaluate predictability

limits. We demonstrate that the use of PC localized value history provides the best

predictability among known ways to represent context information in current value

predictors.

2. We demonstrate that the use of value history for prediction loses out on significant

coverage and accuracy due to divergences in value streams. There is further potential

to improve performance if divergences can be dealt with more effectively.

3. We demonstrate that a combination of branch history and value history provides

better divergence handling capabilities than using value history alone. It achieves

improved accuracy with negligible drop in overall coverage, despite having to train

over more context information.

 15

4. We achieve peak performance using a combination of 16 values with global branch

history. However, we show that a combination of 4 values with branch history is

sufficient to match the performance of using long value histories (32 values).

5. We demonstrate that the combined use of value history and branch history is more

tolerant to the update problem than value history alone is. As a result, speculative

value histories need not be maintained.

6. We evaluate our predictor, HCVP, to show that it outperforms state-of-the-art

context-based predictors, namely E VTAGE [3] and DFCM++ [8] by achieving a

speedup of 29% over a baseline with no value prediction. Further, we combine it with

the E Stride predictor to achieve a speedup of 46% which is 9% higher than that of E

VTAGE E Stride (EVES) [3], the winner of CVP-1.

3.2 PREDICTABILITY OF CONTEXT BASED PREDICTORS

In this section, we explore the design space to compare different representations

and lengths of context information to select our baseline. Our goal is to select a baseline

that has the best predictability. We expect it to perform well in terms of capturing

patterns (coverage) and making correct predictions based on them (accuracy). We rely on

the speedup metric to reflect the combined effects of accuracy and coverage. To evaluate

predictability efficiently, we ignore the update problem throughout Sections 3.2 and 3.3.

We assume that an oracle update mechanism exists i.e., the correct value is known

immediately after making a prediction and hence the predictor state is up to date at any

given point of time. Eventually, we re-evaluate with a realistic update mechanism in

Section 3.4

 16

3.2.1 Divergence

The generic structure of a context-based predictor is shown in Figure 1. It shows

the prediction operation. An entry in the table consists of a prediction and a confidence

counter and is selected based on the context. The prediction is made use of only if the

confidence counter exceeds a threshold.

Figure 1: Generic Structure of a Context-based Predictor

Figure 2 explains the basic algorithm for predictor table update when the actual

value is known. The confidence counter is incremented if the prediction stored in the

table is correct. It is reset to zero if it is incorrect. The prediction is replaced with a new

one if the counter is already at zero.

Based on this generic design, we see that the following two are requirements for

good predictability:

if (actual_value is consistent with prediction)

 confidence_counter = min (confidence_counter + 1, threshold)

else if (confidence_counter != 0)

 confidence_counter = 0

else

 update prediction to make it consistent with actual value

Figure 2: Update Mechanism for a Context-based Predictor

 17

Requirement 1: Contexts are followed by a value enough number of times (>=

threshold) so that the confidence is high enough to make a prediction

Requirement 2: Contexts are followed by the same value all the time. In practice,

the same context can be followed by different values at different times. We call this as

“divergence”.

Note that both these requirements depend on the quality of information used to

represent the context. When program context is captured well, these requirements are

satisfied to a large extent resulting in high predictability.

There is potential to improve context representation to deal with divergences. For

instance, additional context information can be used along with existing information to

split diverging streams into separate entries in the table so that they are no longer

diverging. If we satisfy requirement 2 this way, requirement 1 establishes an upper bound

on predictability. To quantify this upper bound, we introduce the concept of “oracle

divergence handling”.

A hypothetical predictor with oracle divergence handling capability remembers

not one, but many predictions for each context. It can make a correct prediction as long as

it has seen the correct value follow a given context enough number of times

(>=threshold). It uses an oracle mechanism to select the appropriate prediction. By

design, it operates at 100% accuracy. As a result, confidence counters are never reset to

zero, they are only trained positively when values repeat.

We call the more realistic predictor described using Figure 1 and Figure 2 as the

one with “practical divergence handling”.

 18

3.2.2 Design Space Exploration

We look at variants in predictor design based on how context information is

represented. First, we classify them depending on whether branch history or value history

is used. Further, we classify value history-based predictors based on whether they apply

patterns learnt from a PC globally (across PCs) or locally (within the same PC). All of

these predictor designs can further be classified based on whether they predict values or

differential values (i.e., strides). We describe each one of these designs in more detail.

3.2.2.1 Value History: PC Localized Learning, PC Local Application

The context information used is PC, PC Local Value History. Predicted values are

stored in the prediction table.

Figure 3: Value History: PC Localized Learning, PC Local Application

3.2.2.2 Differential Value History: PC Localized Learning, PC Local Application

The context information used is PC, PC Local Differential Value History.

Predicted strides are stored in the prediction table.

 19

Figure 4: Differential Value History: PC Localized Learning, PC Local Application

3.2.2.3 Value History: PC Localized Learning, Global Application

The context information used is PC Local Value History. Predicted values are

stored in the prediction table.

Figure 5: Value History: PC Localized Learning, Global Application

3.2.2.4 Differential Value History: PC Localized Learning, Global Application

The context information used is PC Local Differential Value History. Predicted

strides are stored in the prediction table.

 20

Figure 6: Differential Value History: PC Localized Learning, Global Application

3.2.2.5 Branch History: Value Prediction

The context information used is PC, Global Branch History. Predicted values are

stored in the prediction table.

Figure 7: Branch History: Value Prediction

3.2.2.6 Branch History: Differential Value Prediction

The context information used is PC, Global Branch History. Predicted strides are

stored in the prediction table.

 21

Figure 8: Branch History: Differential Value Prediction

3.2.2.6 Other Variants

We do not evaluate global value history-based predictors as the update problem is

extremely severe in them. Since most of the recent values in the global history may be

unknown at prediction time, the predictor tends to be very inaccurate when a realistic

update policy is applied.

3.2.2.7 Differential Values (Strides) vs Values

First, we evaluate between using differential values (strides) and values. When

using strides, the predictor keeps track of the last observed value for a given context and

adds the predicted stride to compute the final value. In addition to this, differential value

history-based predictors maintain histories of strides instead of histories of values. The

following are the advantages of strides over values:

• Some predictions that are considered as compulsory misses for values can be

predicted using strides. For example, the value sequence 1, 3, 4, 6, 7, 9, 10, 12 can be

represented using the strided sequence 2, 1, 2, 1, 2, 1, 2. Since the strided sequence is

 22

more regular, it may possible for it to predict the next value in the sequence even

though it has not seen it before.

• Some predictors apply learnings across contexts. For such predictors, strides can

provide improved coverage due to positive aliasing. For example, PC x with value

stream 1, 3, 5, 7, 9, 11 and PC y with value stream 101, 103, 105, 107, 109, 111 can

both be represented using the strided stream 2, 2, 2, 2. It may be possible to predict

values for PC y using the strided pattern learnt for PC x.

• Since multiple value streams can be represented by the same strided stream, it can

cause storage efficiency thereby reducing predictor sizes. Hashing efficiency for

strides may also be better than that for values since strides can usually be represented

using fewer bits.

The following are some disadvantages of using strides over values.

• Strides can be less accurate than using values. For instance, the last two values of the

value sequence 1, 3, 5, 7, 9, 10000, 150000 can be incorrectly predicted by a stride

predictor that may learn a constant stride of 2 initially.

• For predictors that apply learnings across contexts, strided patterns can cause

inaccuracy due to negative aliasing. For example, if PC x has a value pattern of 1, 1,

1, 1, 1, 1 and PC y has a value pattern of 100, 100, 100, 105, 105, a strided predictor

may try to apply constant strides learnt from PC x on PC y. This will cause

inaccuracy in predicting 105 for PC y.

• Stride based predictors require knowledge of the last observed value for a given

context. This may not be available if the corresponding instruction has not completed

execution. This can cause inaccuracy.

In summary, strides tend to provide more coverage than values. However, they

may be more inaccurate. We wish to pick the best one for predictability purposes. We

 23

evaluate them on the on the two value history-based predictors (PC Local Learning, PC

Local Application and PC Local Learning, Global Application) and on the branch

history-based predictor. The evaluation is done for different context lengths and using

both oracle and practical divergence handling capability. The confidence threshold is

fixed to 10.

From Figure 9, we see that the accuracy for values is consistently better than that

of differential values but only by a small margin. However, the overall coverage and

Values: Oracle Divergence Handling Differential Values: Oracle Divergence Handling

Differential Values: Practical Divergence Handling Values: Practical Divergence Handling

Figure 9: Evaluation of Differential Values vs Values

 24

speedup is mostly better for the latter than the former. Hence, we choose differential

values over values for our baseline. In the rest of this chapter, we mean differential values

when we refer to values or value history.

3.2.2.8 Value History vs Branch History

In this section, we evaluate value history vs branch history. We first discuss the

advantages of using value history over branch history:

• Value history-based prediction can capture any arbitrarily correlated value pattern for

a given PC. Branch history-predictors can only capture constants or strides for a given

PC and branch history.

• Intuitively, it seems more reasonable that previous values can be more direct

indicators of the next value as opposed to branch history. In other words,

predictability and coverage is expected to be better for value history.

• Value history-based predictors such as DFCM++ achieves better coverage than

branch history-based predictors such as EVTAGE using much lower confidence

counter widths.

The following are some disadvantages of using value history over branch history.

• Values are 64 bits wide and their histories have to be maintained on a per PC basis.

Since PC local value histories are used to index into the prediction table, the number

of entries in the predictor may also be large. However, there has been evidence on

how only a small number of values are required to predict majority of the dynamic

instructions [14]. Also, the DFCM++ predictor [8] has shown that is possible to

compress 64 values into a single 64-bit value for predictor operation. On the other

hand, storage complexity is somewhat simpler for branch history-based predictors as

global branch history is used.

 25

• Value histories can be incomplete if the corresponding producer instructions are still

inflight. This can cause loss in accuracy and coverage. Predictors tend to maintain

speculative histories to deal with this.

Value history-based predictors are further classified based on whether they apply

PC localized learning globally (across PCs) or locally (within the same PC). We discuss

tradeoffs between these two options.

• Often, PCs with similar value history tend to behave similarly. Global application

helps capture this behavior. On the other hand, ability to learn patterns is affected

when PCs with similar value history produce different values. PC local application

works better under these circumstances.

• The predictor storage is reduced significantly if predictions are shared across PCs.

This reduces the table size for a predictor with global application as opposed to one

with PC local application.

Since branch history is global context information, we do not have a similar

classification for it.

We evaluate the three predictors for different context lengths using both oracle

and practical divergence handling. Figure 10, Figure 11 and Figure 12 depict the

accuracy, coverage and speedup curves respectively.

 26

Figure 10: Accuracy Comparison for Predictors using different context information

Figure 11: Coverage Comparison for Predictors using different context information

Figure 12: Speedup Comparison for Predictors using different context information

97

98

99

100

1 2 4 8 16 32 64

A
V

G
. A

C
C

U
R

A
C

Y
 %

CONTEXT LENGTH

Oracle Divergence Handling

Value History PC Local Application : Practical
Divergence Handling

Value History Global Application : Practical
Divergence Handling

Branch History : Practical Divergence Handling

0

20

40

60

80

100

1 2 4 8 16 32 64

A
V

G
. C

O
V

E
R

A
G

E
%

CONTEXT LENGTH

Value History PC Local Application: Oracle
Divergence Handling

Value History PC Local Application: Practical
Divergence Handling

Value History Global Application : Oracle
Divergence Handling

Value History Global Application : Practical
Divergence Handling

Branch History: Oracle Divergence Handling

Branch History : Practical Divergence Handling

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16 32 64

G
EO

M
EA

N
 S

P
EE

D
U

P

CONTEXT LENGTH

Value History PC Local Application: Oracle
Divergence Handling

Value History PC Local Application: Practical
Divergence Handling

Value History Global Application : Oracle
Divergence Handling

Value History Global Application : Practical
Divergence Handling

Branch History: Oracle Divergence Handling

Branch History : Practical Divergence Handling

 27

For value history-based predictors, we see that global application tends to perform

better than PC local application for most of the context lengths. Hence, between the two,

we pick the former.

The branch-history based predictor with oracle divergence handling capability has

the best coverage and speedup indicating that it has potential for value prediction.

However, we see that the branch history-based predictor with practical divergence

handling capability performs the worst. In other words, branch history alone is not as

powerful as value history is in detecting patterns as there is plenty of divergence that it

can’t handle. It may be possible to improve its accuracy and hence its speedup by using a

higher confidence threshold than the one use for this experiment (i.e., 10). However,

doing so will not equip it with additional divergence handling capability required to

identify more patterns. It is only a defensive mechanism that avoids predicting for

diverging values and results in lower coverage due to slower training.

For a predictor with practical divergence handling capability, value history with

global application achieves the best accuracy, coverage and speedup for a context length

of 4 or more. This is a strong indication that it provides better predictability than the

others. Hence, we pick this as our baseline. Improving its performance without a drop in

its coverage automatically means the resulting performance will be better than that of a

branch history-based predictor (assuming oracle update).

3.2.3 Exploring Tradeoffs Across Value History Lengths

3.2.3.1 Accuracy vs Coverage

We delve deeper into the tradeoffs of using different context lengths in our

baseline value history-based prediction method.

 28

Figure 13: Accuracy, Coverage and Speedup for Different Value History Lengths

From Figure 13, we make the following important observations:

• The coverage curve for oracle divergence handling drops with increase in value

history length. This is because it takes longer to train as context length increases.

Assuming we can solve the divergence issue magically, this curve establishes the

85.10 81.86 78.01 73.81
68.90

64.35 60.12

55.28
63.62 68.06 68.25 66.22 62.90 59.21

0

20

40

60

80

100

1 2 4 8 16 32 64

A
V

G
. C

O
V

ER
A

G
E

%

VALUE HISTORY LENGTH

Oracle Divergence Handling

 Practical Divergence Handling

97.25

98.46
99.13

99.48 99.72 99.85 99.91

95

96

97

98

99

100

1 2 4 8 16 32 64

A
V

G
. A

C
C

U
R

A
C

Y
%

VALUE HISTORY LENGTH

Oracle Divergence Handling

 Practical Divergence Handling

1.72 1.66 1.61 1.54 1.46 1.41 1.36

0.90
1.08

1.22 1.29 1.33 1.34 1.32

0

0.4

0.8

1.2

1.6

2

1 2 4 8 16 32 64

G
EO

M
EA

N
 S

P
EE

D
U

P

VALUE HISTORY LENGTH

Oracle Divergence Handling

 Practical Divergence Handling

 29

upper limit for predictability using value history length alone. In other words, longer

the value history, lesser is the scope for prediction.

• The coverage curve for practical divergence handling rises up to a length of 8 beyond

which it falls off. As we increase value history length, we add more context

information. This makes the predictor more intelligent allowing it to deal with

diverging patterns. However, the training time increases with history length. As a net

effect of the two, we see a rise followed by a drop.

• The accuracy curve for practical divergence handling rises with increase in value

history length. This is partly because of the increased intelligence that longer value

histories add, allowing the predictor to accurately identify diverging values that can

be mispredicted otherwise. It is also because of the slower training that helps the

predictor to remain on a defensive mode and not learn inaccuracies.

• The speedup curve for practical divergence handling reemphasizes the need for

extremely high accuracy in value prediction. Although coverage drops beyond a

length of 8, speedup peaks at a length of 32 where accuracy is high. This is despite

the reduced prediction scope that exists at longer value history lengths. This also

provides explanation for why a value history-based predictor like DFCM++ [8]

operates at long history lengths of 32 and 64.

• Our key point is that there is plenty of opportunity at shorter value history lengths (<=

16) that is being unutilized. Firstly, the oracle divergence curve indicates that there is

better prediction scope at shorter history lengths. Secondly, the coverage and

accuracy gaps between the two curves indicate that there is significant divergence that

is obstructing shorter value history lengths from achieving its full potential. Finally,

while it may be more challenging to bridge the gap for very small lengths such as 1 or

2, value history lengths from 4 to 16 already have excellent coverage. Any means to

 30

improve their accuracy without loss in coverage should result in better speedup than

what value history length of 32 currently achieves.

Improving accuracy without hurting coverage cannot be done using defensive

mechanisms such as increasing the confidence threshold. It requires more aggressive

divergence handling capability. For instance, Figure 14 shows the effect of increasing the

confidence threshold for a value history length of 16. While the accuracy improves,

coverage drops resulting in lower speedup.

Figure 14: Effects of increasing confidence threshold for a value history length of 16

3.2.3.2 Divergence Handling Capability

In this section, we analyze how effective different value history lengths are in

handling divergence. We need a worst-case baseline to establish the maximum possible

66.22 64.12 60.83 57.29 53.28 48.64

0

20

40

60

80

100

10 16 32 64 128 256

A
V

G
. C

O
V

ER
A

G
E

%

CONFIDENCE THRESHOLD

99.72
99.77

99.83 99.87 99.89 99.91

99

99.2

99.4

99.6

99.8

100

10 16 32 64 128 256

A
V

G
. A

C
C

U
R

A
C

Y
%

CONFIDENCE THRESHOLD

1.47 1.47 1.45 1.43
1.39

1.36

1

1.1

1.2

1.3

1.4

1.5

10 16 32 64 128 256

G
EO

M
EA

N
 S

P
EE

D
U

P

CONFIDENCE THRESHOLD

 31

divergence that can occur. We can then quantify how much of this divergence is handled

by using different value history lengths.

It should be noted from Figure 13 that the coverage obtained for oracle

divergence handling using a value history length of 1 establishes an upper bound to what

can be predicted using any value history length. Predictions made using longer value

history lengths are only a subset of what a value history length of 1 with oracle

divergence handling can predict. To illustrate this, let us consider a value history length

of 4 (with either practical or oracle divergence handling capability) that predicts the

following correlated patterns correctly:

m a b c → x x is followed by a value stream consisting of m a b c

n a b c → y y is followed by a value stream consisting of n a b c

It will be possible to predict these patterns only if each of them have occurred enough

number of times (>= threshold). This automatically means that the following have also

occurred enough number of times (>= threshold).

 c → x x is followed by a value stream consisting of c

c → y y is followed by a value stream consisting of c

Hence, with oracle divergence handling capability, the predictor with value

history length = 1 will be able to predict both of these. In other words, everything that

longer value history lengths predict is a subset of what value history length = 1 with

oracle divergence handling capability can predict.

Note that a value history length of 2 with practical divergence handling may not

be able to predict x and y correctly as the value stream is not long enough to identify the

divergence. The context consisting of b c is followed by x sometimes and y sometimes.

b c → x x is followed by a value stream consisting of b c

b c → y y is followed by a value stream consisting of b c

 32

In other words, longer value history lengths can provide additional context

information that can help identify more divergences (at the cost of training time). In this

respect, a history length of 1 with practical divergence handling identifies the least

number of patterns and hence is worst performing.

 With these points in mind, the coverage gap between the oracle and practical

divergence handling curves with history length = 1 represents the maximum possible loss

in coverage due to divergences. We consider this as the baseline and evaluate how much

of this divergence is predicted using longer value history lengths.

Ability to handle divergences should equip the predictor with the following

capabilities:

• Ability to increase coverage by predicting diverging values (handled divergence).

• Ability to reduce mispredictions that arise due to diverging value streams. This can be

done either by predicting them correctly (corrected inaccuracy) or by not making any

predictions for them (suppressed inaccuracy).

Terminology Outcome of

Predictor being

evaluated

Outcome of Predictor with

Oracle Divergence handling

capability and Value History

Length = 1

Outcome of Predictor with

Oracle Divergence handling

capability and Value

History Length = 1

Handled

Divergence

Predicted

correctly

Predicted correctly Mispredicted / not predicted

Coverage

Loss

Not predicted /

mispredicted

Predicted correctly Predicted correctly

Table 1: Terminology describing coverage benefits and losses

 33

Terminology Outcome of

Predictor being

evaluated

Outcome of Predictor with

Oracle Divergence handling

capability and Value History

Length = 1

Outcome of Predictor with

Oracle Divergence handling

capability and Value

History Length = 1

Corrected

Inaccuracy

Predicted

correctly

Predicted correctly Mispredicted

Suppressed

Inaccuracy

Not predicted Predicted correctly Mispredicted

Inaccuracy Mispredicted Predicted Correctly Predicted correctly / Not

predicted / Mispredicted

Table 2: Terminology describing inaccuracies dealt / not dealt with

Table 1 describes the terminology used to quantify coverage benefits due to

divergence handling and coverage losses due to increased training time. Table 2

describes the terminology used to quantify inaccuracies that are dealt with and

inaccuracies that still remain.

Figure 15 shows the results of coverage evaluation. We see that the divergence

handled increases initially with history length until it peaks for length = 8 beyond which

it falls off. In other words, using very long histories don’t bring the best divergence

handling abilities as they are slower to train. Although history length = 32 had the best

speedup due to better accuracy (Figure 13), history lengths between 4 to 16 handle more

divergence. We are unable to utilize this in our predictors as the accuracy is not sufficient

enough at these lengths. Also, as expected, we see that the coverage loss due to slower

training increases with increase in value history lengths (Figure 15).

 34

Figure 15: Value History: Coverage benefits and losses

Figure 16 shows the results of evaluation with respect to inaccuracies. We see that

more inaccuracies are dealt with (i.e., corrected inaccuracy + suppressed inaccuracy) as

value history length increases. The inaccuracy that remains also decreases with value

history length. This explains why long lengths of 32 and 64 have the best overall

accuracy. However, it should be noted that history lengths between 4 to 16 end up

correcting more inaccuracies while longer lengths end up suppressing more of them. In

other words, history lengths between 4 to 16 are more powerful in turning mispredictions

into accurate predictions indicating better divergence handling capabilities. However,

their overall accuracy is still relatively lower causing them to underperform.

0.00

9.90

15.64
17.10 16.69 15.37

13.97

0.00 -1.56
-2.86

-4.13
-5.75

-7.74
-10.03

-15

-10

-5

0

5

10

15

20

1 2 4 8 16 32 64

G
A

IN
 IN

 C
O

V
ER

A
G

E
(%

)

VALUE HISTORY LENGTH

Handled Divergence Coverage Loss

 35

Figure 16: Value History: Inaccuracies dealt/not dealt with

In conclusion, value history-based prediction can be improved by one or more of

the following methods:

• Equipping value history with better divergence handling capabilities so that they

perform closer to potential

• Improving accuracy, especially for history lengths = 8 to 16 without hurting their

coverage to take advantage of divergence handling capabilities that they already have

3.3 IMPROVING PREDICTABILITY USING HETEROGENEOUS CONTEXT INFORMATION

3.3.1 Combining Branch History with Value History

We demonstrate that the combination of branch history with value history

provides better predictability than using value history alone. It tackles some of the short

comings described above. Particularly, we believe that that the addition of branch history

provides additional context information required for improved divergence handing.

0.22

0.42
0.49 0.49 0.44

0.38

0.59
0.69 0.73

0.81
0.90

0.97

1.37

0.87

0.52

0.31

0.17
0.08 0.05

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32 64

%
 O

F
IN

ST
R

U
C

TI
O

N
S

VALUE HISTORY LENGTH

Corrected Inaccuracy Suppressed Inaccuracy Inaccuracy

 36

Figure 17: Predictor design that combines both Value History and Branch History

We design the predictor as shown in Figure 17. We index the first level table

using a combination of PC and global branch history instead of PC alone. Global branch

history is group of bits containing 1s or 0s representing recent branch outcome history.

All value histories are localized for a given (PC, global branch history). We use these

histories to index into the second level prediction table.

An alternate design could have been to index the first level table using PC alone

and to index the second level table using a combination of value history and global

branch history. However, this method does not make much sense since the second level

table is shared across PCs. We do not expect PCs to produce the same values as a result

of similarity in branch history.

 37

3.3.2 Evaluating Predictability

3.3.2.1 Accuracy vs Coverage

We discuss the impacts on accuracy (Figure 18), coverage (Figure 19) and

speedup (Figure 20) when branch history is combined with value history. We empirically

chose a branch history length of 128. A confidence threshold of 10 is used.

• From Figure 18, we see that the addition of branch history significantly improves

accuracy across almost all value history lengths. This is an indication that branch

history is able to prevent inaccuracies due to diverging value streams that are seen

when value history alone is used.

Figure 18: Accuracy comparison when branch history is combined with value history

• From Figure 19, we see that there is no significant drop in coverage despite adding

more context information. Addition of branch history is expected to cause two issues.

o Longer training times as a single PC localized value history stream is now

split across multiple entries due to further localization by branch history

o The splitting can also result in loss of predictability if a well correlated value

pattern is now broken into multiple uncorrelated pieces

97.25

98.46

99.13

99.48
99.72

99.85 99.91

98.86

99.31
99.55

99.70 99.79 99.84 99.86

97

97.5

98

98.5

99

99.5

100

1 2 4 8 16 32 64

A
V

G
. A

C
C

U
R

A
C

Y
%

VALUE HISTORY LENGTH

Oracle Divergence Handling

Value History: Practical
Divergence Handling

Value History + Branch History:
Practical Divergence Handling

 38

Yet, we see that the overall coverage does not drop significantly for any value

history length. In fact, coverage improves significantly for shorter value history

lengths of 1 and 2. The overall change in coverage varies from -1.42% to +8.40%

across value history lengths. This is a strong indication that the addition of branch

history is able to tackle additional divergence and/or make new predictions. This

brings in additional coverage, thereby making up for any losses due to training

overheads.

Figure 19: Coverage comparison when branch history is combined with value history

• From Figure 20, we see that the addition of branch history results in significant

speedup over using value history alone. It peaks at 42% for a value history length of

16. Using value history alone achieves a peak speedup of only 34% at length = 32.

Addition of branch history allows even a value history of length = 4 to exceed this

performance by ~3%. Overall, better speedup can be attributed to better accuracy

without compromising on coverage. Moreover, the increased accuracy ensures that

63.67 66.57

67.36 66.82 65.69
64.40 62.96

0

20

40

60

80

100

1 2 4 8 16 32 64

A
V

G
. C

O
V

ER
A

G
E

%

VALUE HISTORY LENGTH

Value History : Oracle Divergence Handling

Value History: Practical Divergence Handling

Value History + Branch History: Practical Divergence Handling

 39

the coverage benefits at history lengths of 4 to 16 are utilized well resulting in better

speedup at these lengths.

Figure 20: Speedup comparison when branch history is combined with value history

• From Figure 18, Figure 19 and Figure 20, we see that the addition of branch history

lifts the curve for practical divergence handling closer to oracle divergence handling.

This is a strong indication that divergence is being handled better. Another point to

note is that the speedup slightly exceeds that of oracle divergence handling at very

long value history lengths of 32 and 64. This is a possible indication that branch

history is able to identify a few new correlated patterns that value history alone

cannot identify. We quantify benefits due to these in the next section.

3.3.2.2 Divergence Handling Capability

We evaluate divergence handling capabilities for the combined use of branch

history and value history as we did for value history alone in section 3.2.3.2.

1.72
1.66

1.61

1.54

1.46 1.41

1.36

0.90

1.08

1.22

1.29
1.33 1.34 1.32

1.18

1.30

1.37
1.41

1.43 1.43

1.42

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 2 4 8 16 32 64

G
EO

M
EA

N
 S

P
EE

D
U

P

VALUE HISTORY LENGTH

Value History : Oracle
Divergence Handling

Value History: Practical
Divergence Handling

Value History + Branch
History: Practical Divergence
Handling

 40

For coverage and accuracy analysis, we use the same terminology as described

earlier in Table 1 and Table 2. The addition of branch histories can discover new

correlated patterns that even the oracle value history-based predictor of length 1 cannot.

We introduce an additional term called “New Predictions” to quantify coverage gain due

to such predictions (Table 3).

Terminology Outcome of

Predictor being

evaluated

Outcome of Predictor with

Oracle Divergence handling

capability and Value History

Length = 1

Outcome of Predictor with

Oracle Divergence handling

capability and Value

History Length = 1

New

Predictions

Predicted

correctly

Not Predicted Not Predicted / Predicted

incorrectly

Table 3: Additional Terminology describing new coverage benefits

Figure 21 breaks down coverage differences into the following categories:

• Coverage gain due to handled divergence

• Coverage gain due to new predictions

• Coverage loss. This could be due to slower training. It could also be due to splitting

of well correlated patterns into multiple uncorrelated pieces when branch history is

added.

We compare for value history alone vs value history + branch history.

We see from Figure 21 that the addition of branch history improves divergence

handling consistently. The additional coverage gains range from 1.1% to 8.7% across

value history lengths. It also provides a small gain of ~1.4% from new predictions.

On the downside, there is increased coverage loss due the overheads of adding more

context information. The coverage loss becomes worse by about 0.5% to 8.8% across

 41

history lengths when compared to using value history alone. In summary, coverage

losses are unavoidable due to the overheads of increased context information.

However, the addition of branch history is quite powerful in handling divergences

and identifying patterns that the gains make up for the loss. As a result, the overall

coverage does not drop significantly for any value history length (Figure 19).

Figure 21: Comparison of coverage benefits and losses

Figure 22 analyzes accuracy. If we sum up corrected inaccuracy with suppressed

inaccuracy, we see that the addition of branch history is able to handle more

inaccuracies as opposed to using value history alone. It handles about 0.02% to 1.22%

more inaccuracy than the latter. We also see that branch history + value history

corrects majority of the inaccuracies while value history alone suppresses majority of

them. This is again indicative of the more powerful divergence handling capability

that addition of branch history brings. Besides, we see that the inaccuracy that

-15

-10

-5

0

5

10

15

20

1 2 4 8 16 32 64

G
A

IN
 IN

 C
O

V
ER

A
G

E
(%

)

VALUE HISTORY LENGTH

Value History: Handled Divergence Value History + Branch History: Handled Divergence

Value History + Branch History: New Predictions Value History: Coverage Loss

Value History + Branch History: Coverage Loss

 42

continues to remain is lower by about 0.0% to 0.8% when branch history is added as

opposed to using value history alone.

Figure 22: Comparison of inaccuracies dealt/not dealt with

In summary, predictability and accuracy improves significantly by combining the

use of value history with branch history. This translates into better performance

overall.

3.4 THE UPDATE PROBLEM

So far, we assumed an oracle update mechanism where the result of prediction is

known immediately are making the prediction. We now move to a more realistic update

scheme where there will be a delay of many cycles between prediction and the

corresponding update. Also, from this point, we only talk about practical divergence

handling. There are no more oracle mechanisms in the predictor making it fully realistic.

Any value prediction mechanism that uses value history suffers from the update

problem. Value histories that are stored in the table can become stale if some of the

instructions for the corresponding entry are in flight. This makes the result of prediction

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32 64

%
 O

F
IN

ST
R

U
C

TI
O

N
S

VALUE HISTORY LENGTH

Value History: Corrected Inaccuracy

Value History + Branch History: Corrected
Inaccuracy

Value History: Suppressed Inccuracy

Value History + Branch History: Suppressed
Inaccuracy

Value History: Inaccuracy

Value History + Branch History: Inaccuracy

 43

dependent on the outcomes of the inflight instructions to have an up to date value history.

This issue is encountered when the same static instruction is scheduled back to back

because of tight loops.

We study the impact of the update problem on the performance of both types of

predictors – named value history based and value history + branch history based. For

value history alone, we use a history length of 32. When combined with branch history,

we use a value history length of 16.

Figure 23: Drop in performance when the oracle update mechanism is replaced with an

actual update

Figure 23 depicts the drop in accuracy, coverage and speedup when the oracle

update scheme is replaced with an actual update scheme. Clearly, a value history-based

predictor is severely affected by the update problem. Its accuracy drops by an

unacceptable 3%. Its speedup takes a beating of 48% resulting in an overall speedup that

is negative (-15%). On the other hand, combining value history with branch history

makes it relatively more tolerant to the update problem. Its accuracy drop is relatively

3.00% 3.12%

48.33%

0.96% 2.56%

27.26%

0

10

20

30

40

50

60

70

80

90

100

Drop in Accuracy Drop in Coverage Drop in Speedup

A
V

ER
A

G
E

(%
)

Value History Value History + Branch History

 44

smaller (~0.96%). A speedup drop of ~27.3% still ensures overall positive speedup

(~15%).

When using value history alone, predictions to the same PC close to one another

is a concern. When using value history combined with branch history, predictions to the

same PC + global branch history close to one another is a concern. We evaluated our

traces to find that about ~37% of the times, at least one previous instance of the same PC

as the one currently being predicted is in inflight. However, only about ~20% of the

times, an instruction with the same PC + global branch history is in inflight. This explains

why a combination of value history with branch history makes it more tolerant to the

update problem than using value history alone.

To tackle the update problem, predictors that use value history alone need to

maintain speculative histories in addition to actual histories. These speculative histories

are constructed at least partially using predicted values instead of actual values. While it

is a common practice in branch prediction to maintain speculative branch histories, the

same does not work equally well with respect to value history. For both cases, when

predictions are correct, speculative histories work fine. When predictions are wrong, any

instruction that is fetched after the mispredicted instruction is flushed. As a result, it does

not matter if a wrong speculative history was used to predict for it. However, in value

prediction, there is an additional complexity when a prediction is not made due to lack of

confidence. This issue does not exist for branch prediction or for value prediction using

branch histories as a branch prediction is always made. When value prediction

confidence is low, it may not be a good idea to use the value to construct a speculative

value history as doing so can cause mispredictions for instructions that use the history.

Hence, the idea of using speculative value history is not perfect and it cannot match the

performance of an oracle update mechanism.

 45

Also, there is significant hardware storage required to maintain speculative

histories. For example, the DFCM++ predictor uses two value histories – of lengths 32

and 64 respectively. For each entry in the table, 4 histories are maintained including 2

that are speculative. Updating speculative histories also increases the complexity of the

core. It is possible that committed instructions update the history at the same time that

fetched instructions use it for prediction. In that case, either forwarding needs to be

enabled or one of two have to be deprioritized.

A simpler alternative to speculative histories is to simply check if any of the

inflight instructions have the same signature (PC or PC + global branch history) as that of

the instruction being predicted. If there is, we skip predicting for the instruction.

Although this mechanism will result is some coverage drop when compared to

maintaining speculative histories, it will result in better accuracy. Figure 24 shows us the

results for evaluation of this mechanism. We see that that combined use of value history

with branch history gives significantly more speedup than using value history alone when

this mechanism is used to deal with the update problem.

Figure 24: Overall performance when predictions are not made for instructions that share

the same signature with one more inflight instructions

99.69

39.64

13.41

99.04

56.58

28.11

0

20

40

60

80

100

Accuracy Coverage Speedup

A
V

E
R

A
G

E
 (

%
)

Value History Value History + Branch History

 46

 Thus, we conclude that the combination of branch history with value history can

achieve better performance than using value history alone. It adds better predictability

and is more tolerant to the update problem. We call our predictor (Figure 17) as the

Heterogeneous Context-based Value Predictor (HCVP). We use an update policy that

skips predicting for instructions that share signatures with one or more instructions in

flight.

3.5 EVALUATION

3.5.1 Methodology

We evaluate HCVP using the simulation infrastructure released by the First

Championship Value Prediction (CVP-1). It models a 16 wide out-of-order processor

with a large instruction window (256 entry ROB), perfect branch prediction and

unlimited number of functional units. It uses a large value misprediction penalty with a

complete pipeline flush at commit time.

For evaluation, we use the 135 public traces from Qualcomm Datacenter

Technologies released along with the CVP-1 infrastructure. It includes compute and

memory intensive workloads, as well as a large number of server class traces [7].

3.5.2 Comparison with Other Predictors

We evaluate HCVP against the winning entries from the unlimited category of

CVP-1, namely Enhanced VTAGE Enhanced Stride (EVES) and DFCM++. Both these

predictors are hybrid predictors that combine context-based components with

computational predictors. While EVES combines a branch-history based predictor with a

stride predictor, DFCM++ combines a value history-based predictor with a value

 47

estimator. We first evaluate HCVP against the context-based components of these

predictors.

Figure 25: Speedup comparison across standalone predictors

Figure 25 shows the speedup comparison. HCVP outperforms the other predictors

by achieving a geomean speedup for 1.29. Closest is DFCM++ with a geomean speedup

of 1.26. Note that HCVP is able to outperform both a value history-based predictor

(DFCM++) and a branch history-based predictor (E VTAGE). This is despite the fact that

both these predictors use many features that HCVP is being evaluated without. These

features can be applied to HCVP to improve its performance further. Some of them are

listed below:

• While DFCM++ and E VTAGE use multiple context lengths and choose from them

dynamically, HCVP uses a single context length (and yet achieves better speedup).

• DFCM++ maintains speculative histories.

• E VTAGE tunes its confidence threshold dynamically based on expected performance

gain per prediction.

• DFCM++ uses a PC Blacklister to reduce inaccuracies.

1.26

1.16 1.16

1.29

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

DFCM++ (without Value
Estimator)

E VTAGE E Stride HCVP

G
EO

M
EA

N
 S

P
EE

D
U

P

 48

Figure 26: Speedup comparison across hybrid predictors

Figure 26 shows the speedup comparison across hybrid predictors. HCVP is

combined with the Enhanced Stride predictor. The Enhanced Stride predictor is a small

structure of less than 1KB that can provide a significant 16% speedup by itself. In the

combined predictor, we prefer to use the predictions of HCVP over E Stride when both of

them make confident predictions. We see that HCVP + E Stride outperforms EVES (the

winner of CVP-1) by ~9%.

3.5.3 Sensitivity to Value History Length

Figure 27: HCVP Speedup comparison for varying value history lengths

1.28

1.37 1.36

1.46

1

1.1

1.2

1.3

1.4

1.5

DFCM++ with Value
Estimator

E VTAGE + E Stride
(EVES)

DFCM++ + E Stride HCVP + E Stride

G
EO

M
EA

N
 S

P
EE

D
U

P

1.166

1.229
1.263 1.279 1.281 1.275 1.270

1.294

1.372
1.418

1.444 1.460 1.455 1.449

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 32 64

G
EO

M
EA

N
 S

P
EE

D
U

P

VALUE HISTORY LENGTH

HCVP HCVP + E Stride

 49

We evaluate the sensitivity of HCVP to value history length by fixing the branch

history length to 128 and confidence threshold to 10. From Figure 27, we see that HCVP

achieves a peak speedup of 28% at a value history length of 16. However, performance

decreases by less than 2% even if we reduce history length to 4. We also show the

performance variation for the hybrid predictor consisting of HCVP and E Stride. We see

that a value history length as small as 2 is sufficient to match the performance of EVES

(37%).

3.5.4 Sensitivity to Branch History Length

We evaluate the sensitivity of HCVP to branch history length by fixing the value

history length to 16 and confidence threshold to 10. From Figure 28, we see that peak

speedup is achieved at a branch history length of 128. Performance drops steadily with

shorter lengths. This indicates that long branch histories are required to capture program

context well.

Figure 28: HCVP Speedup comparison for varying branch history lengths

1.12 1.13 1.13 1.14
1.16

1.19
1.23

1.28 1.28

1.33 1.33 1.34 1.36
1.38

1.40
1.43

1.46 1.45

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 32 64 128 256

G
EO

M
EA

N
 S

P
EE

D
U

P

BRANCH HISTORY LENGTH

HCVP HCVP + E Stride

 50

3.5.4 Sensitivity to Confidence Threshold

Figure 29: HCVP Speedup comparison for varying confidence thresholds

We evaluate the sensitivity of HCVP to confidence threshold by fixing the value

history length to 16 and branch history length to 128. From Figure 29, we see that our

predictor is not very sensitive to confidence thresholds. While HCVP achieves its peak

speedup at a confidence threshold as low as 2, the hybrid that combines HCVP with E

Stride achieves its peak speedup at 8. This is a significant departure from previously

established ideas about value prediction requiring high confidence thresholds of 64-256

[5] [3]. Further, from Figure 30, we see that there is minimal drop in coverage when the

threshold is increased. This provides a strong indication that contexts are followed by the

same values consistently. Otherwise, the repeated re-training overheads should have

caused a steeper drop in coverage with increasing thresholds. In summary, the context

representation used is extremely powerful at identifying correlated patterns to an extent

that confidence mechanisms are not that crucial anymore.

1.287 1.294 1.283 1.282 1.281 1.277 1.265 1.247

1.423 1.437 1.451 1.456 1.456 1.456 1.452 1.445

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8 10 16 32 64

G
EO

N
EA

N
 S

P
EE

D
U

P

CONFIDENCE THRESHOLD

HCVP HCVP + E Stride

 51

Figure 30: HCVP Coverage comparison for varying confidence thresholds

3.5.6 Hardware Complexity

Although our evaluation assumes that unlimited storage is available, we have a

few points on why the HCVP predictor is inherently simpler than the other predictors.

• HCVP achieves the best performance even though it uses a fixed context length. It

requires only two tables – a first level table to store histories and a second level table

to store predictions. In contrast, the E VTAGE predictor uses multiple tables for

multiple context lengths. DFCM++ uses two history lengths and hence has two

second level tables. Further, it maintains preference counters for every entry in its

first level table to choose between the two second level tables.

• HCVP outperforms DFCM++ without maintaining speculative histories. This reduces

both storage and predictor operation complexity.

• HCVP performs well with small value histories in the 2 to 16 range as opposed to

DFCM++ that requires 32 to 64 values per history. Smaller value histories

compressed into fewer bits and/or achieve better hashing efficiency.

• HCVP requires small confidence counters as the thresholds used are extremely small

(2 to 8)

60.14 59.21 58.10 56.98 56.58 55.72 54.33 52.82

63.13 62.23 61.15 60.05 59.67 58.84 57.51 56.09

0

20

40

60

80

100

1 2 4 8 10 16 32 64

A
V

G
. C

O
V

ER
A

G
E

%

CONFIDENCE THRESHOLD

HCVP HCVP + E Stride

 52

On the downside, since HCVP uses a combination of PC and value history, it is

possible that the number of entries required in the first level table increases when

compared to that of DFCM++. Further, since value history is localized by both PC and

branch history, it is possible that additional entries are required in the second level table

as well.

3.6 CONCLUSIONS

In summary, we have demonstrated that a combination of value history with

branch history is a better predictor of values than either one of them. Our evaluation

shows that this combination provides additional divergence handling capabilities and

accuracy when compared to using value history alone. This also allows for the use of

mid-length value histories that provide better coverage than very large ones. We have

shown how this combination is relatively more tolerant to the update problem and hence

achieves good performance even without maintaining speculative histories. The HCVP

predictor designed based on these principles outperforms the winners of the First

Championship Value Prediction.

3.7 FUTURE WORK

As part of future work, predictor table sizes need to be limited to demonstrate that

that HCVP is practically viable. Further, HCVP is a naïve implementation of the idea that

a combination of value history with branch history can work better than either one of

them. However, there is plenty of opportunity to improve its performance by applying

generic ideas that other state-of-the-art predictors employ. This includes the use of

variable context lengths, dynamic adjustment of confidence thresholds and PC

blacklisting to name a few. Further, The E VTAGE predictor uses information related to

 53

both branch targets and branch outcomes to construct its branch history. However, in our

current implementation, HCVP uses only branch outcomes. There is potential room for

improvement if branch target information is also taken into account.

While the use of heterogenous context information has been demonstrated to be

powerful for value prediction, it can be explored for other hardware prediction problems

such as address prediction or prefetching as well.

 54

Chapter 4: Maximizing Value Prediction Gains

4.1 INTRODUCTION

Fundamentally, value prediction is a technique that improves instruction level

parallelism. It breaks true data dependencies by allowing early execution of dependent

instructions that use the predicted value as a source value. In the absence of a value

predictor, dependent instructions stall until their source values are ready. This can affect

performance in multiple ways. Stalling of instructions can create critical paths,

preventing forward progress in program execution. It can cause underutilization of

hardware execution resources during the stall and an excess contention for the resources

once the source values are ready. It can also prevent additional instructions from flowing

through the pipeline if the fetch unit stalls as a result of the buffers filling up. Due to the

large number of factors involved, the number of cycles saved due to a single correct

prediction is highly variable and difficult to quantify. For example, performing value

prediction on a low latency instruction may bring no benefit at all if the core has enough

work to do to hide the latency. On the other hand, performing value prediction on a high

latency instruction with a long dependent chain of instructions may save significant

number of cycles.

Incorrect predictions involve performance penalties. These penalties are

undesirable for the following reasons:

• If we consider the baseline to be a system that does not have a value predictor, a

wrong prediction can result in performance that is worse than the baseline

performance. This is a key difference between value prediction and branch

 55

prediction. Predicting a branch is necessary to determine the instruction address

for the next fetch and to ensure continued instruction flow through the pipeline.

However, a value prediction may not necessarily be required to keep the pipeline

occupied as there may be other instructions that are ready to be fetched and/or

executed.

• The performance penalties associated with value mispredictions can be

significant. Based on the recovery mechanism used, a single misprediction can

cost anywhere between 5 to 50 cycles [1].

Keeping these in mind, the obvious goal for a value predictor is to be able to

extract high performance gains from correct predictions so that it outweighs the severe

performance degradation that can occur due to mispredictions. Speedup can be

maximized by achieving one or more of the following:

1. Maximizing performance benefit per correct prediction

2. Maximizing the number of correct predictions

3. Minimizing the number of mispredictions

4. Minimizing performance penalty per mis predicted instruction

This section focuses on maximizing the performance benefit per correct

prediction. We categorize instructions by various properties in an attempt to identify one

or more classes of instructions whose values are highly beneficial to predict.

To illustrate that the average benefit per correct prediction varies largely based on

the instructions being predicted, we perform perfect value prediction on 10% of the

prediction-eligible instructions in a sample trace. Perfect value prediction is an oracle

mechanism that assumes that the correct value is known during prediction time. In other

words, it operates at 100% accuracy. We repeat the experiment multiple times by varying

the 10% of the instructions that are chosen. From Figure 31, we see that there are large

 56

performance variations across the runs, indicating that it is more beneficial to predict

some values over the others. This brings us to the concept of “criticality”. Some

instructions are considered “critical” i.e., they lie in the critical path of execution. Any

mechanism used to improve ILP provides maximum gains when they are applied to these

critical instructions. For example, the concept of prioritizing critical instructions over

others have been explored for cache management and prefetching [2]. In the context of

value prediction, it may be highly beneficial to predict values produced by instructions

that are on the critical path while it may be of no use to predict ones that aren’t.

Figure 31: Variation in speedup by applying perfect value prediction on 10% of the

instructions chosen randomly

Identification of critical instructions has often been considered as a difficult

problem. It involves analyzing the execution at runtime to identify critical paths.

Optimizing for performance on the critical path can cause another path to become the

new critical path. Runtime identification and analysis of these paths can involve

overheads in performance, power and cost.

A simpler alternative can be to identify (statically) classes of instructions that are

likely to be on the critical path and are hence likely to provide significant benefit per

correct prediction. If we are able to identify one or more such classes, it can influence the

1

1.2

1.4

1.6

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

SP
EE

D
U

P

 57

way value predictors are designed. Particularly, we believe that it can have the following

influences:

1. To illustrate the severe imbalance between the average benefit per correct

prediction and the average loss in performance per misprediction, we perform two

experiments on a sample trace by choosing 10% of its instructions randomly. In

the first experiment, we perform perfect value prediction on the chosen

instructions. In the next experiment, we mispredict for all of them. We observe

that the speedup due to correct predictions is only 6.5% while the loss in

performance due to incorrect ones is -45.3%. To deal with this imbalance, value

predictors have focused on achieving very high accuracy at the cost of coverage.

Often, they aim for an accuracy of 99% or above. We think the accuracy

requirements can be relaxed further if predictors focused only on instructions that

provide high benefits for correct predictions. This will allow them to adopt a less

conservative approach that aims for higher coverage (within the class of

instructions being targeted) at relatively lower accuracy.

2. Alternately, predictors can be designed to target all prediction eligible-

instructions, but can apply different strategies based on the class of instructions

being targeted. They can apply less accurate strategies for instructions that are

more likely to be critical and vice versa. For example, the Enhanced VTAGE

predictor varies the threshold for prediction confidence based on how much

benefit predicting a particular instruction’s value may bring [3].

3. Targeting specific classes of instructions can open up the possibility of designing

prediction mechanisms that work specifically for the class in consideration. For

example, there has been work on predicting addresses instead of values for

 58

predictors that target load instructions alone. The value can be looked up in the

cache using the predicted address [4].

4. Choosing a misprediction recovery mechanism often involves making a tradeoff

between hardware complexity and performance. For example, pipeline squashing

is a mechanism where all instructions younger than the mispredicted instruction

are re-fetched and re-executed. While this mechanism is simple to implement, it

has high latency since instructions that are independent of the mispredicted

instruction are also re-fetched and re-executed. Selective replay is an alternate

mechanism where only the dependent chain of instructions are re-executed. It is

complex to implement as it requires runtime identification of the dependent chain.

But it may have lower latency owing to the fact that independent instructions are

not re-executed. Value prediction that targets only critical instructions can have

increased tolerance to longer misprediction penalties. This can allow one to

choose a mechanism like pipeline squashing that is simpler to implement in

hardware although it has higher misprediction penalties associated with it.

5. The predictor state that needs to be maintained can be reduced if only a small

fraction of instructions are to be tracked. In the best case, we hope to find classes

of instructions that are only a small fraction of the total number of prediction-

eligible instructions but provide high speedup.

4.2 METHODOLOGY

We categorize instructions by various parameters and study the speedup obtained

by performing perfect value prediction on them. To evaluate the different classes of

instructions, we use three metrics:

 59

1. Speedup = IPC when all instructions of the given class are predicted / IPC when

no value prediction is applied

Avg. Speedup is the geomean speedup across all benchmarks. This metric

quantifies the speedup that can be obtained if perfect value prediction is applied

on all instructions that belong to the class in consideration.

2. Coverage = Number of Instructions that belong to the Class / Total Number of

Value Prediction Eligible Instructions

This metric quantifies the maximum coverage that can be obtained if we predicted

all instructions that belonged to the class correctly. Avg. coverage is the

arithmetic mean of coverage across all the benchmarks. High coverage means

more predictor state to maintain.

3. Class Criticality = Speedup Percentage / Coverage Percentage

Some classes of instructions may have high avg. speedup as a result of having

high coverage, but the benefit per correct prediction may still be low. For a fair

evaluation of the relative merit in predicting instructions of different classes, we

need a better approximation for the benefit per correct prediction. We define class

criticality as the average of the ratio between speedup % and coverage %. Avg.

class criticality is computed as the arithmetic mean of class criticality across

benchmarks

We run benchmarks twice to perform the experiments. In the first run, we collect

data on various instructions. This data includes execution result, execution latency,

instruction type (opcode) and instruction fanout to name a few. In the second run, we

selectively target specific instruction classes using the data collected previously. We

evaluate the benefits of value prediction using the three metrics specified above.

 60

We use the simulation infrastructure released by the First Championship Value

Prediction (CVP-1). It models a 16 wide out-of-order processor with a large instruction

window (256 entry ROB), perfect branch prediction and unlimited number of functional

units. It uses a large value misprediction penalty with a complete pipeline flush at commit

time.

For evaluation, we use the 135 public traces from Qualcomm Datacenter

Technologies released along with the CVP-1 infrastructure. It includes compute and

memory intensive workloads, as well as a large number of server class traces [7].

4.2 RESULTS

4.2.1 Classification by Latency of Instruction Execution

In this section, we classify instructions by their execution latency and quantify the

benefits of perfect value prediction on each one of the categories. We believe this is

worth pursuing as long latency instructions are likely to be more beneficial for value

prediction. The execution latency of the producer instruction will have a direct effect on

the number of cycles dependent instructions stall for. A long latency instruction can cause

dependent instructions to stall for many cycles. It can also cause a long dependent chain

of instruction waiting to be executed.

 For this experiment, Table 6 specifies how instructions have been classified

based on their execution latencies. Table 4 contains the minimum and maximum

latencies for instructions with different opcodes. Table 5 contains latencies for different

memory accesses as specified for the CVP Simulator. The classification in Table 6 is

based on these two.

Instruction Type Min. Latency (cycles) Max Latency (cycles)

 61

ALU 1 1

Loads 2 150+

Stores 1 1

Unconditional Direct

Branches

1 1

Unconditional Indirect

Branches

1 1

FP 3 3

Slow ALU 4 4

Table 4: Execution Latency for Different Instruction Types

Description Latency (cycles)

L1 Search Latency 2

L2 Search Latency 12

L3 Search Latency 60

Main Memory Search Latency 150

Address Generation 1

Table 5: Latencies based on Memory Access Type

Category Includes Likely to include

1 cycles ALU Instructions,

Branches, Stores

2 – 11 cycles FP, Slow ALU Loads that hit in L1

12 – 59 cycles Loads that hit in L2

60 – 149 cycles Loads that hit in L3

150+ cycles Loads that miss in L3

Table 6: Classification by Execution Latency

 62

From Figure 32, we see that around 50% of the instructions are single cycle

instructions whereas 43% of them take anywhere between 2 to 11 cycles. Less than 7% of

the instructions take 12 or more cycles. While Figure 34 indicates that the benefit per

correct prediction is very high for instructions that take 12 or more cycles, the overall

speedup for them in Figure 33 is low owing to poor coverage. Instructions in the 2-11

cycles category provide the highest overall speedup, followed by instructions in the 1

cycle category. In summary, it may not be feasible to design a predictor that targets only

instructions that miss in the L1 cache simply because there are very few of them.

However, it may be beneficial to predict values for them even when the prediction

confidence is low as the benefit per correct prediction is really high. Another inference is

that single cycle instructions are worth predicting since they bring majority of the

coverage.

Note that this experiment is not perfect as instruction latencies are noted from

execution runs with value prediction disabled. On enabling value prediction, the latencies

of some instructions may change.

Figure 32: Classification by Instruction Latency: Coverage

50.15%
43.21%

4.29% 1.00% 1.34%
0

20

40

60

80

100

1 cycle 2 - 11 cycles 12 - 59 cycles 60 - 149 cycles 150+ cycles

A
V

G
. C

O
V

ER
A

G
E

%

LATENCY

PERFECT VP: COVERAGE vs LATENCY

 63

Figure 33: Classification by Instruction Latency: Speedup

Figure 34: Classification by Instruction Latency: Class Criticality

4.2.2 Classification by Instruction Type (opcode)

We classify instructions by their opcodes and perform perfect value prediction on

each one of the instruction types. Figure 35 tells us that ALU instructions and loads

constitute almost 88% of the total number of prediction-eligible instructions. From Figure

36, we see that loads alone can provide 89% speedup which is far greater than those

provided by other instruction types. This is not surprising as loads have high coverage

and will at least have twice the latency compared to an ALU instruction. There has been

prior work on predictor designs that target load instructions exclusively [4]. Per

prediction benefit is quite low for ALU instructions. However, the overall speedup is a

1.30
1.41

1.14
1.08

1.17

1

1.2

1.4

1.6

1.8

2

1 cycle 2 - 11 cycles 12 - 59 cycles 60 - 149 cycles 150+ cycles

A
V

G
. S

P
EE

D
U

P

EXECUTION LATENCY

PERFECT VP: SPEEDUP vs LATENCY

0.62 1.15 3.95

40.36

69.39

0

10

20

30

40

50

60

70

1 cycles 2 - 11 cycles 12 - 59 cycles 60 - 149 cycles 150+ cycles

A
V

G
.

C
LA

SS
 C

R
IT

IC
A

LI
TY

EXECUTION LATENCY

PERFECT VP: CLASS CRITICALITY vs LATENCY

 64

significant 24% indicating that their high coverage makes them the second most

important instruction type to predict for.

Figure 35: Classification by Instruction Type: Coverage

Figure 36: Classification by Instruction Type: Speedup

46.10% 41.64%

2.09% 1.52% 0.44%
7.12% 1.09%

0

20

40

60

80

100

 ALU Load Store Uncond
Direct Branch

Unconditional
Indirect
Branch

FP Slow ALU

A
V

G
. C

O
V

ER
A

G
E

%

INSTRUCTION TYPE

PERFECT VP: COVERAGE vs INSTRUCTION TYPE

1.24

1.89

1.04 1.00 1.02 1.04 1.03
1

1.2

1.4

1.6

1.8

2

 ALU Load Store Uncond Direct
Branch

Unconditional
Indirect
Branch

FP Slow ALU

A
V

G
. S

P
EE

D
U

P

INSTRUCTION TYPE

PERFECT VP: SPEEDUP vs INSTRUCTION TYPE

 65

Figure 37: Classification by Instruction Type: Class Criticality

4.2.3 Classification based on whether values are addresses

Some instructions produce addresses as values. We identify such instructions by

comparing their values with the data or instruction addresses accessed by the subsequent

instructions. If they match, we assume that the value produced was an address for a

subsequent memory access. We only look at the subsequent 256 instructions as any

instruction beyond that will not lie in the same instruction window and hence will not be

fetched before the producer instruction retires. Further, some of the address producing

instructions may themselves be loads. It may be beneficial to predict values for these

instructions to enable memory level parallelism. In the absence of value prediction, the

dependent memory access will have to follow the address producing load, causing

serialization of memory accesses. With these possibilities in mind, we classify the

instructions as shown in Table 7.

0.54

2.34 2.09

0.10

6.60

1.37

3.04

0

1

2

3

4

5

6

7

 ALU Load Store Uncond Direct
Branch

Unconditional
Indirect
Branch

FP Slow ALU

A
V

G
. C

LA
SS

 C
R

IT
IC

A
LI

TY

INSTRUCTION TYPE

PERFECT VP: CLASS CRITICALITY vs INSTRUCTION TYPE

 66

Category Description

NoAddr Instructions whose values are not

addresses

DataAddr Instructions whose values are data

addresses

InstrAddr Instructions whose values are instruction

addresses

DataAddrLoad Loads whose values are data addresses

InstrAddrLoad Loads whose values are instruction

addresses

AllAddr Instructions whose values are either data

or instruction addresses

AllAddrLoad Loads whose values are either data or

instruction addresses

Table 7: Classification based on whether instructions produce addresses

From Figure 40, we see that the benefit per prediction is high for address

producing instructions compared to other instructions. We also see that the benefit is

higher if the address producing instruction is itself a load. Figure 39 tells us that the

headroom speedup for address producing instructions in general is around 38% whereas it

is about 31% for address producing load instructions. While the headroom speedup for

non address producing instructions is higher owing to higher coverage, it is not possible

to ignore the headroom for address producing ones. We believe the speedup can be

increased further if we used the address to access memory in advance or to perform a

prefetch into the cache. However, since we do not have access to the internals of the CVP

 67

simulator, we do not pursue this further. It is also possible that addresses are more

predictable owing to well defined or repetitive data structure access patterns. There has

been some prior work on predicting addresses instead of values for loads [4].

Figure 38: Classification based on whether values are addresses: Coverage

Figure 39: Classification based on whether values are addresses: Speedup

80.67%

15.21%
4.12% 6.09% 2.09%

19.33%
8.19%

0

20

40

60

80

100

A
V

G
. C

O
V

ER
A

G
E

%

INSTRUCTION TYPE

PERFECT VP: COVERAGE vs INSTRUCTION TYPE

1.55
1.38

1.02

1.31

1.02

1.38 1.32

1
1.2
1.4
1.6
1.8

2

A
V

G
. S

P
EE

D
U

P

INSTRUCTION TYPE

PERFECT VP: SPEEDUP vs INSTRUCTION TYPE

 68

Figure 40: Classification based on whether values are addresses: Class Criticality

4.2.4 Classification based on Instruction Fanout

Some instructions may have more dependent instructions than others. We define

fanout as the number of direct dependent instructions that a given value producing

instruction has. We speculate that an instruction with high fanout is likely to lie on the

critical path of execution due to stalling of a larger number of dependent instructions. We

categorize instructions by their fanouts and perform perfect value prediction on them.

From Figure 43, we see that the benefit per prediction is significantly higher for

instructions with a fanout of 3 or more. Figure 42 suggests that we may be able to achieve

good speedup if we predicted selectively for these instructions. As shown in Figure 41,

less than 30% of the instructions have a fanout of 2 or more and less than 15% of the

instructions have a fanout of 3 or more. This indicates that it may be possible to track

high fanout instructions alone using less predictor state. A functional predictor will either

require static knowledge of which instructions have high fanout or will have to identify

them dynamically.

0.80

2.99

0.58

5.97

1.14

2.40

4.63

0

1

2

3

4

5

6

7

 NoAddr DataAddr InstrAddr DataAddrLoad InstrAddrLoad AllAddr AllAddrLoad

A
V

G
. C

LA
SS

 C
R

IT
IC

A
LI

TY

INSTRUCTION TYPE

PERFECT VP: CLASS CRITICALITY vs INSTRUCTION TYPE

 69

Figure 41: Classification based on instruction fanout: Coverage

Figure 42: Classification based on instruction fanout: Speedup

Figure 43: Classification based on instruction fanout: Class Criticality

6.69%

63.61%

15.63%
7.00% 2.41% 1.59% 0.75% 0.51% 0.42% 0.36% 0.29%

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

A
V

G
. C

O
V

ER
A

G
E

%

FANOUT

PERFECT VP: COVERAGE vs FANOUT

1.00

1.35
1.22

1.34

1.07 1.05 1.04 1.03 1.03 1.05 1.01
1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10

A
V

G
. S

P
EE

D
U

P

FANOUT

PERFECT VP: SPEEDUP vs FANOUT

0.00 0.59 1.52

5.28
3.38 4.05

5.96 7.05 7.86

25.02

4.55

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

A
V

G
. C

LA
SS

 C
R

IT
IC

A
LI

TY

FANOUT

PERFECT VP: CLASS CRITICALITY vs FANOUT

 70

4.2.5 Classification based on Distance to Nearest Dependent Instruction

Distance to nearest dependent instruction is the number of instructions that are

fetched after the value producing instruction until its first consumer instruction. We

speculate that the benefit per correct prediction may be higher if the consumer instruction

is closer to the producer instruction as there may not be enough cycles before dispatch of

the dependent instruction to hide the execution latency of the producer instruction. We

classify instructions based on the distance to the nearest dependent instruction and

perform perfect value prediction on them. Figure 44 tells us that around 41% of the

instructions are followed immediately by a dependent instruction. The coverage reduces

for instructions with longer distances to the nearest dependent instruction. We see the

effects of coverage reflect on the overall speedup in Figure 45. However, we do not see

any trends in benefit per prediction in Figure 46. We assume this may be because of the

superscalar design where a bunch of instructions are fetched and dispatched at once,

causing many dependent instructions to stall at roughly the same time irrespective of

distance to the producer instruction.

Figure 44: Classification based on distance to nearest dependent instruction: Coverage

40.95%

13.59%
7.13% 4.98% 3.77% 2.47% 1.93% 1.69% 1.62% 1.25%

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

A
V

G
. C

O
V

ER
A

G
E

%

DISTANCE TO NEAREST DEPENDENT INSTRUCTION

PERFECT VP: COVERAGE vs DISTANCE TO NEAREST

DEPENDENT INSTRUCTION

 71

Figure 45: Classification based on distance to nearest dependent instruction: Speedup

Figure 46: Classification based on distance to nearest dependent instruction: Class

Criticality

4.3 CONCLUSIONS AND FUTURE WORK

To conclude, we made an attempt at categorizing instructions in different ways to

identify classes that can be specifically targeted or prioritized for value prediction. We

believe that value prediction on load instructions, address producing instructions and high

fanout instructions can be extremely beneficial. While some of these ideas have been

known before, we believe that our work quantifies headroom and illustrates tradeoffs in

1.79

1.15 1.09 1.05 1.04 1.03 1.03 1.02 1.02 1.02
1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

A
V

G
. S

P
EE

D
U

P

DISTANCE TO NEAREST DEPENDENT INSTRUCTION

PERFECT VP: SPEEDUP vs DISTANCE TO NEAREST

DEPENDENT INSTRUCTION

2.40

1.12
1.37 1.31 1.29

1.60
1.80

1.34

1.69
1.97

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

A
V

G
. C

LA
SS

 C
R

IT
IC

A
LI

TY

DISTANCE TO NEAREST DEPENDENT INSTRUCTION

PERFECT VP: CLASS CRITICALITY vs DISTANCE TO NEAREST

DEPENDENT INSTRUCTION

 72

coverage and benefit per correct prediction. Until now there has been no prior work in

value prediction that targets high fanout instructions specifically. We believe this is worth

investigating in future.

 73

References

[1] Arthur Perais. Increasing the performance of superscalar processors through value

prediction. Hardware Architecture [cs.AR]. Universit Rennes 1, 2015. English.

[2] A. V. Nori, J. Gaur, S. Rai, S. Subramoney and H. Wang, "Criticality Aware Tiered

Cache Hierarchy: A Fundamental Relook at Multi-Level Cache Hierarchies," 2018

ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los

Angeles, CA, 2018, pp. 96-109.

[3] A. Seznec, “Exploring value prediction with the eves predictor,” in First

Championship Value Prediction, CVP 2018, Los Angeles, June 3, 2018.

[4] R. Sheikh, H. W. Cain, and R. Damodaran, “Load value prediction via path-based

address prediction: Avoiding mispredictions due to conflicting stores,” in Proceedings of

the 50th Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO-50 ’17, 2017.

[5] A. Perais and A. Seznec, "Practical data value speculation for future high-end

processors," 2014 IEEE 20th International Symposium on High Performance Computer

Architecture (HPCA), Orlando, FL, 2014, pp. 428-439.

[6] A. Perais and A. Seznec, "EOLE: Paving the way for an effective implementation of

value prediction," 2014 ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), Minneapolis, MN, 2014, pp. 481-492.

 74

[7] “First championship value prediction.” in https://www.microarch.org/cvp1, 2018.

[8] N. Deshmukh, S. Verma, P. Agrawal B. Panda M Chaudhuri, “DFCM++:

Augmenting DFCM with Early Update and Data Dependency-driven Value Estimation,”

First Championship Value Prediction, CVP 2018, Los Angeles, June 3, 2018.

[9] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and load value

prediction,” SIGPLAN Not., vol. 31, Sep. 1996.

[10] F. Gabbay, “Speculative execution based on value prediction,” EE Department TR

1080, Technion - Israel Institue of Technology, Tech. Rep., 1996.

[11] A. Seznec, “A new case for the tage branch predictor,” in 44th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO-44. ACM, 2011.

[12] A. Seznec, “A 64-kbytes ittage indirect branch predictor,” in Third Championship

Branch Prediction, ser. JWAC-2, 2011.

[13] G.M. Amdahl. “Validity of the single processor approach to achieving large scale

computing capabilities.” Spring Joint Computer Conference, pages 483485, 1967.

[14] Y. Sazeides and J. E. Smith. “The predictability of data values.” The 30th Annual

International Symposium on Microarchitecture, Dec. 1997

 75

[15] B. Goeman, H. Vandierendonck, K. Bosschere, ”Differential FCM: Increasing Value

Prediction Accuracy by Improving Table Usage Efficiency”, Seventh Int’l Symp. High

Performance Computer Architecture, pp. 207-216, 2001-Jan.

[16] B. Fields, S. Rubin, and R. Bod´ık. “Focusing processor policies via critical-path

prediction.” International Symposium on Computer Architecture, pages 74–85, 2001.

[17] T. Nakra, R. Gupta, and M. Soffa. “Global context-based value prediction.” High

Performance Computer Architecture, pages 4–12, 1999.

[18] M. H. Lipasti and J. P. Shen. “Exceeding the dataflow limit via value prediction.”

MICRO, pages 226–237. IEEE Computer Society, 1996.

[19] Y. Sazeides and J. Smith. “Implementations of context based value predictors. “

Technical report, University of Wisconsin Madison, 1998.

[20] R. Thomas and M. Franklin. “Using dataflow based context for accurate value

prediction.” PACT, pages 107–117, 2001.

[21] R. J. Eickemeyer and S. Vassiliadis. “A load-instruction unit for pipelined

processors.” IBM Journal of Research and Development, 37(4):547–564, Jul. 1993.

[22] H. Zhou, J. Flanagan, and T. M. Conte. “Detecting global stride locality value

streams.” International Symposium on Computer Architecture, pages 324–335, 2003.

 76

Vita

Anjana Subramanian was born in Bangalore, India. She received her Bachelor of

Engineering degree in Telecommunication Engineering from M S Ramaiah Institute of

Technology in June 2015. She joined The University of Texas at Austin in August 2017

to pursue a Master’s degree in Electrical and Computer Engineering. Between 2015 and

2017, she worked for the Architecture and Technology Group at Arm, Bangalore. She did

an internship at Apple Inc. during the summer of 2018.

Permanent email ID: anjana2693@gmail.com

This dissertation was typed by the author.

	List of Tables
	List of Figures
	Chapter 1: Introduction
	3.1 Goals
	3.2 Our Solution
	3.3 Contributions

	Chapter 2: Related Work
	2.1 Computational Predictors
	2.1.1 Last Value Predictor (LVP)
	2.1.2 Stride Predictor
	2.1.3 2-Delta Stride Predictor
	2.1.4 gDiff Predictor
	2.1.5 Value Estimator

	2.2 Context-Based Predictors
	2.2.1 Finite Context Method (FCM) Predictor
	2.2.2 Differential Finite Context Method (DFCM) Predictor
	2.2.3 Value TAGE (VTAGE) Predictor
	2.2.3 Differential Value TAGE (VTAGE) Predictor

	2.3 Hybrid Predictors
	2.3.1 Enhanced VTAGE Enhanced Stride (EVES) Predictor
	2.3.2 Differential Finite Context Method++ (DFCM++) Predictor

	Chapter 3: Improved Context-Based Value Prediction
	3.1 Introduction
	3.2 Predictability of Context Based Predictors
	3.2.1 Divergence
	3.2.2 Design Space Exploration
	3.2.2.1 Value History: PC Localized Learning, PC Local Application
	3.2.2.2 Differential Value History: PC Localized Learning, PC Local Application
	3.2.2.3 Value History: PC Localized Learning, Global Application
	3.2.2.4 Differential Value History: PC Localized Learning, Global Application
	3.2.2.5 Branch History: Value Prediction
	3.2.2.6 Branch History: Differential Value Prediction
	3.2.2.6 Other Variants
	3.2.2.7 Differential Values (Strides) vs Values
	3.2.2.8 Value History vs Branch History

	3.2.3 Exploring Tradeoffs Across Value History Lengths
	3.2.3.1 Accuracy vs Coverage
	3.2.3.2 Divergence Handling Capability

	3.3 Improving Predictability using Heterogeneous Context Information
	3.3.1 Combining Branch History with Value History
	3.3.2 Evaluating Predictability
	3.3.2.1 Accuracy vs Coverage
	3.3.2.2 Divergence Handling Capability

	3.4 The Update Problem
	3.5 Evaluation
	3.5.1 Methodology
	3.5.2 Comparison with Other Predictors
	3.5.3 Sensitivity to Value History Length
	3.5.4 Sensitivity to Branch History Length
	3.5.4 Sensitivity to Confidence Threshold
	3.5.6 Hardware Complexity

	3.6 Conclusions
	3.7 Future Work

	Chapter 4: Maximizing Value Prediction Gains
	4.1 Introduction
	4.2 Methodology
	4.2 Results
	4.2.1 Classification by Latency of Instruction Execution
	4.2.2 Classification by Instruction Type (opcode)
	4.2.3 Classification based on whether values are addresses
	4.2.4 Classification based on Instruction Fanout
	4.2.5 Classification based on Distance to Nearest Dependent Instruction

	4.3 Conclusions and Future Work

	References
	Vita

