
Appears in "Proceedings of the Seventh International Workshop on Languages and Compilers for Parallel Computing," pages 361-375, 1994.

SIMPLE Performance Results in ZPL

Calvin Lin and Lawrence Snyder

University of Washington

Abstract. This paper presents performance results for ZPL programs

running on the Kendall Square Research KSR-2 and the Intel Paragon.

Because ZPL is a data parallel language based on the Phase Abstrac-

tions programming model, these results complement earlier claims that

the Phase Abstractions model can lead to portability across MIMD com-

puters. The ZPL language and selected aspects of the compilation strat-

egy are brie
y described, and performance results are compared against

hand-coded programs.

1 Introduction

In 1991 the authors claimed that programs written in languages founded on the

CTA machine model and the Phase Abstractions programming model would be

portable across the major families of MIMD parallel computers [6, 8]. The evi-

dence o�ered to support this claim was the observed performance of the SIMPLE

computational
uid dynamics program on �ve parallel machines that represented

the MIMD machines then available: the Sequent Symmetry, BBN Butter
y, Intel

iPSC/2, nCUBE/7 and a Transputer array machine; see Figure 1. It was noted

that this program achieved at least P/2 speedup on all platforms, and it met

or exceeded all published performance for the SIMPLE computation.

2

Though

no comparable degree of machine independence had previously been reported,

the results did not represent any language or compiler support: The SIMPLE

program was written in pseudocode and hand translated to C code that made

calls to a message passing library. The problem is that although the hand trans-

lation used no exotic analysis and assumed no sophisticated compiler technology,

the possibility existed that high level languages and their compilers would be

unable to produce the same high quality object code for these disparate com-

puters. This paper addresses this problem by repeating the previous experiment

on two modern machines, the Intel Paragon and the Kendall Square Research

KSR-2|this time using a high level language called ZPL.

The �rst goal of this paper is to present evidence that a compiler can per-

form the necessary translations to achieve portability for the SIMPLE program.

1

This research was supported in part by O�ce of Naval Research Contract N00014-

92-J-1824 and NSF Contract CDA-9211095

2

Figure 1 compares against results from Hiromoto et al.'s hand coded results on the

Denelcor HEP [4] and Pingali and Rogers' compiled Id program on the iPSC/2 [11].

Though the evidence is not yet complete|the compiler has only been targeted

to two MIMD machines|it is stronger in one sense: The original pseudocode

represented a very low level language, so while the pseudocode used powerful

concepts from the Phase Abstractions programming model, it did not exploit

any high level abstractions such as the data parallel facilities of ZPL. A second

goal of this paper is to compare the performance of small ZPL programs with

hand coded programs written in C with message passing. These results give an

indication of the compiler's e�ectiveness at producing e�cient code. Together,

the data presented here supports the claim that the CTA and Phase Abstrac-

tions are a conceptual foundation on which portable parallel programs can be

written.

This paper is organized as follows. Section 2 provides background by review-

ing the Phase Abstractions programming model. Sections 3 and 4 then describe

the ZPL language and the ZPL compiler. Our experiments are presented in Sec-

tion 5, followed by concluding remarks.

Sp
ee

du
p

Number of Processors

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

1680 points on a Transputer
1680 points on the Intel iPSC/2
1680 points on the Butterfly
1680 points on the NCUBE/7
1680 points on the Symmetry

Sp
ee

du
p

Number of Processors

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

Pingali&Rogers
Lin&Snyder
Hiromoto et al.

Fig. 1. (a) SIMPLE Speedup on Various Machines (b) SIMPLE with 4096 points

2 Background: Phase Abstractions

The Phase Abstractions programming model serves as the basis for both our

earlier results and the current language-based results. This section brie
y reviews

the salient features of the Phase Abstractions. A more complete description can

be found elsewhere [1, 3, 14].

The Phase Abstractions programming model identi�es three levels of parallel

programming: the X level, the Y level, and the Z level. The Z level speci�es a

program's overall control logic and the sequential invocation of phases to solve

the overall problem. Phases are de�ned at the Y level, which isolates the ex-

plicitly parallel aspects of a parallel program. A phase is a parallel algorithm

that typically uses a single pattern of communication; examples include parallel

implementations of FFT, Gaussian Elimination, and global maximum. Phases

are composed of multiple processes, and these are programmed at the X level. X

level processes are de�ned by sequential code that can communicate with other

processes through some message passing mechanism.

The Y level deals with explicit parallelism, so new abstractions are provided

to help manage this parallelism. In a non-shared memory model, each process

consists of local data, local code, and some local interface to the overall commu-

nication structure. In the Phase Abstractions model these three components are

encapsulated in a section, which is a logical unit of concurrency. Each section

can be independently assigned to a processor for execution, and the degree and

granularity of parallelism is controlled by increasing or decreasing the number

of sections.

The notion of ensembles is used to partition each phase's data, code and

communication structure. A data ensemble speci�es how global data is parti-

tioned across the di�erent sections. A code ensemble assigns a piece of code to

each section, and a port ensemble de�nes ports that connect the section with

other sections; these ports are used by X level processes when communicating

with other processes. A given section typically consists of multiple data ensem-

bles, a single code ensemble, and a single port ensemble

3

: the code speci�ed by

the code ensemble manipulates the local data as de�ned by the data ensembles,

and communicates with other processes as de�ned by the port ensembles. By

describing all aspects of a section through the common notion of an ensemble,

all aspects of parallelism can scale in a coherent fashion.

3 The ZPL Language

For the sake of performance, low level languages can be built upon the Phase Ab-

stractions, and, in fact, such languages have been proposed [8, 9]: Orca C is a low

level non-shared memory language that extends the programming model with

modest conveniences. Thus, Orca C is a MIMD language that gives program-

mers control over the performance-sensitive aspects of their programs. However,

for regular data parallel computations, such control is typically not as critical

to performance and such a language can be unnecessarily tedious. ZPL is a

subset of Orca C that aims to provide conciseness, convenience, and clarity for

3

In sophisticated computations a section can comprise multiple code ensembles|for

example, Kung and Leiserson's systolic matrix multiplication algorithm [5] ideally

consists of two processes per processor, one to move data and one to compute new

local products|and may comprise multiple port ensembles.

data parallel computations. By addressing a restricted domain the language and

compiler design are simpli�ed and good performance can be attained.

ZPL may seem somewhat limited in its expressiveness when compared to

other data parallel languages, and these in turn are limited relative to the re-

quirements of full MIMD computation. However, the limitations of ZPL are not

a concern because ZPL is a subset of Orca C. Z level programs in Orca C con-

sist of ZPL code mixed with invocations of programmer-de�ned phases. Thus,

computations not easily expressed in ZPL can be written using the full power of

Orca C, while those naturally expressible in ZPL can exploit the convenience of

ZPL.

3.1 Language Features

As a Z level language, ZPL provides a global view of the computation, so the

programmer sees a single address space and all parallelism is implicitly speci�ed.

The principal concepts of ZPL are brie
y enumerated below:

Regions. The primary mechanism for expressing data parallel computation is

through regions. A region is an index set, and can be de�ned as follows: R =

[1..n, 1..n]. Executing a statement containing array references in the context

of a region name causes the statement to be instantiated for and executed with

each index value of the region.

Array computations. By using regions, expressions involving arrays can be per-

formed without tedious indexing. For example, the following statement �nds for

all index values of R the di�erence between the elements of A and B.

[R] C := A-B;

The operations are performed elementwise and provide the user with a clear and

succinct means of expressing concurrency.

Directions. Directions are used to express o�sets and translate index sets. For

example, for a two dimensional array, the northern direction can be used to

translate a position to the row above it. The northern direction might be de�ned

as follows: north = [-1, 0].

At. The At operator (@) is used with directions to provide relative indexing.

For example, the averaging of the four nearest neighbors required in the Jacobi

iteration is given by the following statement:

[R] (A@north+A@east+A@west+A@south)/4;

Of. The Of operator uses a direction to de�ne the boundary regions adjacent to

some base region. Thus, the \extra" 0

th

row of A, required when shifting array A

north, is de�ned and initialized as with one statement: [north of R] A := 0.

Wrap and Re
ect. Special statements, wrap and reflect, support mirrored and

periodic boundary conditions.

Control structures. ZPL includes the usual control constructs, including if, for,

repeat, while, exit, continue, and return, along with function calls.

Promotion. Scalar values can be used in array expressions in ZPL as if they

were arrays of the proper dimension and size. Thus, in the expression 2*A, the

scalar is promoted to conform to the region in which it is executed, and in e�ect

matches the portion of the array operand with which it is executed.

Masks. It is possible to apply operations selectively to the elements of an array

according to a boolean condition. For example, [R with mask] speci�es the

indices of R for which the value of mask is true (non-zero).

Reduce and Scan. The usual reduction and scan operators are provided, includ-

ing sum, product, logicals, bitwise logicals, minimum, and maximum. For exam-

ple, maxn A reduces A to its largest element.

ZPL has several other interesting features that, although worthy of mention,

are rather involved and not needed in the programs discussed in the experiments

below. These are described in the literature [10, 15].

The above summary of ZPL should allow the Jacobi program of Figure 2

to be easily understood. The program begins with declarations, �rst for the

region R, then for two array variables, A and Temp, then for a scalar, error,

and �nally for a set of directions. The next block of code de�nes and initializes

the boundary regions, assigning zeros to the array and all boundaries except the

southern boundary, which is set to 1.0. The body of the program, executed in the

context of the region speci�er, [R], iterates until convergence: The values of the

next iteration are found by averaging the four nearest neighbors at each point.

In the statement, error := maxn(abs(Temp - A)), the absolute di�erence of

the elements of the two iterations is computed by promoting the scalar function,

abs(), to apply to the elements of its array argument; the maximum reduction is

then performed to �nd the greatest error that will be used to test for termination.

3.2 Parallel Foundation for ZPL

Although its language semantics are implicitly parallel, ZPL's parallel execution

is made explicit by exposing the Phase Abstractions as its underlying program-

ming model. This is a necessity because ZPL is a sublanguage of an explicitly

parallel language. The parallelism is formulated in terms of the CTA [13], an

abstract machine on which the program is logically thought to be executed. Pro-

grammers, knowing the general characteristics of the parallel execution, can thus

assess the performance implications of alternate program implementations.

Logically, the ZPL program should be thought of as a sequence of phase

invocations, with the ZPL compiler producing the X and Y level code that

implements these phases. In the parlance of the Phase Abstractions, ZPL's arrays

program Jacobi;

config var N: integer = 100;

direction east = [0, 1];

west = [0,-1];

north = [-1,0];

south = [1, 0];

region R = [1..N, 1..N];

constant epsilon: real = .01;

var A, Temp: [R] real;

error : real;

procedure Jacobi();

begin

[east of R] A := 0.0;

[west of R] A := 0.0;

[north of R] A := 0.0;

[south of R] A := 1.0;

[R] A := 0.0;

[R] repeat

Temp := (A@east + A@west + A@north + A@south)/4;

error := max\ (abs(Temp-A));

A := Temp;

until error < epsilon;

end;

Fig. 2. ZPL Program for the Jacobi Iteration.

are data ensembles that by default are distributed across the processors in a 2D

blocked fashion,

4

and scalars are Z level control variables that are replicated

across all processors. The code ensemble generated for each of these lightweight

phases is the object C code produced by the ZPL compiler for the particular

ZPL statement. The port ensemble for each phase, while implicit to the user, is

explicit to the compiler: The @ and wrap operators specify connectivity between

neighboring sections and the scan and reduce operators specify a machine-speci�c

tree connectivity.

The use of the Phase Abstractions model and the CTA abstract machine is

crucial because it provides the compiler with a single view of all MIMD comput-

ers. In particular, the model leads to a single compiler that produces identical

object code for both the shared address space KSR-2 and the non-shared memory

Intel Paragon.

5

4

The decomposition can be changed through Orca C's Y level ensemble declarations.

5

We currently perform no machine-speci�c optimizations.

4 The ZPL Compiler

We have modi�ed the Parafrase-2 source-to-source translator [12] to compile ZPL

programs to SPMD C code with calls to machine-speci�c communication rou-

tines. We rely on each machine's native C compiler to complete the translation

to machine code.

Space limitations prevent a full description of the compilation process, but

three signi�cant tasks are the insertion of communication, the implementation

of array statements, and the representation of ensembles. Communication is

explicitly represented in our AST as Send and Receive nodes. In the naive case

these communication nodes are inserted wherever the At operator is used. Array

statements are implemented by creating Mloops in the AST. Mloops represent

the region that applies to a given ZPL statement, and Mloops are converted

to nested for loops in the object code. The use of Mloops di�erentiates loops

derived from array operations from loops de�ned by users, a distinction that

can be useful because of the restricted nature of Mloops. Finally, ensembles

are implemented as arrays with additional descriptors that describe their size,

shape, and amount of
u�, where
u� is a cache used for holding neighboring

array values.

The current ZPL compiler performs only a small number of optimizations.

One optimization concerns the elimination of redundant communication opera-

tions, an e�ect that is similar to common subexpression elimination. Each local

section of an ensemble maintains a cache to hold data from neighboring sec-

tions, and these caches are updated only when Def-Use analysis detects that it

is necessary. This optimization is explained in more detail in Appendix A.

We currently perform conservative Mloop fusion that reduces the number of

Mloops in SIMPLE from about 165 to about 100. More aggressive fusion that

looks for optimal loop iteration orders is being explored.

5 Experiments

Our primary result compares the performance of a compiled ZPL implementation

of the SIMPLE benchmark against earlier implementations written in C. This

result completes earlier claims that the Phase Abstractions model can be used

to create portable programs. We then present a second set of results involving

the Jacobi iteration. By looking at a small program that is essentially a subset

of the SIMPLE computation, this experiment provides a more detailed look at

the performance di�erence between ZPL programs and hand-coded C programs.

Hardware. The Intel Paragon is a distributed memory computer with 18 nodes

arranged in a mesh structure. Each node consists of an Intel i860 processor and

16 MB of local memory, and runs the OSF Mach operating system.

The Kendall Square Research KSR-2 has 56 processors connected by two

levels of rings. A coherent cache-only memory structure provides a global address

space. Each custom processor runs at 40 Mhz and can issue both integer and

oating point instructions on each cycle. Each processor has a 256 KB instruction

cache, a 256KB data cache, and 32 MB of local memory.

5.1 SIMPLE Results

4

8

12

16

4 8 12 16

sp
ee

du
p

processors

Simple Speedup on the Intel Paragon

linear
zpl

hand coded
zpl (naive comm)

4

8

12

16

4 8 12 16
processors

Simple Speedup on the KSR-2

linear
hand coded

zpl

Fig. 3. SIMPLE results.

Figure 3 compares the speedup of SIMPLE written in ZPL against our hand-

coded version written in C with messages passing [6]. Ten iterations were run

for a problem with 256�256 data points (all C programs were compiled with

optimizations at level -O2). The graph on the left shows that on the Paragon

the speedup of our ZPL program (the curve labeled \zpl") is very close to that

of the hand-coded program. Note that the P=1 time for \hand coded" is a

sequential program with no unnecessary overhead for parallelism, and the ZPL

program running on one processor was still 1.9% faster. On the Paragon, the

better node performance of the ZPL program is due to our use of \walkers" and

\bumpers," described below.

At P=4 the ZPL program is 4.1% faster than hand-coded, but as the num-

ber of processors increases the hand-coded program does relatively better. For

example, at P=16 the ZPL program is 3.9% slower. This performance di�erence

appears to be due to the slightly higher overhead of the ZPL object code, and as

P grows the cost of this overhead becomes a larger percent of the execution time.

For example, the ZPL compiler produces code for communication between two

neighbors that works for any processor and any region. By contrast, the hand-

coded program hard codes some of this information, knowing, for example, that

a process on the west edge of the computation has no western neighbors to send

messages to.

ZPL's superior performance at P=1 is surprising because the ZPL program

has all of the overhead mentioned above. However, a detailed examination of

the cost of Mloops versus the cost of hand-coded nested loops shows that our

use of walkers and bumpers is a big win on the Paragon: Walkers are pointers

that are used to iterate over arrays in Mloops; walkers are advanced at each

iteration by bumpers. Of course, the hand-coded program could also use walkers

and bumpers, but this would be extremely tedious. Note that if all arrays were

declared to reside contiguously in memory, the Paragon's C compiler could use

induction variable elimination and strength reduction to achieve better perfor-

mance than our walkers and bumpers, but this would require that all arrays be

statically de�ned.

The curve labeled \zpl (naive comm)" represents a naive communication in-

sertion strategy where sends and receives are emitted for every statement that

contains an @. Figure 3 shows that the performance di�erence between \naive

comm" and \zpl," which uses our Def-Oriented communication insertion algo-

rithm, is considerable.

The graph on the right of Figure 3 shows the performance on the KSR-2. At

P=1 the ZPL program is 27.9% slower than hand-coded. For P greater than one

the performance of the two programs is very close, with the hand-coded program

being about 10% faster. Interestingly, these trends are completely reversed from

the Paragon. Further analysis is needed to explain this behavior and an anomaly

at P=8, where the ZPL program is slightly faster.

5.2 Jacobi Results

In addition to SIMPLE, we also compare a ZPL implementation of Jacobi against

a hand-coded message-passing implementation [7] for a 512 � 512 problem that

converged at 279 iterations. (See Figure 4.) At P=1 the ZPL program is 5.2%

slower than hand-coded. For more than one processor the overhead is between

5.4% (P=4) and 1.8% (P=16). The discontinuity at P=8 of the hand-coded

curve is an artifact of the program's data partitioning. For a 512 � 512 problem

size, the number of cache misses in the inner loop is roughly halved as we double

the number of processors from P=1 to 2 and from 2 to 4. However, after P=8

no further reduction of caches misses occurs because the number of columns per

processor remains unchanged. That is, each processor has 128 columns for P=8

(256 � 128), P=12 (170 � 128) and P=16 (128 � 128).

Figure 4 also shows a curve labeled \naive access," which shows the im-

portance of using walkers and bumpers. The \naive access" curve represents a

straightforward approach where each array access is computed independently.

The high cost of these array accesses is due to the fact that each array may

have di�erent amounts of
u�, and many aspects of ZPL arrays|such as their

dimension and the size of each element|may not be known at compile time.

Strangely, the ZPL program is faster than hand-coded on the KSR. We sus-

pect the di�erence is due to data alignment and caching e�ects, but further

4

8

12

16

4 8 12 16

sp
ee

du
p

processors

Jacobi Speedup on the Intel Paragon

linear
hand coded

zpl
zpl (naive access)

4

8

12

16

4 8 12 16
processors

Jacobi Speedup on the KSR-2

linear
zpl

hand coded

Fig. 4. Jacobi results.

investigation is required. These results contrast with the SIMPLE results where

the ZPL program was faster than hand-coded on the Paragon but slower on

the KSR. We observe that the Paragon's node compiler is more robust than

the KSR's and appears to perform superior optimizations. If we assume that

the hand-coded programs do not bene�t as much from scalar optimizations, we

observe that the Paragon's superior compiler is likely to have little impact on

straightforward programs such as Jacobi, and larger impact on more complicated

programs such as SIMPLE. Thus, the Paragon's native C compiler improves the

ZPL performance of SIMPLE (relative to hand-coded) more than it improves

the ZPL performance of Jacobi. On the KSR, however, the node compiler has

less e�ect.

While some of the results in this section have not been fully explained, one

conclusion is clear: The ZPL programs are extremely competitive with hand-

coded C programs.

6 Conclusion

This paper complements earlier Phase Abstractions portability experiments by

showing performance results for a SIMPLE program written in ZPL, a high

level language that is based upon the Phase Abstractions. The present data

shows good performance results for two very di�erent parallel computers, the

Intel Paragon and the Kendall Square Research KSR-2. Additional optimiza-

tions are underway that will concentrate on eliminating overhead of high level

data parallel operations. For example, array temporaries can be expensive and

should be eliminated, re-used, or converted to scalars whenever possible. Further

optimizations to reduce or hide communication latency are also anticipated.

The success of the ZPL compiler can be attributed to two factors. First, the

ZPL language was designed to �t within the Phase Abstractions model as part of

Orca C, and this design simpli�es the compiler's task. ZPL is a Z level language

that can focus on well-studied parallel abstractions such as data parallel array

operations and reduction operations. Although some language features (not all

features were discussed in this paper) cause non-trivial obstacles and interesting

implementation problems, the separation from MIMD parallelism is bene�cial.

For example, communication only comes from structured operations such as

@, wrap, and reductions; this contrasts sharply with other languages that may

require communication for arbitrary array accesses. Second, by building on the

Phase Abstractions programming model the compiler can use the same concepts

that make Phase Abstractions applicable to a wide class of parallel computers:

the non-shared memory view of the machine that encourages data locality, the

notion of ensembles that parameterizes grain size, and the decomposition of a

program into phases that makes ZPL compatible with the other components of

Orca C.

Acknowledgments. We thank those who have helped implement ZPL|Ruth An-

derson, Bradford Chamberlain, Sung-Eun Choi, George Forman, E Chris Lewis,

Kurt Partridge, and W. Derrick Weathersby. We are particularly grateful to E

Lewis for his critical role in acquiring the experimental data presented here.

References

1. Gail Alverson, William Griswold, Calvin Lin, David Notkin, and Lawrence Snyder.

Abstractions for portable, scalable parallel programming. Technical Report 93{12{

09, Department of Computer Science and Engineering, University of Washington,

submitted to IEEE Trans. on Parallel and Distributed Systems, 1993.

2. S. Amarasinghe and M. Lam. Communication optimization and code generation

for distributed memory machines. In Proceedings of the SIGPLAN'93 Conference

on Program Language Design and Implementation, June 1993.

3. William Griswold, Gail Harrison, David Notkin, and Lawrence Snyder. Scalable

abstractions for parallel programming. In Proceedings of the Fifth Distributed

Memory Computing Conference, 1990. Charleston, South Carolina.

4. R. E. Hiromoto, O. M. Lubeck, and J. Moore. Experiences with the Denelcor HEP.

In Parallel Computing, pages 1:197{206, 1984.

5. H. T. Kung and C.E. Leiserson. Introduction to VLSI Systems. Addison-Wesley,

Reading, MA, 1980. Section 8.3, by C. Mead and L. Conway.

6. Jinling Lee, Calvin Lin, and Lawrence Snyder. Programming SIMPLE for parallel

portability. In Uptal Banerjee, David Gelernter, Alexandru Nicolau, and David

Padua, editors, Languages and Compilers for Parallel Computing, pages 84{98.

Springer-Verlag, 1992.

7. Calvin Lin and Lawrence Snyder. A comparison of programming models for shared

memory multiprocessors. In Proceedings of the International Conference on Par-

allel Processing, pages II 163{180, 1990.

8. Calvin Lin and Lawrence Snyder. A portable implementation of SIMPLE. Inter-

national Journal of Parallel Programming, 20(5):363{401, 1991.

9. Calvin Lin and Lawrence Snyder. Data ensembles in Orca C. In Uptal Banerjee,

David Gelernter, Alexandru Nicolau, and David Padua, editors, Languages and

Compilers for Parallel Computing, pages 112{123. Springer-Verlag, 1993.

10. Calvin Lin and Lawrence Snyder. ZPL: An array sublanguage. In Uptal Banerjee,

David Gelernter, Alexandru Nicolau, and David Padua, editors, Languages and

Compilers for Parallel Computing, pages 96{114. Springer-Verlag, 1993.

11. Keshav Pingali and Anne Rogers. Compiler parallelization of SIMPLE for a dis-

tributed memory machine. Technical Report 90{1084, Cornell University, 1990.

12. Constantine Polychronopolous, Milind Girkar, Mohammad Reza Haghighat,

Chia Ling Lee, Bruce Leung, and Dale Schouten. Parafrase-2: An environment

for parallelizing, partitioning, synchronizing, and scheduling programs on multi-

processors. In Proceedings of the International Conference on Parallel Processing,

volume 2, pages 39{48, August 1989.

13. Lawrence Snyder. Type architecture, shared memory and the corollary of modest

potential. In Annual Review of Computer Science, pages I:289{318, 1986.

14. Lawrence Snyder. Foundations of practical parallel programming languages. In

Proceedings of the Second International Conference of the Austrian Center for

Parallel Computation. Springer-Verlag, 1993.

15. Lawrence Snyder. A ZPL programming guide. Technical report, Department of

Computer Science and Engineering, University of Washington, 1994.

16. Reinhard v. Hanxleden and Ken Kennedy. A code placement framework and its ap-

plication to communication generation. Technical Report CRPC-TR93337, Center

for Research on Parallel Computation, Rice University, October 1993.

A Communication Insertion

We employ Def-Use analysis to insert communication nodes into the AST: Send

nodes are placed after arrays are modi�ed and Receive nodes are placed before

arrays are read. Here we distinguish between standard Defs and Uses that in-

dicate data dependencies and the subset of these that induce communication.

Henceforth we restrict our attention to the latter. Communication is induced

when a pair of array references have di�erent direction vectors for their Def and

their Use. For example, the following pairs of statements induce communication:

A := ... /* Def of A */

... := A@east; /* Use of A */

B@east := ... /* Def of B */

... := B; /* Use of B */

The following pairs of statements do not produce communication.

A := ... /* Def of A */

... := A; /* Use of A */

B@east := ... /* Def of B */

... := B@east; /* Use of B */

Note that as opposed to standard scalar Def-Use (DU) chains, each of the above

DU chains represents the transmission of an entire
u� area of an array whenever

the direction vectors for the Def and Use di�er.

Multiple direction vectors can map to the same processor direction. For ex-

ample, the direction vectors [0,1] and [0,2] both map to the east processor

direction. To see the importance of using processor directions, consider the fol-

lowing example where a single message consisting of two columns can satisfy

both Uses of the variable A.

A := ...

... := A@east; /* insert single Receive before this statement */

... := A@east2;

If our algorithm considered only direction vectors, east and east2 would be

distinct and require separate communication. Our solution will instead send two

columns by inserting a single message before the reference to A@east.

Def-Oriented Insertion Algorithm Our initial algorithmuses a \Def-oriented"

approach and is shown in Figure 6. The goal of the algorithm is to identify the

�rst DU chain corresponding to each processor direction and insert a Send node

and Receive node for this DU chain.

The algorithm traverses the set of DU chains emanating from a single Def

node (the source node) and maintains a visited table (see Figure 5) that has

one record per processor direction (there are eight for 2D block decompositions),

with the mark bits initially set to 0. Each time a DU chain is traversed, the mark

bit for the appropriate processor direction is set to 1, the insertion point is

set to point to the statement that corresponds to the Use (or end of basic block),

and the size �eld is set to the magnitude of the Use's direction vector. Once

the mark and insertion point �elds have been set they are never changed, but

if we encounter a variable whose vector length is greater than the value in the

table, the size �eld is set to the larger value. When the last of the DU chains for

the source node has been traversed, communication nodes are created: A pair of

nodes is created for each processor direction whose mark bit is 1. The Send is

inserted after the Def and the Receive is inserted at the speci�ed insertion point.

The algorithm is similar for the case that an @ appears on the left hand side

of an assignment, except we then look for any Use of the same array on the right

hand side. An additional bit is used to di�erentiate @'s that appear on the left

hand side from those that appear on the right.

Control
ow can complicate the insertion of communication because corre-

sponding Send and Receive operations must either both execute or both not

execute. Hence, our algorithm places Send nodes immediately after Defs and

places the corresponding Receives as late as possible within the same basic block.

Finally, we point out that the above algorithm operates on a per-region basis,

so there is a separate visited table for each region, and messages are never

combined for
u� that corresponds to di�erent regions.

mark size insertion_point

0

0

1

1

0

0

0

0

−

−

−

−

−

−

1

2

north

south

west

east

ne

nw

se

sw

A := ...

... := A@west;

... := A@east;

... := A@east2;

processor
direction DU chains

Fig. 5. The Def-Oriented insertion algorithm's visited table.

for each Def of an array in the dependency graph

f

Clear the visited table;

Traverse all DU chains emanating from the current Def;

f

if Def has no @

Look for references to the array with @'s on rhs;

else Def has an @

Look for any reference to the array on rhs;

for each such array reference found

f

if mark is 0 for this chain's processor direction

f

Set mark to 1 for this processor direction;

Set insertion point to statement corresponding to Use;

Set size according to the direction vector;

g

else

f

(this processor direction already visited)

Update size if this Use's direction vector > size;

g

g

g

g

Fig. 6. The Def-Oriented communication insertion algorithm.

There are many other possible communication insertion algorithms.[2, 16]

A Use-Oriented approach would insert Receives immediately before Uses and

place Sends as early as possible within the same basic block. This approach may

be better than Def-oriented in terms of combining messages for di�erent vari-

ables. Much work remains in comparing and developing communication insertion

algorithms.

Diagonal Directions Communication along diagonal processor directions re-

sults in communication with up to three di�erent processes since a 2D block de-

composition is used. For example, a reference to A@northeast induces communi-

cation with the neighbors to the north, northeast, and east. Thus, we decompose

diagonal processor directions into their component pieces (see Figure 7). Notice

that each orthogonal component direction|in this case the North and East

components|spans an entire dimension of the region. Although A@northeast

does not require the left element, we include this value (only if we also see

A@north) to reduce the number of messages. For example, if the North Compo-

nent did not include the \missing corner," the following code fragment would

require four messages: one to send each of the three components of A@northeast,

and one to satisfy A@north.

A := ...

... := A@northeast; /* send North, East and NE Components */

... := A@north; /* send North Component */

Our implementation, however, sends a single message to update both A@north

and the North Component of A@northeast.

A@NorthEast North Component East Component NorthEast Component
Non−Local portion of

"Missing Corner"

Fig. 7. Diagonal communication is broken into component pieces.

This article was processed using the L

a

T

E

X macro package with LLNCS style

