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Abstract 

 

Advancing Value Prediction 

 

Anjana Subramanian, M.S.E 

The University of Texas at Austin, 2019 

 

Supervisor:  Calvin Lin 

 

Read after write dependencies form a key bottleneck in single thread 

performance. Value prediction [9][10][18] is a speculative technique that overcomes 

these dependencies by predicting results of instruction execution, thereby preventing 

dependent instructions from stalling. Usually, the penalties for value mispredictions are 

extremely high. As a result, value predictors have evolved to prioritize accuracy over 

coverage. To improve upon the state-of-the-art, our goals are: (i) to develop more 

powerful prediction mechanisms that have a better accuracy-coverage tradeoff (ii) to 

maximize performance gains obtained from correct predictions. We present two 

independent pieces of work that address each of these. 

To achieve the first goal, we design a Heterogeneous Context-based Value 

Predictor (HCVP) that combines the use of branch history with value history to represent 

program context information. We demonstrate that this combination provides better 

predictability than using either of them individually and that it allows for the use of 

relatively short value history lengths that provide more coverage than very long ones. 

HCVP does not maintain speculative value histories as it more tolerant to the update 
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problem that occurs when back to back instances of the same instruction are predicted. 

Our predictor performs better than the state-of-the-art value predictors (E VTAGE and 

DFCM++) to achieve a 29% speedup over a baseline with no value prediction. When 

combined with the E Stride predictor, it achieves a speedup of 46%, which is 9% higher 

than that achieved by E VTAGE E Stride (EVES), the winner of the First Championship 

Value Prediction. 

To achieve the second goal, we exploit the fact that some instructions are more 

performance critical than others. We categorize instructions by various parameters to find 

one or more classes of instructions that provide high performance benefits for correct 

predictions. We find that loads, address producing instructions, and high fanout 

instructions are extremely beneficial for value prediction. 



 viii 

Table of Contents 

List of Tables .................................................................................................................... xi 

List of Figures .................................................................................................................. xii 

Chapter 1:  Introduction ...................................................................................................1 

3.1 Goals .....................................................................................................................2 

3.2 Our Solution ..........................................................................................................3 

3.3 Contributions ........................................................................................................4 

Chapter 2:  Related Work .................................................................................................7 

2.1 Computational Predictors .....................................................................................8 

2.1.1 Last Value Predictor (LVP) ...................................................................8 

2.1.2 Stride Predictor ......................................................................................8 

2.1.3 2-Delta Stride Predictor .........................................................................8 

2.1.4 gDiff Predictor .......................................................................................9 

2.1.5 Value Estimator .....................................................................................9 

2.2 Context-Based Predictors .....................................................................................9 

2.2.1 Finite Context Method (FCM) Predictor ...............................................9 

2.2.2 Differential Finite Context Method (DFCM) Predictor .......................10 

2.2.3 Value TAGE (VTAGE) Predictor .......................................................10 

2.2.3 Differential Value TAGE (VTAGE) Predictor ....................................11 

2.3 Hybrid Predictors ................................................................................................11 

2.3.1 Enhanced VTAGE Enhanced Stride (EVES) Predictor .......................11 

2.3.2 Differential Finite Context Method++ (DFCM++) Predictor ..............12 



 ix 

Chapter 3:  Improved Context-Based Value Prediction ..............................................13 

3.1 Introduction .........................................................................................................13 

3.2 Predictability of Context Based Predictors .........................................................15 

3.2.1 Divergence ...........................................................................................16 

3.2.2 Design Space Exploration ....................................................................18 

3.2.2.1 Value History: PC Localized Learning, PC Local 

Application .....................................................................................18 

3.2.2.2 Differential Value History: PC Localized Learning, PC 

Local Application...........................................................................18 

3.2.2.3 Value History: PC Localized Learning, Global Application ...19 

3.2.2.4 Differential Value History: PC Localized Learning, Global 

Application .....................................................................................19 

3.2.2.5 Branch History: Value Prediction ............................................20 

3.2.2.6 Branch History: Differential Value Prediction ........................20 

3.2.2.6 Other Variants ..........................................................................21 

3.2.2.7 Differential Values (Strides) vs Values ...................................21 

3.2.2.8 Value History vs Branch History .............................................24 

3.2.3 Exploring Tradeoffs Across Value History Lengths ...........................27 

3.2.3.1 Accuracy vs Coverage .............................................................27 

3.2.3.2 Divergence Handling Capability..............................................30 

3.3 Improving Predictability using Heterogeneous Context Information .................35 

3.3.1 Combining Branch History with Value History ..................................35 

3.3.2 Evaluating Predictability ......................................................................37 

3.3.2.1 Accuracy vs Coverage .............................................................37 

3.3.2.2 Divergence Handling Capability..............................................39 



 x 

3.4 The Update Problem ...........................................................................................42 

3.5 Evaluation ...........................................................................................................46 

3.5.1 Methodology ........................................................................................46 

3.5.2 Comparison with Other Predictors.......................................................46 

3.5.3 Sensitivity to Value History Length ....................................................48 

3.5.4 Sensitivity to Branch History Length ..................................................49 

3.5.4 Sensitivity to Confidence Threshold ....................................................50 

3.5.6 Hardware Complexity ..........................................................................51 

3.6 Conclusions .........................................................................................................52 

3.7 Future Work ........................................................................................................52 

Chapter 4:  Maximizing Value Prediction Gains ..........................................................54 

4.1 Introduction .........................................................................................................54 

4.2 Methodology .......................................................................................................58 

4.2 Results .................................................................................................................60 

4.2.1 Classification by Latency of Instruction Execution .............................60 

4.2.2 Classification by Instruction Type (opcode) ........................................63 

4.2.3 Classification based on whether values are addresses .........................65 

4.2.4 Classification based on Instruction Fanout ..........................................68 

4.2.5 Classification based on Distance to Nearest Dependent Instruction ...70 

4.3 Conclusions and Future Work ............................................................................71 

References .........................................................................................................................73 

Vita ....................................................................................................................................76 

  



 xi 

List of Tables 

Table 1: Terminology describing coverage benefits and losses ....................................... 32 

Table 2: Terminology describing inaccuracies dealt / not dealt with ............................... 33 

Table 3: Additional Terminology describing new coverage benefits ............................... 40 

Table 4: Execution Latency for Different Instruction Types ............................................ 61 

Table 5: Latencies based on Memory Access Type.......................................................... 61 

Table 6: Classification by Execution Latency .................................................................. 61 

Table 7: Classification based on whether instructions produce addresses ....................... 66 

 



 xii 

List of Figures 

Figure 1: Generic Structure of a Context-based Predictor ................................................ 16 

Figure 2: Update Mechanism for a Context-based Predictor ............................................ 16 

Figure 3: Value History: PC Localized Learning, PC Local Application ........................ 18 

Figure 4: Differential Value History: PC Localized Learning, PC Local Application ..... 19 

Figure 5: Value History: PC Localized Learning, Global Application ............................ 19 

Figure 6: Differential Value History: PC Localized Learning, Global Application ......... 20 

Figure 7: Branch History: Value Prediction ..................................................................... 20 

Figure 8: Branch History: Differential Value Prediction .................................................. 21 

Figure 9: Evaluation of Differential Values vs Values ..................................................... 23 

Figure 10: Accuracy Comparison for Predictors using different context information ..... 26 

Figure 11: Coverage Comparison for Predictors using different context information ..... 26 

Figure 12: Speedup Comparison for Predictors using different context information ....... 26 

Figure 13: Accuracy, Coverage and Speedup for Different Value History Lengths ........ 28 

Figure 14: Effects of increasing confidence threshold for a value history length of 16 ... 30 

Figure 15: Value History: Coverage benefits and losses .................................................. 34 

Figure 16: Value History: Inaccuracies dealt/not dealt with ............................................ 35 

Figure 17: Predictor design that combines both Value History and Branch History........ 36 

Figure 18: Accuracy comparison when branch history is combined with value history .. 37 

Figure 19: Coverage comparison when branch history is combined with value history .. 38 

Figure 20: Speedup comparison when branch history is combined with value history.... 39 

file://///Users/anjanasubramanian/UT_Austin/Academics/Spring%202019/Thesis/Final_Documentation/AnjanaSubramanian_Thesis.docx%23_Toc8152000
file://///Users/anjanasubramanian/UT_Austin/Academics/Spring%202019/Thesis/Final_Documentation/AnjanaSubramanian_Thesis.docx%23_Toc8152007


 xiii 

Figure 21: Comparison of coverage benefits and losses ................................................... 41 

Figure 22: Comparison of inaccuracies dealt/not dealt with ............................................ 42 

Figure 23: Drop in performance when the oracle update mechanism is replaced with an 

actual update ..................................................................................................................... 43 

Figure 24: Overall performance when predictions are not made for instructions that share 

the same signature with one more inflight instructions .................................................... 45 

Figure 25: Speedup comparison across standalone predictors ......................................... 47 

Figure 26: Speedup comparison across hybrid predictors ................................................ 48 

Figure 27: HCVP Speedup comparison for varying value history lengths ....................... 48 

Figure 28: HCVP Speedup comparison for varying branch history lengths .................... 49 

Figure 29: HCVP Speedup comparison for varying confidence thresholds ..................... 50 

Figure 30: HCVP Coverage comparison for varying confidence thresholds ................... 51 

Figure 31: Variation in speedup by applying perfect value prediction on 10% of the 

instructions chosen randomly ........................................................................................... 56 

Figure 32: Classification by Instruction Latency: Coverage ............................................ 62 

Figure 33: Classification by Instruction Latency: Speedup .............................................. 63 

Figure 34: Classification by Instruction Latency: Class Criticality .................................. 63 

Figure 35: Classification by Instruction Type: Coverage ................................................. 64 

Figure 36: Classification by Instruction Type: Speedup................................................... 64 

Figure 37: Classification by Instruction Type: Class Criticality ...................................... 65 

Figure 38: Classification based on whether values are addresses: Coverage ................... 67 

Figure 39: Classification based on whether values are addresses: Speedup ..................... 67 



 xiv 

Figure 40: Classification based on whether values are addresses: Class Criticality ......... 68 

Figure 41: Classification based on instruction fanout: Coverage ..................................... 69 

Figure 42:  Classification based on instruction fanout: Speedup ...................................... 69 

Figure 43: Classification based on instruction fanout: Class Criticality........................... 69 

Figure 44: Classification based on distance to nearest dependent instruction: Coverage 70 

Figure 45: Classification based on distance to nearest dependent instruction: Speedup .. 71 

Figure 46: Classification based on distance to nearest dependent instruction: Class 

Criticality .......................................................................................................................... 71 

  



 1 

Chapter 1:  Introduction 

As the benefits of parallel computing are limited by the parallelizability of 

software [13] and the migration of the software industry towards parallel application 

development has been slow, the need for improving single thread performance continues. 

To that end, numerous microarchitectural techniques such as pipelining, out-of-order 

execution, branch prediction and superscalar architectures have been explored. The 

primary motivation behind these techniques is to improve performance by increasing 

instruction-level parallelism (ILP). Despite enhancing hardware designs to achieve ILP, 

read after write (RAW) dependencies have to be strictly enforced in most cases. These 

dependencies occur when source values of instructions are dependent on the execution 

results of previous instructions. Under such circumstances, instructions stall and 

execution is serialized. This creates a severe bottleneck in processor performance.  

Value prediction [9] [10] [18] is a speculative technique that can potentially 

overcome RAW dependencies by predicting results of instructions. These predicted 

results can be used as source values for dependent instructions, thereby preventing them 

from stalling. This can shorten critical paths in program execution and can lead to better 

performance of sequential code. To enforce correctness, a mechanism to recover from 

incorrect predictions is required.  

Perfect value prediction performed on a set of 135 traces from the CVP 

simulation infrastructure [7] achieves a speedup of 2.5 times over a baseline with no 

value prediction.   

Although value prediction was first explored in the 1990s [9] [10] [18], it has not 

been adopted widely. Key concerns have been with respect to accuracy of predictions and 

complexity of the pipeline required to support value prediction. However, recent work [1] 
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[3] introduces predictor designs with extremely high accuracy (~99%), allowing for the 

use of simple misprediction recovery mechanisms that impose high penalties. Further, 

recent work also demonstrates that value prediction can pave the way for an out-of-order 

engine that is less aggressive, thereby reducing pipeline complexity [6]. These 

developments have generated renewed interest in pursuing value prediction as a potential 

technique to improve hardware performance.  

3.1 GOALS 

Value prediction is generally considered to be a difficult problem because the 

average performance gain per prediction tends to be low while misprediction penalties 

tend to be extremely high (~5-50 cycles) [1].  The choice of misprediction recovery 

mechanism is usually a tradeoff between hardware complexity and the cost (latency) of 

misprediction. To simplify complexity, a pipeline flush is preferred where all instructions 

following the mispredicted one are re-fetched and re-executed. To deal with these 

challenges, predictor designs have focused on achieving extremely high accuracies 

(~99%) [1] [3]. In this process, we believe that predictors have resorted to conservative 

mechanisms that compromise on coverage to achieve the desired accuracy.   

For instance, the recent DFCM++ [8] predictor tries to capture program context 

using PC localized value histories. The predictor learns correlated value patterns and 

predicts that the same pattern will occur again when a similar value history is observed. 

However, it uses very long value history lengths of 32 and 64. We demonstrate that the 

ability to identify patterns and predict the values of a larger number of instructions (i.e., 

coverage) tends to be low at these history lengths, owing to the large training times 

involved. However, they are preferred since they provide improved accuracy and hence 

better speedup. 
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Another instance is the VTAGE predictor [5] that chooses to use global branch 

history over PC localized value history. Predicting back to back instances of the same 

instruction can lead to inaccuracies when value history is used. VTAGE avoids this 

problem by using global branch history instead. However, we demonstrate that branch 

history is less powerful than value history in detecting patterns. In other words, the use of 

branch history trades off coverage for accuracy.   

One final example is the use of confidence counters in predictor designs. These 

counters are trained based on the correctness of speculated values stored in the table. The 

stored values are used only when the counters saturate, indicating high confidence in 

prediction. While the counters are still training, coverage is lost. However, accuracy is 

prioritized and hence predictors are usually designed to take this hit in coverage. 

In summary, the high bar for accuracy has caused the evolution of value predictor 

design to take a more defensive approach.  Our goal is to improve the aggressiveness of 

value predictors through two techniques: 

• Improve predictability so that sufficient accuracy can be achieved without hurting 

coverage 

• Increase the gains per correct prediction so that the bar for accuracy is lowered 

This thesis presents two independent pieces of work in an attempt to target each 

of these goals.  

3.2 OUR SOLUTION 

In our first piece of work, we design a predictor with improved prediction 

capabilities. We use a systematic approach to explore predictability limits when either 

branch history or value history is used to capture program context. We also explore 

predictability limits across context lengths. For a value to be predictable,   
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• it has to follow a context enough number of times to build prediction confidence 

• it has to follow the context continuously without being interrupted by another value 

that follows the same context. (We use the term divergence to describe a situation 

where the same context is followed by different values at different times). 

Based on these criteria, we establish that PC localized value histories of lengths 4 

to 16 provide the best predictability (i.e., the best coverage and divergence handling 

capability). However, it does not translate into the best speedup as a result of insufficient 

accuracy.  

We explore the use of branch history combined with value history and 

demonstrate that it achieves better accuracy and divergence handling capabilities without 

significant loss in coverage when compared to using value history alone. We also 

demonstrate that it has better tolerance to the update problem that arises when different 

instances of the same static instruction have to be predicted back to back. We introduce 

the Heterogeneous Context-based Value Predictor (HCVP) designed based on these 

observations and empirically compare against other state-of-the-art value predictors. 

In our second piece of work, we identify one or more instruction classes that 

provide high average performance gain per correct prediction.  To study available 

headroom, we categorize instructions using different parameters and apply perfect value 

prediction on each of them. We find that some instruction classes provide high 

performance benefit per correct prediction. Among them, a few provide sufficient 

coverage while a few others are so few in number that it is not worthwhile pursuing them 

exclusively. 

3.3 CONTRIBUTIONS 

This thesis makes the following contributions: 
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• We systematically evaluate the predictability of using either value history or branch 

history to represent program context information. While we identify that PC localized 

value history with global application provides the best predictability, we also 

illustrate how it falls short of its true potential due to inaccuracy and inability to deal 

with diverging value streams. 

• We demonstrate that combining the use of branch history with value history improves 

its divergence handling capability and accuracy resulting in better predictability1 and 

performance. It also allows for the aggressive use of shorter value history lengths that 

provide better coverage. We introduce the Heterogenous Context-based Value 

Predictor (HCVP) based on these principles. 

• We experimentally demonstrate that value histories localized by both PC and branch 

history are more tolerant to the update problem as opposed to using value histories 

localized by PC alone. As a result, HCVP does not maintain any speculative value 

histories. 

• We show that HCVP performs better than the current state-of-the art value predictors 

(E VTAGE and DFCM++), providing a speedup of 29% against a baseline with no 

value prediction. When combined with the E Stride predictor, it achieves a speedup of 

about 46% which is 9% higher than that of E VTAGE with E Stride (EVES), the 

winner of the First Championship Value Prediction (CVP-1). 

                                                 

1 Some of the conclusions on improved predictability using heterogenous context information were arrived 

at independently by Pawan Joshi in his thesis as well. While this thesis derives its conclusions from a 

systematic analysis of the gaps in performance between realistic and oracle divergence handling 

capabilities, Joshi’s work derives them based on the combined benefits of using EVES and DFCM++ and 

based on a “variance” metric that roughly estimates divergence.   
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• In the second piece of work, we empirically find that loads, address producing 

instructions, and high fanout instructions are extremely beneficial for value 

prediction. While some of these ideas have been known before, we quantify tradeoffs 

in coverage and average benefit per correct prediction. Until now, high fanout 

instructions have not been specifically targeted for value prediction.  
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Chapter 2:  Related Work 

This chapter provides an overview of prior work in value prediction. Value 

prediction was introduced independently by Lispasti et al. [9] [18] and Gabbay and 

Mendelson [10]. It is based on the observation that programs exhibit value locality. In 

other words, results produced by instructions form a predictable pattern. For instance, an 

instruction can produce values that are constants or form a strided pattern. Value 

predictors have been designed to make predictions based on patterns observed in the past.  

Broadly, value predictors can be classified into two categories – computational 

predictors and context-based predictors [14]. Computational predictors compute values 

by applying a function to previously seen values. Based on previous history, they learn 

when it may be suitable to apply one or more functions to predict a value. Context-based 

predictors memorize patterns. They learn values that follow a certain context and predict 

the same value when the context repeats. Some of the state-of-the-art predictors are 

hybrid predictors that combine a context-based predictor with a computational predictor 

[3] [8].  

Most value predictors employ confidence mechanisms to achieve high prediction 

accuracy [3] [8]. This is usually done by maintaining confidence counters for each 

prediction stored in the predictor tables. These counters are trained based on whether the 

stored predictions match the actual execution results. The stored predictions are used only 

when the confidence counters saturate indicating high confidence in prediction.  

Section 2.1 describes a few computational predictors while section 2.2 describes a 

few context-based ones. Section 2.3 describes the hybrid predictors.  
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2.1 COMPUTATIONAL PREDICTORS 

2.1.1 Last Value Predictor (LVP) 

This is the simplest kind of predictor [18]. For a given instruction PC, it predicts 

that the value will be same as the value seen during the previous instance of the 

instruction. In other words, it performs the identity operation on the last seen value. The 

predictor consists of a table that is indexed using the lower bits of the instruction address. 

Each entry contains a tag and a last value. The higher bits of the instruction address are 

compared against the tag. If a match is found, the corresponding last value is used as the 

prediction. After the instruction completes execution, the last value of the corresponding 

entry in the table is updated.  

2.1.2 Stride Predictor 

The stride predictor [10] table is similar to the table used by the Last Value 

Predictor, except that entries contain an additional field called stride. The stride value is 

added to the last seen value to obtain a prediction. Once an instruction completes 

execution, the stride field is updated by computing the difference between the current 

result and the last value observed for the instruction. The last value field is then updated 

to reflect the current result. This predictor is useful for predicting values of instructions 

that exhibit a strided pattern. Examples include loop iteration variables or indexes used 

for sequential array accesses.  

2.1.3 2-Delta Stride Predictor 

The 2-delta stride predictor [21] is a variation of the stride predictor described 

above. Each entry consists of two strides instead of one. The first stride is updated always 

whereas the second stride is updated only when there is no change in value for the first 
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stride. The second stride is used for prediction. The predictor is designed this way to 

reduce mispredictions for loop iteration variables when new instances of the loops begin. 

For every new instance of a loop, the baseline stride predictor will encounter two 

mispredictions – one for the first iteration and one for the second iteration. 2-Delta Stride 

Predictor will mispredict only for the first iteration.  

2.1.4 gDiff Predictor 

Unlike the previous predictors, the gDiff predictor [22] looks at global value 

history to make a prediction. It computes the differences between the result of an 

instruction and the results of the last n instructions. If any of the computed differences 

match a previously seen difference, then the matching difference along with the last seen 

value of the corresponding instruction in global history is used to make a prediction. 

2.1.5 Value Estimator 

The Value Estimator [8] tries to infer operations (like addition or subtraction) 

based on past history of source and destination values corresponding to instruction PCs. It 

applies the inferred operation on the source operands to compute the resultant value. In 

case the source operands are not ready, it applies the same mechanism to infer source 

values by looking at their producer instructions.  

2.2 CONTEXT-BASED PREDICTORS 

2.2.1 Finite Context Method (FCM) Predictor 

FCM [19] is a two-level predictor that uses local value history to represent 

context information. The first level table is called as the Value History Table (VHT) and 

is indexed using the instruction address. Each entry in this table contains the last n values 

observed for the given instruction. In other words, they contain the local value history. 
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These values are hashed to index into a second level table called as the Value Prediction 

Table (VPT). The Value Prediction Table consists of the actual prediction. After the 

instruction executes and the result is known, the corresponding value history and 

prediction are updated.  

2.2.2 Differential Finite Context Method (DFCM) Predictor 

DFCM [15] is a variant of FCM that tracks differences between the values instead 

of the values themselves. An entry in the VHT consists of a local history of differences. 

A Last Value Table (LVT) is maintained to keep track of the last seen result for a given 

instruction address. An entry in the VPT Table contains a difference that needs to be 

added to the last seen value to obtain a prediction. 

2.2.3 Value TAGE (VTAGE) Predictor  

VTAGE [5] derives from the popular ITTAGE Branch predictor [12] and 

leverages similarities between branch target prediction and value prediction. It uses 

instruction address and global branch history to represent context information. The 

predictor consists of a base table and several tagged tables. The base table is indexed 

using the instruction address whereas the tagged tables are indexed using a hash of the 

instruction address and global branch history. Longer branch history lengths are used to 

index higher order tables. Each entry in the base table and tagged tables stores the last 

seen value for the given context and a confidence counter. The confidence counter is a 

saturating counter that is incremented for correct predictions and decremented for wrong 

ones. Predictions are made only when the confidence counter values are high. In addition 

to these, the entries in the tagged tables consist of a partial tag and a useful counter. The 
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partial tag is used to match higher order bits of the indexing value.  The useful counter is 

used by the replacement policy when entries have to be evicted.   

At prediction time, all the tables are searched in parallel. A matching component 

that uses the longest branch history is used for the prediction. 

2.2.3 Differential Value TAGE (VTAGE) Predictor  

The DVTAGE predictor [1] modifies the tables in the TAGE to store strides 

instead of values. It also augments it with a Last Value Table (LVT). It predicts values by 

adding the predicted stride with the last value for the given PC. It maintains a speculative 

window to keep track of last values of inflight instructions. 

2.3 HYBRID PREDICTORS 

2.3.1 Enhanced VTAGE Enhanced Stride (EVES) Predictor 

EVES [3] is the winner of the First Championship Value Prediction [7] in all 

categories (i.e., 8kB, 32kB and unlimited). It is a hybrid predictor that combines 

enhanced versions of VTAGE and Stride. Some of the enhancements to VTAGE include 

the addition of partial tags to the base table and compression of data values. Other 

enhancements include careful confidence management and entry allocation based on 

expected average performance benefit of a correct prediction.  

A key enhancement to the Stride Predictor includes the computation of the 

predicted value as a function of not only the last value and the predicted stride, but also of 

the number of inflight instructions for the given instruction address.  

The VTAGE component is preferred over the Stride component when both of 

them provide confident predictions. 
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2.3.2 Differential Finite Context Method++ (DFCM++) Predictor 

The DFCM++ Predictor [8] was the runner up in the unlimited size category of 

the first Championship Value Prediction [7]. It augments the DFCM predictor [15] with 

several enhancements. It maintains speculative histories of differences and speculative 

last seen values to prevent mispredictions due to the delay between making a prediction 

and knowing the actual result. It also maintains histories of multiple lengths and chooses 

between them dynamically. To keep track of instruction PCs whose values are frequently 

mispredicted, it maintains a PC Blacklister. 

It combines this component with a Value Estimator and prioritizes the latter if it 

can make a confident prediction. 
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Chapter 3:  Improved Context-Based Value Prediction 

3.1 INTRODUCTION 

Majority of the state-of-the-art value predictors are context-based [1] [3] [5] [8]. 

They learn values that follow a certain context and predict them when the same context 

repeats [14]. Context-based predictors differ in the information they use to represent 

program context. Broadly speaking, there have been two categories – ones that use 

branch history [1] [3] [5] and ones that use value history [8] [15] [19]. Like any other 

design choice in computer architecture, there are tradeoffs in using either one of these for 

prediction. For instance, value history-based predictors are more suited to capture any 

arbitrarily correlated value pattern while branch history-based predictors are generally 

limited to capturing constant or strided patterns. As a result, the former tends to have 

greater coverage than the latter. On the other hand, predicting using value history requires 

knowledge of recent values. Some of these values may not be available if the 

corresponding producer instructions have not completed execution. We call this as the 

update problem because it results from the predictor state not being updated in time to 

reflect correct value history. Branch history-based predictors don’t suffer from the update 

problem [5] as they rely on recent branch history that is always available based on actual 

or predicted branch outcomes. A mispredicted branch is not a concern as a pipeline flush 

occurs causing instructions to be re-fetched. In other words, branch history-based 

predictors do not suffer from prediction inaccuracy due to non-availability of recent 

values. 

In this chapter, we explore the predictability and performance impacts of using 

branch history or value history to represent context information. We explore different 

context lengths and quantify tradeoffs in accuracy, coverage and speedup. Our key 
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contribution is in demonstrating that a combination of branch history with value history 

works better than either one of them. It helps achieve the coverage benefits of using value 

history while being more tolerant to the update problem. Based on these observations, we 

introduce the Heterogenous Context-based Value Predictor (HCVP) that uses value 

history localized by both PC and branch history.  

While this work focuses on improving context representation for better 

predictability and performance, it does not focus on the practicality of predictor 

implementation with respect to storage budget. We assume that we have infinite storage 

budget and evaluate against the state-of-the-art by selecting winning entries from the 

unlimited storage track of the First Championship Value Prediction (CVP-1) [7]. We 

consider limiting predictor table sizes as future work. 

Our key contributions can be summarized as follows: 

1. We explore the design space for context-based predictors to evaluate predictability 

limits. We demonstrate that the use of PC localized value history provides the best 

predictability among known ways to represent context information in current value 

predictors.  

2. We demonstrate that the use of value history for prediction loses out on significant 

coverage and accuracy due to divergences in value streams. There is further potential 

to improve performance if divergences can be dealt with more effectively.  

3. We demonstrate that a combination of branch history and value history provides 

better divergence handling capabilities than using value history alone. It achieves 

improved accuracy with negligible drop in overall coverage, despite having to train 

over more context information. 
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4. We achieve peak performance using a combination of 16 values with global branch 

history. However, we show that a combination of 4 values with branch history is 

sufficient to match the performance of using long value histories (32 values). 

5. We demonstrate that the combined use of value history and branch history is more 

tolerant to the update problem than value history alone is. As a result, speculative 

value histories need not be maintained.  

6. We evaluate our predictor, HCVP, to show that it outperforms state-of-the-art 

context-based predictors, namely E VTAGE [3] and DFCM++ [8] by achieving a 

speedup of 29% over a baseline with no value prediction. Further, we combine it with 

the E Stride predictor to achieve a speedup of 46% which is 9% higher than that of E 

VTAGE E Stride (EVES) [3], the winner of CVP-1. 

3.2 PREDICTABILITY OF CONTEXT BASED PREDICTORS  

In this section, we explore the design space to compare different representations 

and lengths of context information to select our baseline. Our goal is to select a baseline 

that has the best predictability. We expect it to perform well in terms of capturing 

patterns (coverage) and making correct predictions based on them (accuracy). We rely on 

the speedup metric to reflect the combined effects of accuracy and coverage. To evaluate 

predictability efficiently, we ignore the update problem throughout Sections 3.2 and 3.3. 

We assume that an oracle update mechanism exists i.e., the correct value is known 

immediately after making a prediction and hence the predictor state is up to date at any 

given point of time. Eventually, we re-evaluate with a realistic update mechanism in 

Section 3.4 
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3.2.1 Divergence 

The generic structure of a context-based predictor is shown in Figure 1. It shows 

the prediction operation. An entry in the table consists of a prediction and a confidence 

counter and is selected based on the context. The prediction is made use of only if the 

confidence counter exceeds a threshold.  

 

 
Figure 1: Generic Structure of a Context-based Predictor 

 

 

 

 

 

 

Figure 2 explains the basic algorithm for predictor table update when the actual 

value is known. The confidence counter is incremented if the prediction stored in the 

table is correct. It is reset to zero if it is incorrect. The prediction is replaced with a new 

one if the counter is already at zero. 

Based on this generic design, we see that the following two are requirements for 

good predictability: 

if (actual_value is consistent with prediction) 

 confidence_counter = min (confidence_counter + 1, threshold) 

else if (confidence_counter != 0) 

 confidence_counter = 0 

else 

 update prediction to make it consistent with actual value 

Figure 2: Update Mechanism for a Context-based Predictor 
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Requirement 1: Contexts are followed by a value enough number of times (>= 

threshold) so that the confidence is high enough to make a prediction 

Requirement 2: Contexts are followed by the same value all the time. In practice, 

the same context can be followed by different values at different times. We call this as 

“divergence”. 

Note that both these requirements depend on the quality of information used to 

represent the context. When program context is captured well, these requirements are 

satisfied to a large extent resulting in high predictability.  

There is potential to improve context representation to deal with divergences. For 

instance, additional context information can be used along with existing information to 

split diverging streams into separate entries in the table so that they are no longer 

diverging. If we satisfy requirement 2 this way, requirement 1 establishes an upper bound 

on predictability. To quantify this upper bound, we introduce the concept of “oracle 

divergence handling”. 

A hypothetical predictor with oracle divergence handling capability remembers 

not one, but many predictions for each context. It can make a correct prediction as long as 

it has seen the correct value follow a given context enough number of times 

(>=threshold).  It uses an oracle mechanism to select the appropriate prediction. By 

design, it operates at 100% accuracy. As a result, confidence counters are never reset to 

zero, they are only trained positively when values repeat. 

We call the more realistic predictor described using Figure 1 and Figure 2 as the 

one with “practical divergence handling”. 
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3.2.2 Design Space Exploration 

We look at variants in predictor design based on how context information is 

represented. First, we classify them depending on whether branch history or value history 

is used. Further, we classify value history-based predictors based on whether they apply 

patterns learnt from a PC globally (across PCs) or locally (within the same PC). All of 

these predictor designs can further be classified based on whether they predict values or 

differential values (i.e., strides). We describe each one of these designs in more detail. 

3.2.2.1 Value History: PC Localized Learning, PC Local Application 

The context information used is PC, PC Local Value History. Predicted values are 

stored in the prediction table. 

 

 
Figure 3: Value History: PC Localized Learning, PC Local Application 

3.2.2.2 Differential Value History: PC Localized Learning, PC Local Application 

The context information used is PC, PC Local Differential Value History. 

Predicted strides are stored in the prediction table. 
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Figure 4: Differential Value History: PC Localized Learning, PC Local Application 

3.2.2.3 Value History: PC Localized Learning, Global Application 

The context information used is PC Local Value History. Predicted values are 

stored in the prediction table. 

 
Figure 5: Value History: PC Localized Learning, Global Application 

3.2.2.4 Differential Value History: PC Localized Learning, Global Application 

The context information used is PC Local Differential Value History. Predicted 

strides are stored in the prediction table. 
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Figure 6: Differential Value History: PC Localized Learning, Global Application 

3.2.2.5 Branch History: Value Prediction 

The context information used is PC, Global Branch History. Predicted values are 

stored in the prediction table. 

 

 
Figure 7: Branch History: Value Prediction 

3.2.2.6 Branch History: Differential Value Prediction 

The context information used is PC, Global Branch History. Predicted strides are 

stored in the prediction table. 
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Figure 8: Branch History: Differential Value Prediction 

3.2.2.6 Other Variants  

We do not evaluate global value history-based predictors as the update problem is 

extremely severe in them. Since most of the recent values in the global history may be 

unknown at prediction time, the predictor tends to be very inaccurate when a realistic 

update policy is applied.  

3.2.2.7 Differential Values (Strides) vs Values  

First, we evaluate between using differential values (strides) and values. When 

using strides, the predictor keeps track of the last observed value for a given context and 

adds the predicted stride to compute the final value. In addition to this, differential value 

history-based predictors maintain histories of strides instead of histories of values. The 

following are the advantages of strides over values: 

• Some predictions that are considered as compulsory misses for values can be 

predicted using strides. For example, the value sequence 1, 3, 4, 6, 7, 9, 10, 12 can be 

represented using the strided sequence 2, 1, 2, 1, 2, 1, 2. Since the strided sequence is 
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more regular, it may possible for it to predict the next value in the sequence even 

though it has not seen it before.  

• Some predictors apply learnings across contexts. For such predictors, strides can 

provide improved coverage due to positive aliasing. For example, PC x with value 

stream 1, 3, 5, 7, 9, 11 and PC y with value stream 101, 103, 105, 107, 109, 111 can 

both be represented using the strided stream 2, 2, 2, 2. It may be possible to predict 

values for PC y using the strided pattern learnt for PC x. 

• Since multiple value streams can be represented by the same strided stream, it can 

cause storage efficiency thereby reducing predictor sizes. Hashing efficiency for 

strides may also be better than that for values since strides can usually be represented 

using fewer bits. 

The following are some disadvantages of using strides over values. 

• Strides can be less accurate than using values. For instance, the last two values of the 

value sequence 1, 3, 5, 7, 9, 10000, 150000 can be incorrectly predicted by a stride 

predictor that may learn a constant stride of 2 initially. 

• For predictors that apply learnings across contexts, strided patterns can cause 

inaccuracy due to negative aliasing. For example, if PC x has a value pattern of 1, 1, 

1, 1, 1, 1 and PC y has a value pattern of 100, 100, 100, 105, 105, a strided predictor 

may try to apply constant strides learnt from PC x on PC y. This will cause 

inaccuracy in predicting 105 for PC y. 

• Stride based predictors require knowledge of the last observed value for a given 

context. This may not be available if the corresponding instruction has not completed 

execution. This can cause inaccuracy. 

In summary, strides tend to provide more coverage than values. However, they 

may be more inaccurate. We wish to pick the best one for predictability purposes. We 
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evaluate them on the on the two value history-based predictors (PC Local Learning, PC 

Local Application and PC Local Learning, Global Application) and on the branch 

history-based predictor. The evaluation is done for different context lengths and using 

both oracle and practical divergence handling capability. The confidence threshold is 

fixed to 10.  

 

 

 

 

 

 

From Figure 9, we see that the accuracy for values is consistently better than that 

of differential values but only by a small margin. However, the overall coverage and 

Values: Oracle Divergence Handling Differential Values: Oracle Divergence Handling 

Differential Values: Practical Divergence Handling Values: Practical Divergence Handling 

Figure 9: Evaluation of Differential Values vs Values 
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speedup is mostly better for the latter than the former. Hence, we choose differential 

values over values for our baseline. In the rest of this chapter, we mean differential values 

when we refer to values or value history. 

3.2.2.8 Value History vs Branch History 

In this section, we evaluate value history vs branch history.  We first discuss the 

advantages of using value history over branch history: 

• Value history-based prediction can capture any arbitrarily correlated value pattern for 

a given PC. Branch history-predictors can only capture constants or strides for a given 

PC and branch history. 

• Intuitively, it seems more reasonable that previous values can be more direct 

indicators of the next value as opposed to branch history. In other words, 

predictability and coverage is expected to be better for value history.  

• Value history-based predictors such as DFCM++ achieves better coverage than 

branch history-based predictors such as EVTAGE using much lower confidence 

counter widths. 

The following are some disadvantages of using value history over branch history. 

• Values are 64 bits wide and their histories have to be maintained on a per PC basis. 

Since PC local value histories are used to index into the prediction table, the number 

of entries in the predictor may also be large. However, there has been evidence on 

how only a small number of values are required to predict majority of the dynamic 

instructions [14]. Also, the DFCM++ predictor [8] has shown that is possible to 

compress 64 values into a single 64-bit value for predictor operation. On the other 

hand, storage complexity is somewhat simpler for branch history-based predictors as 

global branch history is used. 
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• Value histories can be incomplete if the corresponding producer instructions are still 

inflight. This can cause loss in accuracy and coverage. Predictors tend to maintain 

speculative histories to deal with this.  

Value history-based predictors are further classified based on whether they apply 

PC localized learning globally (across PCs) or locally (within the same PC). We discuss 

tradeoffs between these two options. 

• Often, PCs with similar value history tend to behave similarly. Global application 

helps capture this behavior. On the other hand, ability to learn patterns is affected 

when PCs with similar value history produce different values. PC local application 

works better under these circumstances. 

• The predictor storage is reduced significantly if predictions are shared across PCs. 

This reduces the table size for a predictor with global application as opposed to one 

with PC local application.   

Since branch history is global context information, we do not have a similar 

classification for it. 

We evaluate the three predictors for different context lengths using both oracle 

and practical divergence handling. Figure 10, Figure 11 and Figure 12 depict the 

accuracy, coverage and speedup curves respectively.  
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Figure 10: Accuracy Comparison for Predictors using different context information 

 
Figure 11: Coverage Comparison for Predictors using different context information  

 
Figure 12: Speedup Comparison for Predictors using different context information 
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For value history-based predictors, we see that global application tends to perform 

better than PC local application for most of the context lengths. Hence, between the two, 

we pick the former.  

The branch-history based predictor with oracle divergence handling capability has 

the best coverage and speedup indicating that it has potential for value prediction. 

However, we see that the branch history-based predictor with practical divergence 

handling capability performs the worst. In other words, branch history alone is not as 

powerful as value history is in detecting patterns as there is plenty of divergence that it 

can’t handle. It may be possible to improve its accuracy and hence its speedup by using a 

higher confidence threshold than the one use for this experiment (i.e., 10). However, 

doing so will not equip it with additional divergence handling capability required to 

identify more patterns. It is only a defensive mechanism that avoids predicting for 

diverging values and results in lower coverage due to slower training.  

For a predictor with practical divergence handling capability, value history with 

global application achieves the best accuracy, coverage and speedup for a context length 

of 4 or more. This is a strong indication that it provides better predictability than the 

others. Hence, we pick this as our baseline. Improving its performance without a drop in 

its coverage automatically means the resulting performance will be better than that of a 

branch history-based predictor (assuming oracle update). 

3.2.3 Exploring Tradeoffs Across Value History Lengths 

3.2.3.1 Accuracy vs Coverage 

We delve deeper into the tradeoffs of using different context lengths in our 

baseline value history-based prediction method. 
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Figure 13: Accuracy, Coverage and Speedup for Different Value History Lengths 

From Figure 13, we make the following important observations: 

• The coverage curve for oracle divergence handling drops with increase in value 

history length. This is because it takes longer to train as context length increases. 

Assuming we can solve the divergence issue magically, this curve establishes the 
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upper limit for predictability using value history length alone. In other words, longer 

the value history, lesser is the scope for prediction. 

• The coverage curve for practical divergence handling rises up to a length of 8 beyond 

which it falls off. As we increase value history length, we add more context 

information. This makes the predictor more intelligent allowing it to deal with 

diverging patterns. However, the training time increases with history length. As a net 

effect of the two, we see a rise followed by a drop.  

• The accuracy curve for practical divergence handling rises with increase in value 

history length. This is partly because of the increased intelligence that longer value 

histories add, allowing the predictor to accurately identify diverging values that can 

be mispredicted otherwise. It is also because of the slower training that helps the 

predictor to remain on a defensive mode and not learn inaccuracies. 

• The speedup curve for practical divergence handling reemphasizes the need for 

extremely high accuracy in value prediction.  Although coverage drops beyond a 

length of 8, speedup peaks at a length of 32 where accuracy is high. This is despite 

the reduced prediction scope that exists at longer value history lengths. This also 

provides explanation for why a value history-based predictor like DFCM++ [8] 

operates at long history lengths of 32 and 64. 

• Our key point is that there is plenty of opportunity at shorter value history lengths (<= 

16) that is being unutilized. Firstly, the oracle divergence curve indicates that there is 

better prediction scope at shorter history lengths. Secondly, the coverage and 

accuracy gaps between the two curves indicate that there is significant divergence that 

is obstructing shorter value history lengths from achieving its full potential. Finally, 

while it may be more challenging to bridge the gap for very small lengths such as 1 or 

2, value history lengths from 4 to 16 already have excellent coverage. Any means to 
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improve their accuracy without loss in coverage should result in better speedup than 

what value history length of 32 currently achieves.  

Improving accuracy without hurting coverage cannot be done using defensive 

mechanisms such as increasing the confidence threshold. It requires more aggressive 

divergence handling capability. For instance, Figure 14 shows the effect of increasing the 

confidence threshold for a value history length of 16. While the accuracy improves, 

coverage drops resulting in lower speedup. 

 

  
 

                      
Figure 14: Effects of increasing confidence threshold for a value history length of 16 

3.2.3.2 Divergence Handling Capability 

In this section, we analyze how effective different value history lengths are in 

handling divergence. We need a worst-case baseline to establish the maximum possible 

66.22 64.12 60.83 57.29 53.28 48.64

0

20

40

60

80

100

10 16 32 64 128 256

A
V

G
. C

O
V

ER
A

G
E 

%

CONFIDENCE THRESHOLD

99.72
99.77

99.83 99.87 99.89 99.91

99

99.2

99.4

99.6

99.8

100

10 16 32 64 128 256

A
V

G
. A

C
C

U
R

A
C

Y 
%

CONFIDENCE THRESHOLD

1.47 1.47 1.45 1.43
1.39

1.36

1

1.1

1.2

1.3

1.4

1.5

10 16 32 64 128 256

G
EO

M
EA

N
 S

P
EE

D
U

P

CONFIDENCE THRESHOLD



 31 

divergence that can occur. We can then quantify how much of this divergence is handled 

by using different value history lengths. 

It should be noted from Figure 13 that the coverage obtained for oracle 

divergence handling using a value history length of 1 establishes an upper bound to what 

can be predicted using any value history length. Predictions made using longer value 

history lengths are only a subset of what a value history length of 1 with oracle 

divergence handling can predict. To illustrate this, let us consider a value history length 

of 4 (with either practical or oracle divergence handling capability) that predicts the 

following correlated patterns correctly: 

m a b c → x             x is followed by a value stream consisting of m a b c 

n a b c → y              y is followed by a value stream consisting of n a b c 

It will be possible to predict these patterns only if each of them have occurred enough 

number of times (>= threshold). This automatically means that the following have also 

occurred enough number of times (>= threshold). 

 c → x                x is followed by a value stream consisting of c        

c → y                       y is followed by a value stream consisting of c 

Hence, with oracle divergence handling capability, the predictor with value 

history length = 1 will be able to predict both of these. In other words, everything that 

longer value history lengths predict is a subset of what value history length = 1 with 

oracle divergence handling capability can predict.  

Note that a value history length of 2 with practical divergence handling may not 

be able to predict x and y correctly as the value stream is not long enough to identify the 

divergence. The context consisting of b c is followed by x sometimes and y sometimes. 

b c → x             x is followed by a value stream consisting of b c 

b c → y             y is followed by a value stream consisting of b c 
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In other words, longer value history lengths can provide additional context 

information that can help identify more divergences (at the cost of training time). In this 

respect, a history length of 1 with practical divergence handling identifies the least 

number of patterns and hence is worst performing. 

 With these points in mind, the coverage gap between the oracle and practical 

divergence handling curves with history length = 1 represents the maximum possible loss 

in coverage due to divergences. We consider this as the baseline and evaluate how much 

of this divergence is predicted using longer value history lengths.  

Ability to handle divergences should equip the predictor with the following 

capabilities: 

• Ability to increase coverage by predicting diverging values (handled divergence). 

• Ability to reduce mispredictions that arise due to diverging value streams. This can be 

done either by predicting them correctly (corrected inaccuracy) or by not making any 

predictions for them (suppressed inaccuracy).  

 

Terminology Outcome of 

Predictor being 

evaluated 

Outcome of Predictor with 

Oracle Divergence handling 

capability and Value History 

Length = 1 

Outcome of Predictor with 

Oracle Divergence handling 

capability and Value 

History Length = 1 

Handled 

Divergence 

Predicted 

correctly 

Predicted correctly Mispredicted / not predicted 

Coverage 

Loss 

Not predicted / 

mispredicted 

Predicted correctly Predicted correctly 

Table 1: Terminology describing coverage benefits and losses 
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Terminology Outcome of 

Predictor being 

evaluated 

Outcome of Predictor with 

Oracle Divergence handling 

capability and Value History 

Length = 1 

Outcome of Predictor with 

Oracle Divergence handling 

capability and Value 

History Length = 1 

Corrected 

Inaccuracy 

Predicted 

correctly 

Predicted correctly Mispredicted  

Suppressed 

Inaccuracy 

Not predicted  Predicted correctly Mispredicted 

Inaccuracy Mispredicted Predicted Correctly Predicted correctly / Not 

predicted / Mispredicted 

Table 2: Terminology describing inaccuracies dealt / not dealt with  

Table 1 describes the terminology used to quantify coverage benefits due to 

divergence handling and coverage losses due to increased training time.  Table 2 

describes the terminology used to quantify inaccuracies that are dealt with and 

inaccuracies that still remain. 

Figure 15 shows the results of coverage evaluation. We see that the divergence 

handled increases initially with history length until it peaks for length = 8 beyond which 

it falls off. In other words, using very long histories don’t bring the best divergence 

handling abilities as they are slower to train. Although history length = 32 had the best 

speedup due to better accuracy (Figure 13), history lengths between 4 to 16 handle more 

divergence. We are unable to utilize this in our predictors as the accuracy is not sufficient 

enough at these lengths.  Also, as expected, we see that the coverage loss due to slower 

training increases with increase in value history lengths (Figure 15).  
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Figure 15: Value History: Coverage benefits and losses  

Figure 16 shows the results of evaluation with respect to inaccuracies. We see that 

more inaccuracies are dealt with (i.e., corrected inaccuracy + suppressed inaccuracy) as 

value history length increases. The inaccuracy that remains also decreases with value 

history length. This explains why long lengths of 32 and 64 have the best overall 

accuracy. However, it should be noted that history lengths between 4 to 16 end up 

correcting more inaccuracies while longer lengths end up suppressing more of them. In 

other words, history lengths between 4 to 16 are more powerful in turning mispredictions 

into accurate predictions indicating better divergence handling capabilities. However, 

their overall accuracy is still relatively lower causing them to underperform.  
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Figure 16: Value History: Inaccuracies dealt/not dealt with 

In conclusion, value history-based prediction can be improved by one or more of 
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• Equipping value history with better divergence handling capabilities so that they 
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Figure 17: Predictor design that combines both Value History and Branch History 

We design the predictor as shown in Figure 17. We index the first level table 

using a combination of PC and global branch history instead of PC alone. Global branch 

history is group of bits containing 1s or 0s representing recent branch outcome history. 

All value histories are localized for a given (PC, global branch history). We use these 

histories to index into the second level prediction table.  

An alternate design could have been to index the first level table using PC alone 

and to index the second level table using a combination of value history and global 

branch history. However, this method does not make much sense since the second level 

table is shared across PCs. We do not expect PCs to produce the same values as a result 

of similarity in branch history.  
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3.3.2 Evaluating Predictability   

3.3.2.1 Accuracy vs Coverage 

We discuss the impacts on accuracy (Figure 18), coverage (Figure 19) and 

speedup (Figure 20) when branch history is combined with value history. We empirically 

chose a branch history length of 128. A confidence threshold of 10 is used.  

• From Figure 18, we see that the addition of branch history significantly improves 

accuracy across almost all value history lengths. This is an indication that branch 

history is able to prevent inaccuracies due to diverging value streams that are seen 

when value history alone is used.  

 
Figure 18: Accuracy comparison when branch history is combined with value history 

• From Figure 19, we see that there is no significant drop in coverage despite adding 

more context information. Addition of branch history is expected to cause two issues. 

o Longer training times as a single PC localized value history stream is now 

split across multiple entries due to further localization by branch history 

o The splitting can also result in loss of predictability if a well correlated value 

pattern is now broken into multiple uncorrelated pieces 
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Yet, we see that the overall coverage does not drop significantly for any value 

history length. In fact, coverage improves significantly for shorter value history 

lengths of 1 and 2. The overall change in coverage varies from -1.42% to +8.40% 

across value history lengths. This is a strong indication that the addition of branch 

history is able to tackle additional divergence and/or make new predictions. This 

brings in additional coverage, thereby making up for any losses due to training 

overheads. 

 
Figure 19: Coverage comparison when branch history is combined with value history 
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the coverage benefits at history lengths of 4 to 16 are utilized well resulting in better 

speedup at these lengths. 

 
Figure 20: Speedup comparison when branch history is combined with value history 

• From Figure 18, Figure 19 and Figure 20, we see that the addition of branch history 

lifts the curve for practical divergence handling closer to oracle divergence handling. 

This is a strong indication that divergence is being handled better. Another point to 

note is that the speedup slightly exceeds that of oracle divergence handling at very 

long value history lengths of 32 and 64. This is a possible indication that branch 

history is able to identify a few new correlated patterns that value history alone 

cannot identify. We quantify benefits due to these in the next section. 

3.3.2.2 Divergence Handling Capability 

We evaluate divergence handling capabilities for the combined use of branch 
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For coverage and accuracy analysis, we use the same terminology as described 

earlier in Table 1 and Table 2. The addition of branch histories can discover new 

correlated patterns that even the oracle value history-based predictor of length 1 cannot. 

We introduce an additional term called “New Predictions” to quantify coverage gain due 

to such predictions (Table 3). 

 

Terminology Outcome of 

Predictor being 

evaluated 

Outcome of Predictor with 

Oracle Divergence handling 

capability and Value History 

Length = 1 

Outcome of Predictor with 

Oracle Divergence handling 

capability and Value 

History Length = 1 

New 

Predictions 

Predicted 

correctly 

Not Predicted Not Predicted / Predicted 

incorrectly 

Table 3: Additional Terminology describing new coverage benefits  

Figure 21 breaks down coverage differences into the following categories: 

• Coverage gain due to handled divergence 

• Coverage gain due to new predictions 

• Coverage loss. This could be due to slower training. It could also be due to splitting 

of well correlated patterns into multiple uncorrelated pieces when branch history is 

added. 

We compare for value history alone vs value history + branch history.   

We see from Figure 21 that the addition of branch history improves divergence 

handling consistently.  The additional coverage gains range from 1.1% to 8.7% across 

value history lengths. It also provides a small gain of ~1.4% from new predictions. 

On the downside, there is increased coverage loss due the overheads of adding more 

context information. The coverage loss becomes worse by about 0.5% to 8.8% across 
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history lengths when compared to using value history alone. In summary, coverage 

losses are unavoidable due to the overheads of increased context information. 

However, the addition of branch history is quite powerful in handling divergences 

and identifying patterns that the gains make up for the loss. As a result, the overall 

coverage does not drop significantly for any value history length (Figure 19).  

 

 
Figure 21: Comparison of coverage benefits and losses  
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inaccuracy, we see that the addition of branch history is able to handle more 
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continues to remain is lower by about 0.0% to 0.8% when branch history is added as 

opposed to using value history alone.  

 

 
Figure 22: Comparison of inaccuracies dealt/not dealt with 
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dependent on the outcomes of the inflight instructions to have an up to date value history. 

This issue is encountered when the same static instruction is scheduled back to back 

because of tight loops.  

We study the impact of the update problem on the performance of both types of 

predictors – named value history based and value history + branch history based.  For 

value history alone, we use a history length of 32. When combined with branch history, 

we use a value history length of 16.   

 

 
Figure 23: Drop in performance when the oracle update mechanism is replaced with an 

actual update 

Figure 23 depicts the drop in accuracy, coverage and speedup when the oracle 

update scheme is replaced with an actual update scheme. Clearly, a value history-based 

predictor is severely affected by the update problem. Its accuracy drops by an 
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smaller (~0.96%). A speedup drop of ~27.3% still ensures overall positive speedup 

(~15%).  

When using value history alone, predictions to the same PC close to one another 

is a concern. When using value history combined with branch history, predictions to the 

same PC + global branch history close to one another is a concern. We evaluated our 

traces to find that about ~37% of the times, at least one previous instance of the same PC 

as the one currently being predicted is in inflight. However, only about ~20% of the 

times, an instruction with the same PC + global branch history is in inflight. This explains 

why a combination of value history with branch history makes it more tolerant to the 

update problem than using value history alone. 

To tackle the update problem, predictors that use value history alone need to 

maintain speculative histories in addition to actual histories. These speculative histories 

are constructed at least partially using predicted values instead of actual values. While it 

is a common practice in branch prediction to maintain speculative branch histories, the 

same does not work equally well with respect to value history. For both cases, when 

predictions are correct, speculative histories work fine. When predictions are wrong, any 

instruction that is fetched after the mispredicted instruction is flushed. As a result, it does 

not matter if a wrong speculative history was used to predict for it. However, in value 

prediction, there is an additional complexity when a prediction is not made due to lack of 

confidence. This issue does not exist for branch prediction or for value prediction using 

branch histories as a branch prediction is always made. When value prediction 

confidence is low, it may not be a good idea to use the value to construct a speculative 

value history as doing so can cause mispredictions for instructions that use the history. 

Hence, the idea of using speculative value history is not perfect and it cannot match the 

performance of an oracle update mechanism. 
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Also, there is significant hardware storage required to maintain speculative 

histories. For example, the DFCM++ predictor uses two value histories – of lengths 32 

and 64 respectively. For each entry in the table, 4 histories are maintained including 2 

that are speculative. Updating speculative histories also increases the complexity of the 

core. It is possible that committed instructions update the history at the same time that 

fetched instructions use it for prediction. In that case, either forwarding needs to be 

enabled or one of two have to be deprioritized. 

A simpler alternative to speculative histories is to simply check if any of the 

inflight instructions have the same signature (PC or PC + global branch history) as that of 

the instruction being predicted. If there is, we skip predicting for the instruction. 

Although this mechanism will result is some coverage drop when compared to 

maintaining speculative histories, it will result in better accuracy. Figure 24 shows us the 

results for evaluation of this mechanism. We see that that combined use of value history 

with branch history gives significantly more speedup than using value history alone when 

this mechanism is used to deal with the update problem. 

 

 
Figure 24: Overall performance when predictions are not made for instructions that share 

the same signature with one more inflight instructions 
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 Thus, we conclude that the combination of branch history with value history can 

achieve better performance than using value history alone. It adds better predictability 

and is more tolerant to the update problem. We call our predictor (Figure 17) as the 

Heterogeneous Context-based Value Predictor (HCVP). We use an update policy that 

skips predicting for instructions that share signatures with one or more instructions in 

flight. 

3.5 EVALUATION 

3.5.1 Methodology 

We evaluate HCVP using the simulation infrastructure released by the First 

Championship Value Prediction (CVP-1). It models a 16 wide out-of-order processor 

with a large instruction window (256 entry ROB), perfect branch prediction and 

unlimited number of functional units. It uses a large value misprediction penalty with a 

complete pipeline flush at commit time.  

For evaluation, we use the 135 public traces from Qualcomm Datacenter 

Technologies released along with the CVP-1 infrastructure. It includes compute and 

memory intensive workloads, as well as a large number of server class traces [7]. 

3.5.2 Comparison with Other Predictors  

We evaluate HCVP against the winning entries from the unlimited category of 

CVP-1, namely Enhanced VTAGE Enhanced Stride (EVES) and DFCM++. Both these 

predictors are hybrid predictors that combine context-based components with 

computational predictors. While EVES combines a branch-history based predictor with a 

stride predictor, DFCM++ combines a value history-based predictor with a value 
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estimator.  We first evaluate HCVP against the context-based components of these 

predictors. 

 

 
Figure 25: Speedup comparison across standalone predictors 

Figure 25 shows the speedup comparison. HCVP outperforms the other predictors 

by achieving a geomean speedup for 1.29. Closest is DFCM++ with a geomean speedup 

of 1.26. Note that HCVP is able to outperform both a value history-based predictor 

(DFCM++) and a branch history-based predictor (E VTAGE). This is despite the fact that 

both these predictors use many features that HCVP is being evaluated without. These 

features can be applied to HCVP to improve its performance further. Some of them are 

listed below: 

• While DFCM++ and E VTAGE use multiple context lengths and choose from them 

dynamically, HCVP uses a single context length (and yet achieves better speedup). 

• DFCM++ maintains speculative histories.  

• E VTAGE tunes its confidence threshold dynamically based on expected performance 

gain per prediction.  

• DFCM++ uses a PC Blacklister to reduce inaccuracies. 
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Figure 26: Speedup comparison across hybrid predictors 

Figure 26 shows the speedup comparison across hybrid predictors. HCVP is 

combined with the Enhanced Stride predictor. The Enhanced Stride predictor is a small 

structure of less than 1KB that can provide a significant 16% speedup by itself. In the 

combined predictor, we prefer to use the predictions of HCVP over E Stride when both of 

them make confident predictions. We see that HCVP + E Stride outperforms EVES (the 

winner of CVP-1) by ~9%.  

3.5.3 Sensitivity to Value History Length  

 

 
Figure 27: HCVP Speedup comparison for varying value history lengths 
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We evaluate the sensitivity of HCVP to value history length by fixing the branch 

history length to 128 and confidence threshold to 10. From Figure 27, we see that HCVP 

achieves a peak speedup of 28% at a value history length of 16. However, performance 

decreases by less than 2% even if we reduce history length to 4. We also show the 

performance variation for the hybrid predictor consisting of HCVP and E Stride. We see 

that a value history length as small as 2 is sufficient to match the performance of EVES 

(37%).  

3.5.4 Sensitivity to Branch History Length  

We evaluate the sensitivity of HCVP to branch history length by fixing the value 

history length to 16 and confidence threshold to 10. From Figure 28, we see that peak 

speedup is achieved at a branch history length of 128. Performance drops steadily with 

shorter lengths. This indicates that long branch histories are required to capture program 

context well. 

 

 
Figure 28: HCVP Speedup comparison for varying branch history lengths 
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3.5.4 Sensitivity to Confidence Threshold  

 

 
Figure 29: HCVP Speedup comparison for varying confidence thresholds 
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Figure 30: HCVP Coverage comparison for varying confidence thresholds 
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On the downside, since HCVP uses a combination of PC and value history, it is 

possible that the number of entries required in the first level table increases when 

compared to that of DFCM++. Further, since value history is localized by both PC and 

branch history, it is possible that additional entries are required in the second level table 

as well.   

3.6 CONCLUSIONS 

In summary, we have demonstrated that a combination of value history with 

branch history is a better predictor of values than either one of them. Our evaluation 

shows that this combination provides additional divergence handling capabilities and 

accuracy when compared to using value history alone. This also allows for the use of 

mid-length value histories that provide better coverage than very large ones. We have 

shown how this combination is relatively more tolerant to the update problem and hence 

achieves good performance even without maintaining speculative histories. The HCVP 

predictor designed based on these principles outperforms the winners of the First 

Championship Value Prediction.  

3.7 FUTURE WORK  

As part of future work, predictor table sizes need to be limited to demonstrate that 

that HCVP is practically viable. Further, HCVP is a naïve implementation of the idea that 

a combination of value history with branch history can work better than either one of 

them. However, there is plenty of opportunity to improve its performance by applying 

generic ideas that other state-of-the-art predictors employ. This includes the use of 

variable context lengths, dynamic adjustment of confidence thresholds and PC 

blacklisting to name a few. Further, The E VTAGE predictor uses information related to 
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both branch targets and branch outcomes to construct its branch history. However, in our 

current implementation, HCVP uses only branch outcomes. There is potential room for 

improvement if branch target information is also taken into account.  

While the use of heterogenous context information has been demonstrated to be 

powerful for value prediction, it can be explored for other hardware prediction problems 

such as address prediction or prefetching as well. 
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Chapter 4:  Maximizing Value Prediction Gains 

 

4.1 INTRODUCTION 

Fundamentally, value prediction is a technique that improves instruction level 

parallelism. It breaks true data dependencies by allowing early execution of dependent 

instructions that use the predicted value as a source value. In the absence of a value 

predictor, dependent instructions stall until their source values are ready. This can affect 

performance in multiple ways. Stalling of instructions can create critical paths, 

preventing forward progress in program execution. It can cause underutilization of 

hardware execution resources during the stall and an excess contention for the resources 

once the source values are ready. It can also prevent additional instructions from flowing 

through the pipeline if the fetch unit stalls as a result of the buffers filling up. Due to the 

large number of factors involved, the number of cycles saved due to a single correct 

prediction is highly variable and difficult to quantify. For example, performing value 

prediction on a low latency instruction may bring no benefit at all if the core has enough 

work to do to hide the latency. On the other hand, performing value prediction on a high 

latency instruction with a long dependent chain of instructions may save significant 

number of cycles.  

Incorrect predictions involve performance penalties. These penalties are 

undesirable for the following reasons: 

• If we consider the baseline to be a system that does not have a value predictor, a 

wrong prediction can result in performance that is worse than the baseline 

performance. This is a key difference between value prediction and branch 
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prediction. Predicting a branch is necessary to determine the instruction address 

for the next fetch and to ensure continued instruction flow through the pipeline. 

However, a value prediction may not necessarily be required to keep the pipeline 

occupied as there may be other instructions that are ready to be fetched and/or 

executed. 

• The performance penalties associated with value mispredictions can be 

significant. Based on the recovery mechanism used, a single misprediction can 

cost anywhere between 5 to 50 cycles [1]. 

Keeping these in mind, the obvious goal for a value predictor is to be able to 

extract high performance gains from correct predictions so that it outweighs the severe 

performance degradation that can occur due to mispredictions. Speedup can be 

maximized by achieving one or more of the following:  

1. Maximizing performance benefit per correct prediction 

2. Maximizing the number of correct predictions 

3. Minimizing the number of mispredictions 

4. Minimizing performance penalty per mis predicted instruction 

This section focuses on maximizing the performance benefit per correct 

prediction. We categorize instructions by various properties in an attempt to identify one 

or more classes of instructions whose values are highly beneficial to predict.  

To illustrate that the average benefit per correct prediction varies largely based on 

the instructions being predicted, we perform perfect value prediction on 10% of the 

prediction-eligible instructions in a sample trace. Perfect value prediction is an oracle 

mechanism that assumes that the correct value is known during prediction time. In other 

words, it operates at 100% accuracy. We repeat the experiment multiple times by varying 

the 10% of the instructions that are chosen. From Figure 31, we see that there are large 
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performance variations across the runs, indicating that it is more beneficial to predict 

some values over the others. This brings us to the concept of “criticality”. Some 

instructions are considered “critical” i.e., they lie in the critical path of execution. Any 

mechanism used to improve ILP provides maximum gains when they are applied to these 

critical instructions. For example, the concept of prioritizing critical instructions over 

others have been explored for cache management and prefetching [2]. In the context of 

value prediction, it may be highly beneficial to predict values produced by instructions 

that are on the critical path while it may be of no use to predict ones that aren’t.   

 

 
Figure 31: Variation in speedup by applying perfect value prediction on 10% of the 

instructions chosen randomly 
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way value predictors are designed. Particularly, we believe that it can have the following 

influences: 

1. To illustrate the severe imbalance between the average benefit per correct 

prediction and the average loss in performance per misprediction, we perform two 

experiments on a sample trace by choosing 10% of its instructions randomly. In 

the first experiment, we perform perfect value prediction on the chosen 

instructions. In the next experiment, we mispredict for all of them. We observe 

that the speedup due to correct predictions is only 6.5% while the loss in 

performance due to incorrect ones is -45.3%.  To deal with this imbalance, value 

predictors have focused on achieving very high accuracy at the cost of coverage. 

Often, they aim for an accuracy of 99% or above. We think the accuracy 

requirements can be relaxed further if predictors focused only on instructions that 

provide high benefits for correct predictions. This will allow them to adopt a less 

conservative approach that aims for higher coverage (within the class of 

instructions being targeted) at relatively lower accuracy. 

2. Alternately, predictors can be designed to target all prediction eligible-

instructions, but can apply different strategies based on the class of instructions 

being targeted. They can apply less accurate strategies for instructions that are 

more likely to be critical and vice versa. For example, the Enhanced VTAGE 

predictor varies the threshold for prediction confidence based on how much 

benefit predicting a particular instruction’s value may bring [3]. 

3. Targeting specific classes of instructions can open up the possibility of designing 

prediction mechanisms that work specifically for the class in consideration. For 

example, there has been work on predicting addresses instead of values for 
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predictors that target load instructions alone. The value can be looked up in the 

cache using the predicted address [4].  

4. Choosing a misprediction recovery mechanism often involves making a tradeoff 

between hardware complexity and performance. For example, pipeline squashing 

is a mechanism where all instructions younger than the mispredicted instruction 

are re-fetched and re-executed. While this mechanism is simple to implement, it 

has high latency since instructions that are independent of the mispredicted 

instruction are also re-fetched and re-executed. Selective replay is an alternate 

mechanism where only the dependent chain of instructions are re-executed. It is 

complex to implement as it requires runtime identification of the dependent chain. 

But it may have lower latency owing to the fact that independent instructions are 

not re-executed. Value prediction that targets only critical instructions can have 

increased tolerance to longer misprediction penalties. This can allow one to 

choose a mechanism like pipeline squashing that is simpler to implement in 

hardware although it has higher misprediction penalties associated with it. 

5. The predictor state that needs to be maintained can be reduced if only a small 

fraction of instructions are to be tracked. In the best case, we hope to find classes 

of instructions that are only a small fraction of the total number of prediction-

eligible instructions but provide high speedup.  

4.2 METHODOLOGY 

We categorize instructions by various parameters and study the speedup obtained 

by performing perfect value prediction on them. To evaluate the different classes of 

instructions, we use three metrics: 
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1. Speedup = IPC when all instructions of the given class are predicted / IPC when 

no value prediction is applied 

Avg. Speedup is the geomean speedup across all benchmarks. This metric 

quantifies the speedup that can be obtained if perfect value prediction is applied 

on all instructions that belong to the class in consideration. 

2. Coverage = Number of Instructions that belong to the Class / Total Number of 

Value Prediction Eligible Instructions 

This metric quantifies the maximum coverage that can be obtained if we predicted 

all instructions that belonged to the class correctly. Avg. coverage is the 

arithmetic mean of coverage across all the benchmarks. High coverage means 

more predictor state to maintain.  

3. Class Criticality = Speedup Percentage / Coverage Percentage 

Some classes of instructions may have high avg. speedup as a result of having 

high coverage, but the benefit per correct prediction may still be low. For a fair 

evaluation of the relative merit in predicting instructions of different classes, we 

need a better approximation for the benefit per correct prediction. We define class 

criticality as the average of the ratio between speedup % and coverage %.  Avg. 

class criticality is computed as the arithmetic mean of class criticality across 

benchmarks 

We run benchmarks twice to perform the experiments. In the first run, we collect 

data on various instructions. This data includes execution result, execution latency, 

instruction type (opcode) and instruction fanout to name a few. In the second run, we 

selectively target specific instruction classes using the data collected previously. We 

evaluate the benefits of value prediction using the three metrics specified above. 
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We use the simulation infrastructure released by the First Championship Value 

Prediction (CVP-1). It models a 16 wide out-of-order processor with a large instruction 

window (256 entry ROB), perfect branch prediction and unlimited number of functional 

units. It uses a large value misprediction penalty with a complete pipeline flush at commit 

time.  

For evaluation, we use the 135 public traces from Qualcomm Datacenter 

Technologies released along with the CVP-1 infrastructure. It includes compute and 

memory intensive workloads, as well as a large number of server class traces [7]. 

4.2 RESULTS 

4.2.1 Classification by Latency of Instruction Execution 

In this section, we classify instructions by their execution latency and quantify the 

benefits of perfect value prediction on each one of the categories. We believe this is 

worth pursuing as long latency instructions are likely to be more beneficial for value 

prediction. The execution latency of the producer instruction will have a direct effect on 

the number of cycles dependent instructions stall for. A long latency instruction can cause 

dependent instructions to stall for many cycles. It can also cause a long dependent chain 

of instruction waiting to be executed.  

 For this experiment, Table 6 specifies how instructions have been classified 

based on their execution latencies.  Table 4 contains the minimum and maximum 

latencies for instructions with different opcodes. Table 5 contains latencies for different 

memory accesses as specified for the CVP Simulator. The classification in Table 6 is 

based on these two.  

 

Instruction Type Min. Latency (cycles) Max Latency (cycles) 
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ALU 1 1 

Loads 2 150+ 

Stores 1 1 

Unconditional Direct 

Branches 

1 1 

Unconditional Indirect 

Branches 

1 1 

FP 3 3 

Slow ALU 4 4 

Table 4: Execution Latency for Different Instruction Types 

Description Latency (cycles) 

L1 Search Latency 2 

L2 Search Latency 12 

L3 Search Latency 60 

Main Memory Search Latency 150 

Address Generation 1 

Table 5: Latencies based on Memory Access Type 

Category Includes Likely to include 

1 cycles ALU Instructions, 

Branches, Stores 

 

2 – 11 cycles FP, Slow ALU Loads that hit in L1 

12 – 59 cycles  Loads that hit in L2 

60 – 149 cycles  Loads that hit in L3 

150+ cycles  Loads that miss in L3 

Table 6: Classification by Execution Latency  
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From Figure 32, we see that around 50% of the instructions are single cycle 

instructions whereas 43% of them take anywhere between 2 to 11 cycles. Less than 7% of 

the instructions take 12 or more cycles. While Figure 34 indicates that the benefit per 

correct prediction is very high for instructions that take 12 or more cycles, the overall 

speedup for them in Figure 33 is low owing to poor coverage. Instructions in the 2-11 

cycles category provide the highest overall speedup, followed by instructions in the 1 

cycle category. In summary, it may not be feasible to design a predictor that targets only 

instructions that miss in the L1 cache simply because there are very few of them. 

However, it may be beneficial to predict values for them even when the prediction 

confidence is low as the benefit per correct prediction is really high. Another inference is 

that single cycle instructions are worth predicting since they bring majority of the 

coverage.  

Note that this experiment is not perfect as instruction latencies are noted from 

execution runs with value prediction disabled. On enabling value prediction, the latencies 

of some instructions may change. 

 

 

Figure 32: Classification by Instruction Latency: Coverage 
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Figure 33: Classification by Instruction Latency: Speedup 

 
Figure 34: Classification by Instruction Latency: Class Criticality 

4.2.2 Classification by Instruction Type (opcode) 

We classify instructions by their opcodes and perform perfect value prediction on 

each one of the instruction types. Figure 35 tells us that ALU instructions and loads 

constitute almost 88% of the total number of prediction-eligible instructions. From Figure 

36, we see that loads alone can provide 89% speedup which is far greater than those 

provided by other instruction types. This is not surprising as loads have high coverage 

and will at least have twice the latency compared to an ALU instruction. There has been 

prior work on predictor designs that target load instructions exclusively [4]. Per 

prediction benefit is quite low for ALU instructions. However, the overall speedup is a 

1.30
1.41

1.14
1.08

1.17

1

1.2

1.4

1.6

1.8

2

1 cycle 2 - 11 cycles 12 - 59 cycles 60 - 149 cycles 150+ cycles

A
V

G
. S

P
EE

D
U

P

EXECUTION LATENCY

PERFECT VP: SPEEDUP vs LATENCY

0.62 1.15 3.95

40.36

69.39

0

10

20

30

40

50

60

70

1 cycles 2 - 11 cycles 12 - 59 cycles 60 - 149 cycles 150+ cycles

A
V

G
.  

C
LA

SS
 C

R
IT

IC
A

LI
TY

EXECUTION LATENCY

PERFECT VP: CLASS CRITICALITY vs LATENCY



 64 

significant 24% indicating that their high coverage makes them the second most 

important instruction type to predict for.  

 
Figure 35: Classification by Instruction Type: Coverage 

 
Figure 36: Classification by Instruction Type: Speedup 
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Figure 37: Classification by Instruction Type: Class Criticality 
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Category Description 

NoAddr Instructions whose values are not 

addresses 

DataAddr Instructions whose values are data 

addresses 

InstrAddr Instructions whose values are instruction 

addresses 

DataAddrLoad Loads whose values are data addresses 

InstrAddrLoad Loads whose values are instruction 

addresses 

AllAddr Instructions whose values are either data 

or instruction addresses 

AllAddrLoad Loads whose values are either data or 

instruction addresses 

Table 7: Classification based on whether instructions produce addresses 

From Figure 40, we see that the benefit per prediction is high for address 

producing instructions compared to other instructions. We also see that the benefit is 

higher if the address producing instruction is itself a load. Figure 39 tells us that the 

headroom speedup for address producing instructions in general is around 38% whereas it 

is about 31% for address producing load instructions. While the headroom speedup for 

non address producing instructions is higher owing to higher coverage, it is not possible 

to ignore the headroom for address producing ones. We believe the speedup can be 

increased further if we used the address to access memory in advance or to perform a 

prefetch into the cache. However, since we do not have access to the internals of the CVP 
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simulator, we do not pursue this further. It is also possible that addresses are more 

predictable owing to well defined or repetitive data structure access patterns. There has 

been some prior work on predicting addresses instead of values for loads [4]. 

 

 
Figure 38: Classification based on whether values are addresses: Coverage 

 
Figure 39: Classification based on whether values are addresses: Speedup 
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Figure 40: Classification based on whether values are addresses: Class Criticality 
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Figure 41: Classification based on instruction fanout: Coverage 

 
Figure 42:  Classification based on instruction fanout: Speedup 

 
Figure 43: Classification based on instruction fanout: Class Criticality 
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4.2.5 Classification based on Distance to Nearest Dependent Instruction 

Distance to nearest dependent instruction is the number of instructions that are 

fetched after the value producing instruction until its first consumer instruction. We 

speculate that the benefit per correct prediction may be higher if the consumer instruction 

is closer to the producer instruction as there may not be enough cycles before dispatch of 

the dependent instruction to hide the execution latency of the producer instruction. We 

classify instructions based on the distance to the nearest dependent instruction and 

perform perfect value prediction on them. Figure 44 tells us that around 41% of the 

instructions are followed immediately by a dependent instruction. The coverage reduces 

for instructions with longer distances to the nearest dependent instruction. We see the 

effects of coverage reflect on the overall speedup in Figure 45. However, we do not see 

any trends in benefit per prediction in Figure 46. We assume this may be because of the 

superscalar design where a bunch of instructions are fetched and dispatched at once, 

causing many dependent instructions to stall at roughly the same time irrespective of 

distance to the producer instruction. 

 
Figure 44: Classification based on distance to nearest dependent instruction: Coverage 
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Figure 45: Classification based on distance to nearest dependent instruction: Speedup 

 
Figure 46: Classification based on distance to nearest dependent instruction: Class 

Criticality 
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coverage and benefit per correct prediction. Until now there has been no prior work in 

value prediction that targets high fanout instructions specifically. We believe this is worth 

investigating in future. 
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