Flow-Sensitive Pointer Analysis for Millions of
Lines of Code

Ben Hardekopf
University of California, Santa Barbara
benh @cs.ucsb.edu

Abstract—Many program analyses benefit, both in precision
and performance, from precise pointer analysis. An important
dimension of pointer analysis precision is flow-sensitivity, which
has been shown to be useful for applications such as program
verification and static analysis of binary code, among many
others. However, flow-sensitive pointer analysis has historically
been unable to scale to programs with millions of lines of code.

We present a new flow-sensitive pointer analysis algorithm
that is an order of magnitude faster than the existing state of
the art, enabling for the first time flow-sensitive pointer analysis
for programs with millions of lines of code. Our flow-sensitive
algorithm is based on a sparse representation of program code
created by a staged, flow-insensitive pointer analysis. We explain
how this new algorithm is a member of a new family of pointer
analysis algorithms that deserves further study.

I. INTRODUCTION

Pointer analysis is an important enabling technology that
can improve the precision and performance of many program
analyses by providing precise pointer information. Consid-
erable progress has been made in various dimensions of
pointer analysis, particularly with regard to flow-insensitive
analysis [15], [16] and BDD-based context-sensitive pointer
analysis [2], [32]-[34]. However, flow-sensitive pointer analy-
sis has received relatively little attention, which is unfortunate
because it has been shown to be important for a growing
list of program analyses [6], [13], including those that check
for security vulnerabilities [4], [12], [14], those that syn-
thesize hardware [34], and those that analyze multi-threaded
codes [29].

One reason for this lack of attention may be the special
challenges that flow-sensitive pointer analysis presents. Unlike
a flow-insensitive analysis, which ignores statement ordering
and computes a single solution that holds for all program
points, a flow-sensitive analysis respects a program’s control-
flow and computes a separate solution for each program point.
Thus, the traditional flow-sensitive approach uses an iterative
dataflow analysis (IDFA), which is extremely inefficient for
pointer analysis. IDFA conservatively propagates all dataflow
information from each node in the control-flow graph to every
other reachable node, because the analysis cannot know which
nodes might need that information. For large programs, the
control flow graph (CFG) can have hundreds of thousands of
nodes, with each node maintaining two points-to graphs—one
for incoming information and one for outgoing information;
each points-to graph can have hundreds of thousands of

Calvin Lin
The University of Texas at Austin
lin@cs.utexas.edu

pointers; and each pointer can have thousands of elements
in its points-to set. Thus, each node stores, propagates, and
computes transfer functions on an enormous amount of infor-
mation, which is inefficient in both time and space.

The typical method for optimizing a flow-sensitive dataflow
analysis is to perform a sparse analysis [5], [27], which
directly connects variable definitions (defs) with their uses,
allowing data flow facts to be propagated only to those
program locations that need the values. Unfortunately, sparse
pointer analysis is problematic because pointer information is
required to compute the very def-use information that would
enable a sparse analysis. This paper shows how this difficulty
can be overcome and how the use of a sparse analysis greatly
increases the scalability of flow-sensitive pointer analysis.

A. Insights

The key insight behind our technique is to stage the pointer
analysis. An auxiliary pointer analysis first computes conser-
vative def-use information, which then enables the primary
flow-sensitive analysis to be performed sparsely using the
conservative def-use information. This idea actually defines
a family of staged flow-sensitive analyses, described in Sec-
tion IV-A, in which each member of the family uses a different
auxiliary analysis (referred to henceforth as AUX). While other
work on pointer analysis has previously employed auxiliary
analyses [21], [28], none has used the results of the auxiliary
analysis in the same way.

This paper explains how we address three main challenges
facing a staged analysis, resulting in a scalable flow-sensitive
pointer analysis. First, AUX must strike a good balance be-
tween precision and performance: If the results are too impre-
cise, the sparsity of the primary analysis will suffer; if AUX
is not scalable, the primary analysis will never get to execute.
Second, the primary analysis must deal with the complexity
of incorporating the auxiliary analysis’ conservative def-use
information while maintaining the precision of a flow-sensitive
pointer analysis. Third, the primary analysis must efficiently
manage the extremely large number of def-use chains that are
computed by AUX.

B. Contributions

This paper makes the following contributions:

o We present staged flow-sensitive analysis (SFS), a new
flow-sensitive pointer analysis that introduces the notion

of staging, in which the def-use chains created by a less
precise auxiliary pointer analysis are used to enable the
sparsity of the primary flow-sensitive pointer analysis.

¢ We introduce the notion of access equivalence, which
partitions def-use chains into equivalence classes, allow-
ing SFS to efficiently process large amounts of def-use
information.

e« We evaluate an instance of SFS that uses inclusion-
based pointer analysis as the auxiliary analysis. This
particular auxiliary analysis is attractive because it is the
most precise of the flow- and context-insensitive pointer
analyses and because it can analyze millions of lines of
code in a matter of minutes [15], [16].

« Using a collection of 16 open source C programs, we
compare the SFS algorithm to a baseline, semi-sparse
analysis, which represents the prior state-of-the-art [17].
We show that our staged algorithm is an order of mag-
nitude more scalable than the baseline; for example, SFS
is able to analyze a program with 1.9M LOC in under
14 minutes. The primary strength of SFS is its improved
scalability. For small programs—those with fewer than
100K LOC—SEFS is efficient but provides no performance
advantage over the baseline. For mid-sized programs—
those with 100K to 400K LOC—SEFS is 5.5x faster than
the baseline. For large programs—those with more than
800K LOC—SFS completes while the baseline does not.

The remainder of the paper is organized as follows. Sec-
tion II gives background information that is important to un-
derstanding flow-sensitive pointer analysis and our technique.
Section III discusses related work, Section IV describes our
staging technique, and Section V gives a detailed description
of the algorithm. Section VI experimentally evaluates the
scalability of our technique compared to the current state of
the art, and Section VII concludes.

II. BACKGROUND

This section provides background that is needed for under-
standing the remainder of the paper. We describe the basics
of flow-sensitive pointer analysis and static single assignment
form, and then we describe LLVM, the particular compiler
infrastructure used for our work.

A. Flow-Sensitive Pointer Analysis

Traditional flow-sensitive pointer analysis analysis is carried
out on the control-flow graph (CFG), which is a directed graph,
G = (N, E), where N is a finite set of nodes (or program
points) corresponding to program statements and where £ C
N x N is a set of edges corresponding to the control-flow
between statements. To ensure the decidability of the analysis,
branch conditions are uninterpreted; thus branches are treated
as non-deterministic.

Each node k£ of the CFG maintains two points-to graphs
(i.e., sets of points-to relations): IN; represents the incoming
pointer information, and OUT}, represents the outgoing pointer
information. Each node has a transfer function that transforms
INj to OUTy; the function is characterized by the sets GENy

and KILLj which represent the pointer information generated
by the node and killed by the node, respectively. The contents
of these two sets depend on the particular program statement
associated with node %, and the contents can vary over the
course of the analysis as new pointer information is accumu-
lated. For all nodes k, the analysis iteratively computes the
following two functions until convergence:

N, = U OUT, 1)
z€pred(k)
OUT, = GENj U (INg — KILL) 2)

For a program statement k£ with an assignment x = vy,
KILLy = {x — _}, which is called a strong update: All
relations with x on the left-hand side are removed and re-
placed with new relations. For a program statement k with
an assignment *x = vy, the matter is more complicated. If
x definitely points to a single concrete memory location z,
then KILL, = {z — _} and the analysis still performs a
strong update. However, if x may point to multiple concrete
memory locations, then KILL, = {} and the analysis performs
a weak update: The analysis cannot be sure which memory
location will be updated by the assignment, so it adds the new
information but conservatively preserves all existing points-
to relations. A pointer may refer to multiple concrete memory
locations if its points-to set contains multiple locations or if the
single location in its points-to set is either (1) a heap variable
(as described in the next paragraph), or (2) a local variable of
a recursive function (which may have multiple instances on
the program’s runtime stack at the same time).

An important aspect of any pointer analysis is the heap
model, which abstracts the conceptually infinite-size heap into
a finite set of memory locations. We adopt the common
practice of treating each static memory allocation site as a
distinct abstract memory location (which may map to multiple
concrete memory locations during program execution).

B. SSA

In static single assignment (SSA) form [9], each variable
is defined exactly once in the program text. Variables with
multiple definitions in the original program are split into
separate instances, one for each definition. At join points in
the CFG, separate instances of the same variable are combined
using a ¢ function, producing an assignment to a new instance
of the variable. SSA form is ideal for performing sparse
analyses because it explicitly represents def-use information
and allows dataflow information to flow directly from variable
definitions to their corresponding uses [27].

The conversion to SSA form is complicated by the existence
of indirect defs and uses through pointers, which can only
be discovered using pointer analysis. Because the resulting
pointer information is conservative, each indirect def and use
is actually a possible def or use. Following Chow et al [8], we
use x and p functions to represent these possible defs and uses.
Each indirect store (e.g., *x = y) in the original program

representation is annotated with a function v = x(v) for each
variable v that may be defined by the store; similarly, each
indirect load (e.g., x = =y) in the original representation is
annotated with a function p(v) for each variable v that may be
accessed by the load. When converting to SSA form, each x
function is treated as both a def and use of the given variable,
and each p function is treated as a use of the given variable.

To avoid the complications of dealing with indirect loads
and stores, some modern compilers such as GCC [26] and
LLVM [23] use a variant of SSA that we call partial SSA
form. The idea is to divide variables into two classes. One class
contains top-level variables that are never referenced by point-
ers, so their definitions and uses can be trivially determined by
inspection without pointer information. These variables can be
converted to SSA using any algorithm for constructing SSA
form. The second class contains those variables that can be
referenced by pointers (address-taken variables), and to avoid
the above-mentioned complications, these variables are not
placed in SSA form.

C. The LLVM IR

Our implementation uses the LLVM compiler infrastructure,
so to make our discussion concrete, we now describe LLVM’s
internal representation (IR) and its particular instantiation of
partial SSA form. While the details are specific to LLVM,
the ideas can be translated to other forms of partial SSA.
In LLVM, top-level variables are kept in a conceptually
infinite set of virtual registers which are maintained in SSA
form. Address-taken variables are kept in memory rather than
registers, and they are not in SSA form. Top-level variables
are modified using ALLOC (memory allocation) and COPY
instructions. Address-taken variables are accessed via LOAD
and STORE instructions, which take top-level pointer variables
as arguments. The address-taken variables are never referenced
syntactically in the IR; they instead are only referenced
indirectly using these LOAD and STORE instructions. LLVM
instructions use a 3-address format, so there is at most one
level of pointer dereference for each instruction (source state-
ments with multiple levels of indirection are reduced to this
form by introducing temporary variables).

Figure 1 shows a C code fragment and its corresponding
partial SSA form. Variables w, %, y, and z are top-level
variables and have been converted to SSA form; variables
a, b, c, and d are address-taken variables, so they are
stored in memory and accessed solely via LOAD and STORE
instructions. Because the address-taken variables are not in
SSA form, they can each be defined multiple times, as with
variables ¢ and d in the example.

Because address-taken variables cannot be directly named,
LLVM maintains the invariant that each address-taken variable
has at least one virtual register that refers only to that variable.
The rest of this paper will assume the use of the LLVM IR,
which means that address-taken variables can only be defined
or used by LOAD and STORE instructions.

int a, b, *c, =*d;
int* w = &a; w1 = ALLOC,
int* x = &b; %1 = ALLOG,
int** y = &c; % = ALLOC,
int*x* z = vy; 1=
c = 0; STORE 0 y1
Yy = w; STORE w1 Y1
vz = x: STORE Z1 21
v = &d; Yo = ALLOCq
z = i 2=
Yy = w; STORE w1 Y2
*xz = x; STORE 1 22
Fig. 1. An example of partial SSA form. On the left is the original C

code; on the right is the transformed code in partial SSA form. Note that the
address-taken variables a, b, ¢, and d are not mentioned syntactically in the
transformed program text; they are referred to only indirectly via the top-level
pointers w, x, and y.

III. RELATED WORK

Most of the previous advancements in flow-sensitive pointer
analysis have exploited some form of sparsity to improve
performance.

Chase et al [5] propose that SSA form be dynamically com-
puted during the course of the flow-sensitive pointer analysis.
Chase et al do not evaluate their idea, but a similar idea is
evaluated by Tok et al [31], whose algorithm can analyze
C programs with almost 70,000 lines of code in roughly 30
minutes. The scalability of this approach is limited by the cost
of dynamically updating SSA form. In contrast, our analysis
pre-computes the SSA information prior to the actual flow-
sensitive analysis.

Hardekopf and Lin [17] present a semi-sparse flow-sensitive
pointer analysis, which exploits partial SSA form to perform
a sparse analysis on top-level variables, while using iterative
dataflow analysis on address-taken variables. By contrast, our
staged analysis is completely sparse and uses SSA form for all
variables. Our resulting analysis is an order of magnitude more
scalable than semi-sparse analysis, as shown in Section VI.

Hasti and Horwitz [18] propose a scheme composed of
two passes: a flow-insensitive pointer analysis that gathers
pointer information and a conversion pass that uses the pointer
information to transform the program into SSA form. The
result of the second pass is iteratively fed back into the first
pass until convergence is reached. Hasti and Horwitz leave
open the question of whether the resulting pointer information
is equivalent to a flow-sensitive analysis; we believe that the
resulting information is less precise than a fully flow-sensitive
pointer analysis. No experimental evaluation of this technique
has been published. In contrast to their work, which uses
multiple passes to compute results that are not fully flow-
sensitive, our staged algorithm uses a single pass of the flow-
insensitive analysis to compute a fully precise flow-sensitive
analysis.

Hind and Pioli [19], [20] use a weaker form of sparsity in
the form of the sparse evaluation graph (SEG) [7], which is

a graph that is derived from the CFG by eliding nodes that
are irrelevant to pointer analysis (i.e., they do not manipulate
pointer information) while at the same time maintaining the
control-flow relations among the remaining nodes. Hind and
Pioli [19], [20] also introduce the notion of filtered forward
binding, which recognizes that when passing pointer informa-
tion to the target of a function call, it is only necessary to pass
pointer information that the callee can access from a global
variable or from one of the function parameters. Hind and
Pioli’s paper evaluates benchmarks up to 30K LOC; a modern
re-implementation of their algorithm evaluated by Hardekopf
and Lin [17] was unable to do any better.

A staging strategy for flow-sensitive pointer analysis that
builds on HSSA form [8] was apparently implemented in the
Open64 compiler in 1996, though the implementation is solely
intra-procedural and, to our knowledge, a description has never
been published.

Previous work has also used notions similar to staging to im-
prove the efficiency of pointer analysis. Client-driven pointer
analysis [14] analyzes the needs of a particular client and
applies flow-sensitive and context-sensitive pointer analysis
only to those portions of the program that require that level of
precision. Fink et al [12] apply a similar technique specifically
for typestate analysis by successively applying a series of
increasingly precise pointer analyses to successively smaller
programs by pruning away portions of the program once they
have been successfully verified. Ruf [28] and Kahlon [21]
bootstrap the flow-sensitive pointer analysis by using a flow-
insensitive pointer analysis to first partition the program into
sections that can be analyzed independently. Unlike staging,
these techniques use a preliminary analysis to reduce the size
of the input by either pruning [12], [14] or partitioning [21] the
program. By contrast, our staging employs the def-use chains
computed by the auxiliary pointer analysis to help create more
precise def-use information that in turn allows the algorithm to
produce more precise pointer information. Thus, pruning and
partitioning are orthogonal to staging, and the ideas can be
combined: A staged analysis does not need to compute flow-
sensitive solutions for all variables, only the relevant ones.

IV. STAGING THE ANALYSIS

A key component of our new algorithm is AUX, the auxiliary
pointer analysis that computes conservative def-use infor-
mation for the primary flow-sensitive pointer analysis. The
remainder of this section discusses AUX and explains how its
results can be used to optimize the primary analysis.

A. The Family of Staged Analyses

As mentioned in the introduction, staged analysis represents
a family of analyses, with each family member distinguished
by the particular auxiliary pointer analysis that is used. As with
any pointer analysis, there are two concerns: precision and
scalability. A more precise AUX will yield a sparser primary
analysis; a less scalable AUX could limit the scalability of the
staged analysis.

The most natural choice for AUX is a flow- and context-
insensitive analysis; there are many of these to choose from,
ranging from the simplest address-taken analysis (which re-
ports that any pointer can point to any variable whose address
has been taken), to Steensgaard’s analysis [30], to Das’ One-
Level Flow [11], to inclusion-based (i.e., Andersen-style)
analysis. Any of these choices will result in an overall staged
analysis that provides the same precision as a traditional flow-
sensitive analysis. Interestingly, Hardekopf and Lin’s semi-
sparse pointer analysis can be viewed as a bastardized member
of the family, where AUX identifies top-level variables to allow
the primary analysis to be partially sparse. For this paper we
use an inclusion-based auxiliary analysis, which is the most
precise of the flow- and context-insensitive pointer analyses,
and which scales to millions of LOC [15], [16].

An intriguing choice for AUX, which we leave for future
work, would be to use an analysis whose precision is in-
comparable to the primary analysis,! because by sequentially
combining incomparable analyses we get some of the benefit
of combining the two analyses but at lower cost. For exam-
ple, by using a flow-insensitive, context-sensitive analysis for
AUX, the overall analysis would incorporate both flow- and
context-sensitive information, making it more precise than a
traditional flow-sensitive, context-insensitive analysis. Such an
analysis would be interesting for two reasons. First, full flow-
and context-sensitivity often provide more precision than is
necessary [14]. In fact, others have sacrificed some degree
of precision (eg, disallowing indirect strong updates [34]) for
the sake of improved scalability. Second, flow- and context-
sensitivity conspire to limit scalability; by providing a way to
perform the analyses in sequence rather than at the same time,
staged analysis can yield a much more scalable algorithm. Of
course, the precision of the resulting analysis would need to
be carefully studied.

To be clear, as long as the AUX analysis is sound, the
primary SFS analysis will also be sound and it will be at
least as precise as a traditional flow-sensitive pointer analysis.
The precision of AUX mainly affects the sparsity (and hence
performance) of the primary analysis.

B. Sparse Flow-Sensitive Pointer Analysis

The primary data structure for SFS is a def-use graph (DUG),
which contains a node for each program statement and which
contains edges to represent def-use chains—if a variable is
defined in node x and used in node y, there is a directed edge
from x to y. The def-use edges for top-level variables are
trivial to determine from inspection of the program; the def-
use edges for address-taken variables require AUX to compute.
This section describes how these def-use edges are computed,
as well as how the precision of the flow-sensitive analysis is
maintained while using flow-insensitive def-use information.

The first step is to use the results of AUX to convert the
address-taken variables into SSA form. Once the LOADs and

Unclusion-based analysis is not incomparable to the primary analysis—it
is strictly less precise than a flow-sensitive pointer analysis.

<P

AUX points-to sets

*q = X *r = Y| p - {a}
q — {b,c.d.ef}
! ! v — {ef}
ju = *v| S = *x2Z r — {a’b’d}
z — {ab,c,d}
It = *x2
Fig. 2. An example CFG along with some hypothetical points-to sets that

might be computed by AUX. These points-to sets will be used to construct
the SSA representation of the program, shown in Figure 3.

‘kp = W
a1 = x(ao)
/ \
*q = X
b1 = x(bo); c1 = x(co) _ *r y
_ _ az = x(a1); b2 = x(bo)
"= Xf(ld():)’xe(lf(: x(eo) da = x(do)
I |
b= laz): (b peo)
wier) M(fl)\ — w(d2)
az = ¢(a1,a2)
bz = ¢(b1,b2)
c2 = ¢(c1, o)
ds = ¢(d1,d2)
'
t = %z
wlas); pu(bs); plez);
p(ds)

Fig. 3. The SSA representation for the CFG in Figure 2. The x functions
represent address-taken variables that might be defined by a store; the u
functions represent address-taken variables that might be accessed by a load.

STOREs are annotated with y and p functions as described
in Section II-B, the program can be converted to SSA form
using any standard SSA algorithm [1], [3], [9], [10]. Figure 2
shows an example program fragment along with some pointer
information computed by AUX. Figure 3 shows the same
program fragment annotated with x and p functions and
translated into SSA. The annotation step comes directly from
the points-to information computed by AUX—for example, for
the CFG node *p = w we add a y function for each variable
in p’s points-to set (i.e., a); for the CFG node u = »v we
add a p function for each variable in v’s points-to set (i.e.,
e and f). The other nodes are annotated in a similar fashion.
Once all of the nodes have been annotated, any standard SSA
algorithm can be used to derive the SSA form.

The def-use information computed by AUX is conservative
with respect to the more precise flow-sensitive information that
will be computed by the primary analysis, so there are three
possibilities that must be addressed for a STORE command

*»x = vy that is annotated with v, = x(v,):

1) x might not point to v in the flow-sensitive results. In
this case, v,, should be a copy of v, and incorporate

P = W|
[a]
A
L = Y *q = X
[a] [?/[d] [bY [dl \lal E%:] [d] Qﬂ
s = *Z t = *xz u = *v

Fig. 4. The def-use graph derived from Figure 3. An edge from statement X to
statement Y indicates that a variable potentially defined at X is potentially used
at Y. Each edge is labeled with the specific variable that may be defined/used.

none of y’s information.

2) x might point only to v in the flow-sensitive results. In
this case, the analysis can strongly update the points-to
information for v; in other words, v,, should be a copy
of y and incorporate none of v,,’s information.

3) x might point to v as well as other variables in the flow-
sensitive results. In this case, the analysis must weakly
update the points-to information for v; in other words,
Uy, should incorporate points-to information from both
vy, and y.

By using the computed SSA information to construct the
def-use graph, we can accommodate all of these possibilities.
To create the DUG we must add an edge from each indirect
definition (i.e., STORE) to each statement where the indirectly-
defined variable might be used. Thus we create, for each
STORE annotated with a function v,, = x(v,), a def-use
edge from that STORE to every statement that uses v,, as the
argument of a x, p, or ¢ function. We label each def-use
edge that corresponds to an address-taken variable with the
name of that variable; when propagating pointer information,
the analysis only propagates a variable’s information along
edges labeled with that variable’s name. Figure 4 shows the
program from Figure 2 converted into a DUG based on the
SSA information from Figure 3.

In principle, the actual flow-sensitive analysis works much
like the traditional flow-sensitive analysis described in Sec-
tion II, except that (1) the analysis propagates information
along def-use edges instead of control-flow edges, and (2) a
variable’s information is only propagated along edges labeled
with that variable’s name. The exact steps of the analysis are
deferred to Section V after we discuss some important issues
that affect precision and performance.

In order for the sparse flow-sensitive analysis to compute a
precise solution (i.e., one that is equivalent to a traditional it-
erative dataflow analysis for flow-sensitive, context-insensitive
pointer analysis), it must handle the three STORE possibilities
listed above. The key insight required to show that the analysis
correctly handles each possibility is that the points-to infor-
mation at each DUG node increases monotonically—once a
pointer contains a variable v in its points-to set at node n, that
pointer will always contain v at node n. This fact constrains

the transitions that each STORE can make among the three
possibilities.

Suppose we have a STORE *x = y. When visiting this
node, x must point to something (because the STORE is not
processed if x is NULL—either we will revisit this node
when x is updated, or the program will never execute past
this point because it will be dereferencing a null pointer).
The monotonicity property constrains the transitions that the
analysis may take among the three possibilities for this STORE:
The analysis may transition from possibility (1) or (2) to (3),
and from (1) to (2), but it can never transition from possibility
(2) to (1) and never from (3) to either (1) or (2).

More concretely, suppose that x does not point to v when
the STORE is visited. Then the analysis will propagate the old
value of v past this node. Later in the analysis, x may be
updated to point to v; if so, the STORE must be a weak update
(possibility 3) because x already points to some variable other
than v at this point in the program and it cannot change that
fact. So the analysis will update v with both the old value
of v and the value of y, which is a superset of the value
it propagated at the last visit (the old value of v). Similar
reasoning shows that if the STORE is originally a strong update
(possibility 2) and later becomes a weak update, the analysis
still operates correctly.

Note that the previous argument assumes that AUX is flow-
and context-insensitive; the use of a context-sensitive AUX
would instead yield an analysis that is more precise than
the traditional flow-sensitive, context-insensitive analysis. In
particular, a context-sensitive AUX analysis will compute def-
use chains that are incomparable to the set of def-use chains
that the primary flow-sensitive, context-insensitive analysis
would compute (because AUX would be more precise in the
context-sensitive dimension than the primary analysis). Thus,
with a context-sensitive AUX SFS will compute a more precise
(but still sound) result, because the def-use chains used for the
sparse primary analysis would benefit from the AUX analysis’
context-sensitivity.

C. Access Equivalence

A difficulty that immediately arises when using the tech-
nique described above is the sheer number of def-use edges
that may be required. Each LOAD and STORE may access
thousands of variables, based on the dereferenced variable’s
points-to set size, and each variable may be accessed at dozens
or hundreds of locations in the program—in large benchmarks,
hundreds of millions of def-use edges may be created, far too
many to enable a scalable analysis. To combat this problem
we introduce the notion of access equivalence, represents the
same information in a much more compact fashion.

Two address-taken variables = and y are access equivalent
if whenever one is accessed by a LOAD or STORE instruction,
the other is too; in other words, for all variables v such that
v is dereferenced in a LOAD or STORE, = € points-to(v) <
y € points-to(v). This notion of equivalence is similar, but
not identical, to the notion of location equivalence described
by Hardekopf and Lin [16]. The difference is that location

«p = W
[a]

fal/ [bd]\ [al\ [bd] [bd] ffc] \[ef]

S = *Z t = x2z U = *V]

Fig. 5. The def-use graph of Figure 4 after applying access equivalence.
Variables with exactly the same set of edges have been grouped together,
reducing the total number of edges in the graph.

equivalence examines all pointers in a program to determine
whether two variables are equivalent, whereas access equiva-
lence only looks at pointers dereferenced in a LOAD or STORE;
two variables may be access equivalent without being location
equivalent (but not vice-versa). Location equivalence is not
useful in compilers such as LLVM that use partial SSA form;
these compilers maintain the invariant that every address-taken
variable v has at least one top-level pointer that points only to
v—in such a case there are no location equivalent variables,
but there can be many access equivalent variables.

The advantage of access equivalence is that the SSA al-
gorithm will compute identical def-use chains for all access-
equivalent variables. This is easy to see: By definition, any
STORE that defines one variable must also define all access-
equivalent variables, and similarly any LOAD that uses one
variable must also use all access-equivalent variables.

To determine access equivalence using AUX, we must iden-
tify variables that are accessed by the same set of LOADs and
STOREs. Let AFE be a map from address-taken variables to
sets of instructions. For each LOAD or STORE instruction I,
and for each variable v accessed by I, AFE(v) includes I.
Once all instructions have been processed, any two variables x
and y are access-equivalent if AE(x) = AE(y). This process
takes O(I - V') time, where I is the number of LOAD/STORE
instructions and V' is the number of address-taken variables.

Once the address-taken variables have been partitioned into
access equivalence classes, the edges of the DUG are relabeled
using the partitions instead of variable names. For Figure 2, the
access equivalences are: {a}, {b,d}, {c}, and {e, f}. Figure 5
shows the same def-use graph as Figure 4 except with edges
for access-equivalent variables in the same partition collapsed
into a single edge.

Because the access equivalences are computed using AUX,
they are conservative with respect to the actual access equiva-
lences that would be computed using a flow-sensitive pointer
analysis—that is, variables that are access equivalent using
the AUX results may not be access equivalent using the flow-
sensitive results. For this reason, while the DUG edges are
labeled using the variable’s access equivalence partitions, the
transfer functions and points-to graphs at each node use the

actual variables and not the partitions.

D. Interprocedural Analysis

There are two possible approaches for extending the above
analysis to an interprocedural analysis.

The first option is to compute sparseness separately for each
function, treating a function call as a definition of all variables
defined by the callee and as a use of all variables used by the
callee. The downside of this approach is that def-use chains
can span a number of functions; treating each function call
between the definition and the actual use as a collection point
can adversely affect the sparseness of the analysis.

The second option, and the one that we choose, is to com-
pute the sparseness for the entire program as one unit, directly
connecting variable definitions and uses even across function
boundaries. An important consideration for this approach is
the method of handling indirect calls via function pointers.
Some of the def-use chains that span multiple functions may
be dependent on the resolution of indirect calls. The analysis
as given does not compensate for this problem—it assumes
that the def-use chains are only dependent on the points-to
sets of the pointers used by an instruction, without taking
into account any additional dependences on the points-to sets
of unrelated function pointers. In other words, this technique
may lose precision if the call-graph computed by AUX over-
approximates the call-graph computed by a flow-sensitive
pointer analysis.

There are two possible solutions to this problem. The
easiest is simply to assume that AUX computes a precise
call-graph, i.e., the same call-graph the flow-sensitive pointer
analysis would compute. If AUX is fairly precise (e.g., an
inclusion-based analysis), this is a good assumption to make—
it has been shown that precise call-graphs can be constructed
using only flow-insensitive pointer analysis [25]. We use an
inclusion-based analysis for AUX, and hence this is the solution
we use for our work.

If this assumption is not desirable, then the technique
must be adjusted to account for the extra dependences. Each
def-use chain that crosses a function boundary and depends
on the resolution of an indirect call is annotated with the
(function pointer, target function) pair that it depends on.
Pointer information is not propagated across this def-use edge
unless the appropriate target has been computed to be part of
the function pointer’s points-to set.

V. THE FINAL ALGORITHM

Putting everything together, the final algorithm for sparse
flow-sensitive pointer analysis begins with a series of prepro-
cessing steps that computes the DUG:

1) Run AUX to compute conservative def-use information
for the program being analyzed. Use the results of AUX
to compute the program’s interprocedural control-flow
graph (ICFG [22]), including the resolution of indirect
calls to their potential targets. All function calls are then
translated into a set of COPY instructions to represent

parameter assignments; similarly, function returns are
translated into COPY instructions.

2) Compute exact SSA information for all top-level vari-
ables. The ¢-functions computed by this step are trans-
lated into COPY statements, e.g., 1 = ¢ (w2, 23) be-
comes r1 = x2 x3 (see processCopy below), which
distinguishes these statements from the ¢-functions com-
puted for the address-taken variables in step 4 below.
Partition the address-taken variables into access equiva-
lence classes as described in Section IV-C.

3) For each partition P, use the results of AUX to label each
STORE that may modify a variable in P with a function
P = x(P), and label each LOAD that may access a
variable in P with a function u(P).

4) Compute SSA form for the partitions, using any of many
available methods [1], [3], [9], [10].

5) Construct the def-use graph by creating a node for
each pointer-related instruction and for each ¢ function
created by step 4; then:

e For each ALLOC, COPY, and LOAD node N, add
an unlabeled edge from IV to every other node that
uses the top-level variable defined by V.
o For each STORE node NN that has a x function
defining a partition variable P,, add an edge from
N to every node that uses P,, (either in a ¢, x or
w function), labeled by the partition P.
o For each ¢ node N that defines a partition variable
P, create an unlabeled edge to every node that uses
P,.
Once the preprocessing is complete, the sparse analysis it-
self can begin. The analysis uses the following data structures:

o There is a node worklist Worklist, initialized to contain
all ALLOC nodes.

o There is a global points-to graph PG that holds the
points-to sets for all top-level variables. Let P;,,(v) be
the points-to set for top-level variable v.

o Every LOAD and ¢-function k contains a points-to graph
INj, to hold the pointer information for all address-taken
variables that may be accessed by that node. Let Py (v)
be the points-to set for address-taken variable v contained
in INy.

o Every STORE node k contains two points-to graphs to
hold the pointer information for all address-taken vari-
ables that may be defined by that node: INj for the
incoming pointer information and OUTy, for the outgoing
pointer information. Let Pj(v) be the points-to set of
address-taken variable v in INj;. We lift P () to operate
of sets of address-taken variables such that its result is
the union of the points-to sets of each variable in the set.

o For each address-taken variable v, part(v) returns the
variable partition that v belongs to.

The points-to graphs are all initialized to be empty. The
main body of the algorithm is listed in Algorithm ??. The
loop iteratively selects and processes a node from the worklist,
during which new nodes may be added to the worklist. The

loop continues until the worklist is empty, at which point the
analysis is complete. Each different type of node is processed
as given in the code listing below. The < operator represents
set update, — represents an unlabeled edge in the def-use
graph, and - represents an edge labeled with .

Main body of analysis:

while Worklist is not empty do

k =SELECT(Worklist)

switch rypeof (k):
case ALLOC: processAlloc(k) // x = ALLOC;
case COPY: processCopy(k) // x =y z
case LOAD: processLoad(k) // x = xy
case STORE: processStore(k) // »x =y
case ¢: processPhi(k) // x = phi(...)

define processAlloc(k):
PG < {x — ALLOC; }
if PG changed then
Worklist — {n| k—ne€FE}

define processCopy(k):
for all v € right-hand side do
PG — {x = Pop(v)}
if PG changed then
Worklist — {n|k—necE}

define processLoad(k):
PG = {x = Pr(Prop(v))}
if PG changed then
Worklist —{n| k—ne€FE}

define processStore(k):
if Piop(x) represents a single concrete memory location
then
/I strong update
OUT, = (INg—{Prap(x) = _})U{Prap(x) = Prop(¥)}
else // weak update
OUTy, = INg U {Prop(x) = Prop(y)}
forall {(ne N,pec P | kL neE}do
for all {v € ouTy, | part(v) = p} do
IN, (v) < OUT(v)
if IN,, changed then
Worklist < {n}

define processPhi(k):
forall {ne N |k —neE} do
if IN,, changed then
Worklist < {n}

Name Description LOC

197 .parser parser 11K
300.twolf | place and route simulator 20K
ex text processor 34K
255.vortex object-oriented database 67K
254.gap group theory interpreter 71K
sendmail email server 74K
253.perlbmk PERL language 82K
nethack text-based game 167K
python interpreter 185K
176.gcc C language compiler 222K
vim text processor 268K

pine e-mail client 342K

svn source control 344K
ghostscript postscript viewer 354K
gimp image manipulation 877K
tshark | wireless network analyzer 1,946K

TABLE I
BENCHMARKS: LOC REPORTS THE NUMBER OF LINES OF CODE. THE
BENCHMARKS ARE DIVIDED INTO SMALL (LESS THAN 100K LOC),
MID-SIZED (BETWEEN 100K—400K LOC), AND LARGE (GREATER THAN
800K LOC).

VI. EVALUATION

To evaluate the scalability of our new technique, we com-
pare it against the most scalable known flow-sensitive pointer
analysis algorithm—semi-sparse flow-sensitive pointer analy-
sis (SSO) [17]. SSO is able to analyze benchmarks with up to
approximately 344K lines of code (LOC), an order of mag-
nitude greater than (and almost 200x faster than) allowed by
the best traditional, non-sparse flow-sensitive pointer analysis.
We use SSO as the baseline for comparison with our new
technique, which we refer to as SFS. SFS uses inclusion-based
(i.e., Andersen-style) analysis for AUX and uses the method
indicated in Section IV-D for handling function pointers. All
of these algorithms—sSSO, SFS, and AUX-are field-sensitive,
meaning that each field of a struct is treated as a separate
variable.

Both SFS and SSO are implemented in the LLVM compiler
infrastructure [23] and use BDDs from the BuDDy library [24]
to store points-to relations. We emphasize that neither tech-
nique is a symbolic analysis (which formulates the entire
analysis as operations on relations represented as boolean
functions). Instead, SFS and SSO only use BDDs to compactly
represent points-to sets; other data structures could be swapped
in for this purpose without changing the rest of the analysis.
The analyses are written in C++ and handle all aspects of the
C language except for varargs.

The benchmarks for our experiments are described in Ta-
ble I. Six of the benchmarks are the largest SPECint 2000
benchmarks, and the rest are various open-source applications.
Function calls to external code are summarized using hand-
crafted function stubs. The experiments are run on a 2.66 GHz
32-bit processor with 4GB of addressable memory, except for
our largest benchmark, tshark, which uses more than 4GB
of memory—that benchmark is run on a 1.60 GHz 64-bit
processor with 100GB of memory.

A. Performance Results

Table II gives the analysis time and memory consumption
of the various algorithms. These numbers include the time to
build the data structures, apply the optimizations, and compute
the pointer analysis. The times for SFS are additionally broken
down into the three main stages of the analysis: the auxiliary
flow-insensitive pointer analysis, the preparation stage that
computes sparseness, and the solver stage.

The premise of SFS—that a sparse analysis can be approxi-
mated by using an auxiliary pointer analysis to conservatively
compute def-use information—is clearly borne out. For the
small benchmarks, those less than 100K LOC, both analyses
are fast, but the advantage is unclear: In some cases SFS is
faster, and in other cases SFS is slower; on average SFS is
1.03x faster than SSO. For the mid-sized benchmarks, those
with between 100K LOC and 400K LOC, SFS has a more
distinct advantage; for the six benchmarks that both algorithms
complete, SFS is on average 5.5x faster than than SSO. The
scalability advantage of SFS is seen from the fact that SSO
cannot analyze the three largest benchmarks within an hour.

The one area where SSO has a clear advantage is memory
consumption, but SFS has not been tuned with respect to
memory consumption, and we believe its memory footprint
can be significantly reduced.

B. Performance Discussion

There are several observations about the SFS results that
may seem surprising.

First, the solve times for SFS are sometimes smaller than
the AUX times, but remember that the AUX column includes
the time for AUX to generate constraints, optimize those
constraints, solve them, and then do some post-processing on
the results to prepare them for the SFS solver. On the other
hand, the solve times only include the time taken for SFS to
actually compute an answer given the def-use graph.

Second, we see that the analysis times can vary quite widely,
even for benchmarks that are close in size. Some smaller
benchmarks take significantly longer than larger benchmarks.
The analysis time for a benchmark depends on a number
of factors besides the raw input size: the points-to set sizes
involved; the characteristics of the def-use graph, which deter-
mines how widely pointer information is propagated; how the
worklist algorithm interacts with the analysis; and so forth. It
is extremely difficult to predict analysis times without knowing
such information, which can only be gathered by actually
performing the analysis.

Finally, the prep time for SFS, which includes the time to
compute SSA information using the AUX results and the time
to optimize the analysis using Top-level Pointer Equivalence
and Local Points-to Graph Equivalence, takes a significant
portion of the total time for SFS. While the prep stage is
compute-intensive, there are several optimizations for this
stage that we have not yet implemented. We believe that the
times for this stage can be significantly reduced.

VII. CONCLUSIONS

The ability to perform a sparse analysis is critical to the
scalability of any flow-sensitive analysis. In this paper, we
have shown how pointer analysis can be performed sparsely
with a staged approach. In particular, our algorithm uses
a highly efficient inclusion-based pointer analysis to create
conservative def-use information, and from this information
the algorithm performs a sparse flow-sensitive pointer analysis.
Our new algorithm is quite scalable even though it has not
yet been carefully tuned. In particular, we have identified a
number of memory optimizations that should reduce its high
memory requirements, and other optimizations should improve
its already fast analysis time.

This paper presents the first study of staged pointer analysis,
a family of algorithms that we believe deserves further explo-
ration. In particular, the idea of a context-sensitive auxiliary
analysis is an intriguing idea for future work. As we have
mentioned, a combined flow- and context-sensitive analysis
limits scalability, but by obtaining context-sensitive and flow-
sensitive information in sequence rather than in a combined
analysis, this new staged analysis promises to offer signif-
icantly greater scalability than previous flow- and context-
sensitive algorithms, albeit with less precision.

REFERENCES

[1] J. Aycock and R. N. Horspool. Simple generation of static single-
assignment form. In 9th International Conference on Compiler Con-
struction (CC), pages 110-124, London, UK, 2000. Springer-Verlag.

[2] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Umanee. Points-
to analysis using BDDs. In Programming Language Design and
Implementation (PLDI), 2003.

[3] G. Bilardi and K. Pingali. Algorithms for computing the static single
assignment form. Journal of the ACM, 50(3):375-425, 2003.

[4] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security
enforcement using dynamic data flow analysis. In Computer and
Communications Security (CCS), 2008.

[5] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. In Programming Language Design and Implementation
(PLDI), pages 296-310, 1990.

[6] P-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee.
Compiler support for speculative multithreading architecture with prob-
abilistic points-to analysis. SIGPLAN Not., 38(10):25-36, 2003.

[7] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction of
sparse data flow evaluation graphs. In Symposium on Principles of
Programming Languages (POPL), pages 55-66, New York, NY, USA,
1991. ACM Press.

[8] F. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Effective
representation of aliases and indirect memory operations in SSA form.
In Compiler Construction (CC), 1996.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451-490, 1991.

[10] R. K. Cytron and J. Ferrante. Efficiently computing ®-nodes on-the-fly.
ACM Trans. Program. Lang. Syst, 17(3):487-506, 1995.

[11] M. Das. Unification-based pointer analysis with directional assignments.
ACM SIGPLAN Notices, 35:535-46, 2000.

[12] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective
typestate verification in the presence of aliasing. In International
Symposium on Software Testing and Analysis, pages 133—144, 2006.

[13] R. Ghiya. Putting pointer analysis to work. In Principles of Program-
ming Languages (POPL), 1998.

[14] S. Z. Guyer and C. Lin. Error checking with client-driven pointer
analysis. Science of Computer Programming, 58(1-2):83—114, 2005.

Name SSO SFS Time Mem
Time | Mem Prelim | Prep Solve [[Total Time | Mem [| Comp | Comp
197 .parser 0.41 138 0.29 0.07 0.008 0.37 275 1.11 0.50
300.twolf 0.23 140 0.34 0.07 0.004 041 281 0.56 0.50
ex 0.35 141 0.29 0.10 0.008 0.40 277 0.88 0.51
255.vortex 0.60 144 0.45 0.14 0.028 0.62 285 0.97 0.51
254.gap 1.28 155 0.94 0.33 0.016 1.29 307 0.99 0.50
sendmail 1.21 147 0.70 0.27 0.032 1.00 301 1.21 0.49
253.perlbmk 2.30 158 1.05 0.50 0.020 1.57 312 1.46 0.51
nethack 3.16 197 1.72 0.82 0.096 2.64 349 1.20 0.56
python 120.16 346 4.04 2.02 0.564 6.62 404 18.15 0.86
175.gcc 3.74 189 2.00 1.42 0.040 3.46 370 1.08 0.51
vim 61.85 238 2.93 2.44 0.160 5.53 436 11.18 0.55
pine | 347.53 640 13.42 21.25 47.330 82.00 876 4.24 0.73
svn 185.10 233 5.40 5.07 0.216 10.69 418 17.32 0.56
ghostscript ooT — 42.98 86.13 1787.184 1916.29 2359 o) 0
gimp ooT — 90.59 105.87 1025.824 1222.28 3273 o) 0
tshark ooT — 232.54 | 219.83 376.096 828.47 6378 00 0
TABLE II

PERFORMANCE: TIME (IN SECONDS) AND MEMORY (IN MEGABYTES) OF THE ANALYSES. OOT MEANS THE ANALYSIS RAN OUT OF TIME (EXCEEDED A 1
HOUR TIME LIMIT). SFS IS BROKEN DOWN INTO THE MAIN STAGES OF THE ANALYSIS: THE AUXILIARY POINTER ANALYSIS, THE PREPARATION STAGE
THAT COMPUTES SPARSENESS, AND THE ACTUAL TIME TO SOLVE. TIME COMP IS THE SSO TIME DIVIDED BY THE SFS TIME (I.E., SPEEDUP; LARGER IS

BETTER); MEM COMP IS THE SSO MEMORY DIVIDED BY THE SFS MEMORY (LARGER IS BETTER).

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

B. Hardekopf and C. Lin. The Ant and the Grasshopper: Fast and
accurate pointer analysis for millions of lines of code. In Programming
Language Design and Implementation (PLDI), pages 290-299, San
Diego, CA, USA, 2007.

B. Hardekopf and C. Lin. Exploiting pointer and location equivalence
to optimize pointer analysis. In International Static Analysis Symposium
(SAS), pages 265-280, 2007.

B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis.
In Symposium on Principles of Programming Languages (POPL), 2009.
R. Hasti and S. Horwitz. Using static single assignment form to improve
flow-insensitive pointer analysis. In Programming Language Design and
Implementation (PLDI), 1998.

M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer
alias analysis. ACM Transactions on Programming Languages and
Systems, 21(4):848-894, 1999.

M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer
alias analyses. In Static Analysis Symposium (SAS), pages 57-81, 1998.
V. Kahlon. Bootstrapping: a technique for scalable flow and context-
sensitive pointer alias analysis. In Programming Language Design and
Implementation (PLDI), pages 249-259, 2008.

W. Landi and B. G. Ryder. A safe approximate algorithm for inter-
procedural pointer aliasing. In Programming Language Design and
Implementation (PLDI), pages 235-248, 1992.

C. Lattner. LLVM: An infrastructure for multi-stage optimization. Mas-
ter’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Dec 2002.

J. Lind-Nielson. BuDDy, a binary decision package.

A. Milanova, A. Rountev, and B. G. Ryder. Precise and efficient call
graph construction for C programs with function pointers. Automated
Software Engineering special issue on Source Code Analysis and Ma-
nipulation, 11(1):7-26, 2004.

D. Novillo. Design and implementation of Tree SSA.
Developers Summit, pages 119-130, 2004.

J. H. Reif and H. R. Lewis. Symbolic evaluation and the global value
graph. In Principles of programming languages (POPL), pages 104—118,
1977.

E. Ruf. Partitioning dataflow analyses using types. In Symposium on
Principles of Programming Languages (POPL), pages 15-26, 1997.

A. Salcianu and M. Rinard. Pointer and escape analysis for multi-
threaded programs. In PPoPP ’'01: Proceedings of the Eighth ACM
SIGPLAN Symposium on Principles and Practices of Parallel Program-
ming, pages 12-23, 2001.

B. Steensgaard. Points-to analysis in almost linear time. In Symposium
on Principles of Programming Languages (POPL), pages 3241, New
York, NY, USA, 1996. ACM Press.

In GCC

(31]

(32]

(33]

[34]

T. B. Tok, S. Z. Guyer, and C. Lin. Efficient flow-sensitive interprocedu-
ral data-flow analysis in the presence of pointers. In 15th International
Conference on Compiler Construction (CC), pages 17-31, 2006.

J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis. In Programming Language Design and Implementation
(PLDI), pages 131-144, 2004.

J. Zhu. Symbolic pointer analysis. In International Conference on
Computer-Aided Design (ICCAD), pages 150-157, New York, NY, USA,
2002. ACM Press.

J. Zhu. Towards scalable flow and context sensitive pointer analysis.
In DAC °05: Proceedings of the 42nd Annual Conference on Design
Automation, pages 831-836, 2005.

