
Copyright

by

Zhan Shi

2020

The Dissertation Committee for Zhan Shi
certifies that this is the approved version of the following dissertation:

Machine Learning for Prediction Problems in Computer

Architecture

Committee:

Calvin Lin, Supervisor

Don Fussell

Qiang Liu

Milad Hashemi

Machine Learning for Prediction Problems in Computer

Architecture

by

Zhan Shi, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2020

Dedicated to my mom and dad.

Acknowledgments

My PhD experience has been a valuable journey for me, and for all that I

have learned in the past years, I have many people to thank.

First and foremost, I am grateful to my advisor, Calvin Lin. It took around 2

weeks for me to realize that Dr. Lin is more of an educationist than a pure researcher

or professor. Throughout my academic journey with Dr. Lin, I enjoy the respect

and freedom that all my fellow students have been envying about. Dr. Lin patiently

taught me the way to make impacts in the computer architecture community, and

ensured that I learn from failures, and helped me see the bigger questions behind

our research efforts. Also, I especially appreciate his thorough feedback on my

presentation and writing, which has helped me organize my thoughts more logically

and systematically.

I would also like to thank my committee members for their valuable feed-

back over the course of my PhD. Dr. Fussell has provided kind words of encour-

agement and important feedback on numerous occasions. Dr. Liu has given me very

constructive comments on my RPE and proposal, and pointed out the directions that

improved my work.

I have to give special thanks to my external committee member, Milad

Hashemi. Milad has reshaped my Ph.D. through our 3-year collaboration, during

which he has not only acted as my unofficial co-advisor, but also been a older

5

brother who always gave me suggestions, shared his own experience, and shown

me the way to do research and be a good person. I’m so lucky to have worked with

Milad in my Ph.D..

I also need to thank Akanksha for being a role model. From her I know

what a successfully student of Dr. Lin could be like, which is always motivating. I

am thankful to my group members, Hao, Kai, Curtis, Jia, Molly, Chirag, Aparna,

and Jack, my collaborators Kevin, Danny, Partha, and my colleagues at Google

and Facebook, Ashish, Guangsha, Yuening, Ehsan and many others, for their sup-

port, feedback, and great company. Last but not the least, I am fortunate to have a

great support system in my family and friends. My parents have supported me un-

conditionally throughout my graduate education. My girlfriend, Judy has provided

tremendous encouragement and support. I will never forget the time when I realized

that I needed to get my proposal done in 2 weeks, from writing, to a couple of prac-

tices, to the final talk. Judy believed more than I did that I could make it in time,

and took the family responsibility during COVID without any complaints. Thank

you for being my luck.

6

Machine Learning for Prediction Problems in Computer

Architecture

Publication No.

Zhan Shi, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Calvin Lin

The solutions to many problems in computer architecture involve predic-

tions, which are often based on heuristics. Given the success of machine learning in

solving prediction problems, it is natural to wonder if machine learning can better

solve architectural prediction problems. Unfortunately, despite vastly outperform-

ing traditional heuristics in various fields, machine learning has seen limited impact

on prediction problems in computer architecture. The main challenge is that each

architectural prediction problem exhibits unique constraints that prevent off-the-

shelf machine learning algorithms from being more effective than heuristics. For

example, hardware prediction problems, such as branch prediction and cache re-

placement, impose severe latency and area constraints that make multi-layer neural

networks largely infeasible.

In this thesis, we propose machine learning solutions to three important

problems in computer architecture, namely cache replacement, data prefetching,

7

and the automatic design of neural network accelerators. In our solutions, we focus

on not only the design of learning algorithms, but also the use of learning algo-

rithms under the unique constraints of each problem. In particular, to deal with

the extremely tight area and latency constraints of replacement policies and data

prefetchers, we propose to first design powerful yet impractical neural network

models, from which we derive important insights that can be used to design prac-

tical predictors. To deal with the highly constrained search space in the automated

design of neural network accelerators, we propose a new constrained Bayesian op-

timization framework to effectively explore the search space where over 90% of

designs are infeasible.

8

Table of Contents

Acknowledgments 5

Abstract 7

List of Tables 12

List of Figures 13

Chapter 1. Introduction 1

Chapter 2. Related Work 8
2.1 Cache Replacement . 8
2.2 Data Prefetching . 9
2.3 Neural Network Accelerator . 11

Chapter 3. Glider Cache Replacement Policy 13
3.1 Background and Constraints . 13

3.1.1 The Hawkeye Cache . 13
3.1.2 Recurrent Neural Networks 14
3.1.3 Attention Mechanisms . 15
3.1.4 Hardware Constraints on the Predictor 16

3.2 Our Solution . 17
3.2.1 LSTM with Scaled Attention 19
3.2.2 Insights from Our LSTM Model 21
3.2.3 Integer SVM and a k-sparse Binary Feature 26
3.2.4 Hardware Design . 28

3.3 Evaluation . 30
3.3.1 Methodology . 31
3.3.2 Comparison of Offline Models 34

9

3.3.3 Comparison of Online Models 35
3.3.4 Practicality of Glider vs. LSTM 39
3.3.5 Learning High-Level Program Semantics 42
3.3.6 Model Specifications . 45

3.4 Summary . 45

Chapter 4. Voyager Data Prefetcher 47
4.1 Challenges of Data Prefetching as a Machine Learning Problem . . . 47
4.2 Problem Formulation . 48

4.2.1 Probabilistic Formulation of Prefetching 48
4.3 Our Solution: Voyager . 50

4.3.1 Model Overview . 51
4.3.2 Hierarchical Neural Structure 51
4.3.3 Page-Aware Offset Embedding Mechanism 54
4.3.4 Multi-Label Training Scheme 56

4.4 Evaluation . 57
4.4.1 Methodology . 57
4.4.2 Comparison With Prior Art 60
4.4.3 Understanding Voyager’s Benefits 62

4.4.3.1 Prefetch with High Degree 62
4.4.3.2 Access Patterns Breakdown 63
4.4.3.3 Features and Labels 65

4.4.4 Why ML-Based Prefetchers 68
4.4.5 Model Compression and Overhead 70
4.4.6 Model Specifications . 72
4.4.7 Paths to Practicality . 72

4.5 Summary . 74

Chapter 5. Hardware-Software Co-Design of Neural Accelerator with Bayesian
Optimization 76

5.1 A Formal Representation of Software and Hardware 76
5.1.1 Parameterizing the Design Space 76
5.1.2 Constraints in the Design Space 79

10

5.2 Bayesian Optimization . 79
5.2.1 Overview . 79
5.2.2 Gaussian processes . 80
5.2.3 Acquisition functions . 81
5.2.4 Constraints . 82

5.3 Bayesian Optimization for Hardware/Software Co-design 84
5.3.1 Overview of Nested Hardware/Software Optimization 84
5.3.2 BO for Optimizing Hardware Architectures 87
5.3.3 BO for Optimizing Software Mappings 88

5.4 Evaluation . 89
5.4.1 Methodology . 89
5.4.2 Software Mapping Optimization 94
5.4.3 Hardware Configuration Optimization 95
5.4.4 Ablations . 96

5.5 Summary . 97

Chapter 6. Conclusions 98

Bibliography 100

Vita 122

11

List of Tables

3.1 Statistics for benchmarks used in offline analysis. 21
3.2 Baseline configuration. 31
3.3 Statistics for benchmarks used in offline analysis. 32
3.4 Model size and computation cost. LSTM uses floating point opera-

tions; the other models use integer ops. 39
3.5 The attention-based LSTM model improves accuracy for four target

PCs in scheduleAt() method, and all four target PCs attend to the
same source PC. 42

3.6 Offline Model Specifications . 45

4.1 Benchmark statistics. 52
4.2 Simulation configuration. 58
4.3 Hyperparameters for training Voyager. 73

12

List of Figures

3.1 Overview of the Hawkeye Cache. 14
3.2 Improvements in predictor accuracy lead to increased speedup. . . . 17
3.3 Our LSTM-based sequence labeling model takes as input a sequence

of PCs and produces as output cache-friendly (1) or cache-averse
(0) labels. 19

3.4 The attention-based LSTM network architecture. LSTM handles a
sequence of input recurrently. 20

3.5 Cumulative distribution function of attention weight distribution for
omnetpp. 23

3.6 Attention weight vectors of consecutive memory accesses. The y-
axis shows the indices of target memory accesses, and the x-axis
shows the offset of source memory accesses from the target. The
white boxes show that target memory accesses are strongly corre-
lated with just a few source memory accesses. 24

3.7 Accuracy for the original ordered sequence and the randomly shuf-
fled sequence. 25

3.8 Examples of k-sparse binary feature. For simplicity, the total num-
ber of PCs is 4 and k is 3. 26

3.9 The Glider predictor. 29
3.10 Accuracy comparison of offline predictors. 35
3.11 Accuracy comparison of online predictors. 36
3.12 Miss rate reduction for single-core benchmarks. 36
3.13 Speedup comparison for single-core benchmarks. 37
3.14 Weighted speedup for 4 cores with a shared 8MB LLC. 38
3.15 Sequence length for attention-based LSTM (number of unique PCs

for offline ISVM and sequence length for Perceptron). 39
3.16 Convergence of different models. 41
3.17 The anchor PC belongs to one of the calling contexts for the target

PCs. 43
3.18 Source code and assembly code for target PC 44c7f6 in sched-

uleAt() method (lines in bold). 44

13

4.1 Overview of Voyager. 51
4.2 Page-aware offset embedding with the dot-product attention mech-

anism. 53
4.3 Unified accuracy/coverage, including Google’s Search and Ads. . . 60
4.4 Accuracy. 61
4.5 Coverage. 62
4.6 IPC. 63
4.7 Sensitivity to Prefetch degree. 64
4.8 Breakdown of the patterns of ISB. 65
4.9 Breakdown of the patterns of Voyager w/o delta. 65
4.10 Comparison of different features. 67
4.11 Comparison of different labeling schemes. 67
4.12 Code example from PageRank. 69
4.13 An example input graph to PageRank. 70
4.14 Code example from Soplex. 71
4.15 Voyager wins on accuracy, speedup, and storage efficiency. Here

storage efficiency is log-scaled and defined as 1
1+log10(storage)

. . . . 72

4.16 Longest matching on a single sequence and two sequences (global
and PC-localized) approximate Voyager. 74

5.1 Computing a 2D convolution with a seven-level nested loop. 77
5.2 Two architectures computing a 1D convolution. 78
5.3 An architecture computing the CONV4 layer of ResNet. 78
5.4 Overview of BO-based nested search for hardware/software co-

design. 85
5.5 Hyperparamters for BO. 86
5.6 Hardware parameters. 88
5.7 Hardware constraints. 89
5.8 Extra features used by the hardware and software BO optimizers. . . 89
5.9 Software parameters. 90
5.10 Software constraints. 91
5.11 Specifications of ResNet (ResNet-18) [34] and DQN [85] 92
5.12 Specifications of MLP and Transformer [123] 93

14

5.13 Software mapping optimization on ResNet, DQN, MLP, and Trans-
former. The Y-axis shows the reciprocal of energy-delay product
(EDP) (normalized against the best EDP value). Higher is better. . . 94

5.14 Hardware/software co-optimization. The x-axis shows the number
of trials for hardware search, and 250 attempts are made to find
the optimal software mapping for each layer in the model on the
hardware specification. Best viewed in color. 95

5.15 GP with different surrogate models and acquisition functions. 96
5.16 LCB acquisition function with different lambda values. 96

15

Chapter 1

Introduction

Machine learning has exploded in popularity for its ability to achieve state-

of-the-art performance in a multitude of applications [75, 40, 85, 72]. These learn-

ing algorithms are capable of outperforming heuristic-driven approaches by ex-

tracting useful features in a data-driven fashion. Ideally, machine learning would

be a powerful tool for computer architecture research, because heuristic-based pre-

dictions are commonly used in predictive mechanisms in speculative execution.

For example, branch predictors [58, 103] predict a binary output—Taken or Not

Taken—and cache replacement can be framed as a binary prediction—a line has

either high or low priority for eviction [131, 52, 121]. Unfortunately, except for a

few successes [58, 47, 59], machine learning has still not been widely adopted in

hardware predictors [93].

The main challenges of applying machine learning are the unique constraints

of each hardware prediction problem. For example, hardware cache replacement

policies need to adapt to dynamic changes in the workload, so predictors for cache

replacement are trained dynamically as the program executes. By contrast, deep

learning models make multiple iterations over the training data and can take weeks

or months to train. Moreover, the typical size of a hardware predictor for cache re-

1

placement is tens of bytes and a prediction must be produced in 20-30 CPU cycles

(5-7 ns for a 4 GHz processor) [107, 1]. By contrast, deep learning models typically

take megabytes to gigabytes of storage and microseconds to milliseconds to make

a prediction.

Recent work shows the challenges of directly applying off-the-shelf ma-

chine learning to other architectural problems. For example, Tarsa et al. [120] and

Zangeneh et al. [81] apply convolutional neural networks (CNNs) [72, 34] to branch

prediction, which is another prediction mechanism that faces the tight area and la-

tency constraints similar to cache replacement [57]. As shown in both papers [120,

81], although CNNs are capable of achieving superior accuracy, the models are

too expensive to be deployed on chip. In particular, although a CNN with a unlim-

ited budget shows the headroom of 2.9% IPC improvements over the state-of-the-

art [103], the number shrinks to 0.6% when it comes to a practical CNN that fits on

a chip area [81].

Similar issues apply to other hardware predictors, such as data prefetchers.

In data prefetching, the predictor is not only constrained by tight latency, but also

needs to learn correlations among tens of millions of unique address values. As a

result, the large number of data addresses limits the accuracy of neural networks,

which are designed for traditional tasks with orders of magnitude fewer unique

values, such as natural language.

Beyond hardware predictors, machine learning could potentially be a pow-

erful tool in the area of design automation of domain-specific accelerators. Design

automation of neural accelerator relies on a cost model to predict the performance

2

and energy efficiency of possible designs, and the accuracy of the cost model deter-

mines the efficiency and effectiveness of the exploration process. However, due to

constraints such as hardware budget, over 90% of hardware and software designs

are invalid. As a result, the sparse and irregular search space leads to an inaccurate

cost model that can severely hurt the efficiency of design space exploration.

The goal of this thesis is to find practical ways to use machine learning for

hardware architecture problems under unique constraints and challenges. In partic-

ular, we first understand the root causes that prevent the effective use of machine

learning techniques, and then we propose novel uses of machine learning that are

specifically designed for each unique problem.

In the first part of this thesis, we focus on the extensively-studied problem

of cache replacement. Cache replacement policies have evolved from ever more so-

phisticated heuristic-based solutions [102, 55, 118, 96, 3, 119, 22, 23] to learning-

based solutions [130, 132, 52, 53, 121, 59]. We continue this trend by designing

a powerful LSTM [41] learning model that can in an offline setting provide bet-

ter accuracy than the state-of-the-art hardware predictors [52]. However, the offline

LSTM exceeds the storage and latency requirements by 3 orders of magnitude. As

the offline deep learning models is still not ready for direct use as hardware pre-

dictors, we need to understand why the offline LSTM provides accuracy improve-

ments. To achieve this, we perform analysis to interpret this LSTM model with the

scaled attention mechanism [80, 123], deriving a key insight that allows us to de-

sign a simple online model that matches the offline model’s accuracy with orders of

magnitude lower cost [107].

3

In the second part of this thesis, we focus on data prefetching, which is an-

other extensively-studied memory optimization technique. Unlike previous neural

models for prefetching that were limited to learning delta correlations [33, 117],

we propose Voyager that can also learn address correlations, which are more pow-

erful [50, 134, 133, 126, 5]. The major challenge of learning address correlations

is that the number of data addresses are orders of magnitude larger than the num-

ber of unique categories in traditional machine learning tasks, such as natural lan-

guage [80, 123]. The explosion of addresses not only leads to a significant increase

in memory usage that could fail the training of neural networks, but also results in

an ineffective representation of memory address space as each address only appears

a few times, which is insufficient for training neural networks [33]. To solve this

problem, we propose a hierarchical structure that separates addresses into pages

and offsets [108]. The core of the hierarchical structure is a novel attention-based

embedding mechanism for learning important relations among pages and offsets,

and having pages provides contextual information for offsets. Though highly ac-

curate, Voyager is still too expensive in computation to be practical for direct use

in hardware. Therefore, we found two important insights that can lead to a prac-

tical prefetcher. First, the coverage of Voyager can be approximated with longest

matching on two sequences of memory accesses, namely global sequence and PC

localized sequence. Second, the order information is no longer important after we

extract the longest-matched patterns, which helps us reduce the storage overhead

by 33.6%.

In the third part of this thesis, we shift our focus from predictions problems

4

in hardware to the design of specialized deep learning accelerators. The compute

and energy requirements of deep learning are growing [38], giving rise to numerous

specialized hardware and software systems for deep learning. However, the design

of such a system is typically driven by manual heuristics [17, 16, 21], or more re-

cently heuristic-based search [135]. Therefore, we propose to cast the problem as

hardware/software co-design, with the goal of automatically identifying desirable

points in the joint design space [109]. The main challenge is that the highly con-

strained design space is semi-continuous / semi-discrete, meaning that a parameter

can only take on a few discrete values, but their absolute values of the parameter af-

fects the objective. The key to our solution is a new constrained Bayesian optimiza-

tion framework that avoids invalid solutions through input and output constraints.

Thesis Statement. Machine learning can be a powerful tool in the solution of

prediction problems in computer architecture, but to be effective, we need to devise

new methods of tailoring machine learning techniques to these specific problems.

This thesis will make the following contributions:

1. We use cache replacement as a case study to explore the use of deep learn-

ing in hardware predictors that need to be dynamically trained and extremely

efficient. Our solution is a three-step approach. In particular, we first build

an offline deep learning model that achieves superior accuracy. In the second

step, we derive the insights from the deep learning model that explains the

advantage of deep learning models. In the last step, we use the insights to de-

sign the practical and effective Glider cache replacement policy that improves

5

the miss rate reduction over LRU from 7.1% to 8.9% in a single-core setting,

and on a four-core system, improves IPC over LRU from 13.6% to 14.7%.

2. We apply our three-step approach to data prefetching, which is more chal-

lenging in all three steps. We first build a hierarchical offline deep learning

model that can handle a vast memory address space. In particular, we build

our domain knowledge into the neural model that separates addresses into

pages and offsets, and we introduce a mechanism for learning important re-

lations among pages and offsets. The proposed hierarchical neural model,

which we refer to as Voyager, achieves an average IPC improvement of 41.6%

over a system with no prefetcher, compared with 28.2% of prior art. At present,

slow training and prediction still preclude Voyager from being practical in

hardware. Therefore, in the second step, we derive insights of prefetching

patterns, based on which comparable prefetching coverage can be approxi-

mated using tables without neural networks. We leave for future work to fin-

ish the third step for a practical design, which requires a smart management

of tables.

3. For the automatic design of deep learning accelerators, we introduce a con-

strained Bayesian optimization framework that effectively handles the con-

strained feature space in which over 90% of design points are invalid. Our

constrained Bayesian optimization framework is significantly faster and more

robust than the constrained random search algorithm. As a result, our frame-

work improves the energy-delay product (EDP) over the state-of-the-art ac-

6

celerator by 18.3% on ResNet, 40.2% on DQN, 21.8% on MLP, and 16.0%

on Transformer.

This thesis is organized as follows. Section 2 places our work in the context

of prior work. A detailed discussion and evaluation of the Glider replacement policy

is presented in Section 3. Section 4 discusses the Voyager data prefetcher, and we

introduce the constrained Bayesian optimization framework in Section 5. Finally,

Section 6 concludes the dissertation.

7

Chapter 2

Related Work

We now place our work in the context of the considerable prior work of

cache replacement, data prefetching and accelerator design respectively.

2.1 Cache Replacement

Replacement policies have evolved from heavily heuristic-based solutions

to learning-based solutions. However, despite of its success in various fields, deep

learning has not been used for hardware cache replacement.

Heuristic-Based Solutions. Most prior cache replacement policies uses heuris-

tics to exploit commonly observed access patterns. The majority of prior work

build on LRU, MRU and combinations of the two [111, 129, 76, 66, 27, 95, 102,

55, 118, 96, 42, 3, 119, 22, 23, 78, 68]. The rest of heuristic are based on fre-

quency counters [99, 30, 69], re-reference interval prediction [55]. and the reuse

distance [42, 3, 119, 22, 23]. A common downside of all heuristic-based policies is

that they rely on human intuition to customize for a limited class of known cache

access patterns.

8

Learning-Based Solutions. Recent advancement [67, 131, 52, 53] takes a learning-

based approach that leverages the past caching behavior to predict future caching

priorities. However, there has been almost no prior work that applies machine learn-

ing to the cache replacement problem. One notable exception [121] uses an online

perceptron [100] to improve the accuracy of cache replacement predictors, but this

solution sees only marginal improvements because it uses naive feature represen-

tations that result in a limited program context. More recently, Teran et al.’s per-

ceptron was outperformed by MPPPB [60], which uses offline genetic algorithms

to choose relevant features from a comprehensive list of hand-crafted features that

go beyond control-flow information. Our work differs from MPPPB by identifying

insights that lead to a more effective feature representation.

2.2 Data Prefetching

Prior work in data prefetching can also be described as either heuristic-

based or learning-based. The vast majority of prefetchers are heuristic-based, mean-

ing that they predict future memory accesses based on pre-determined patterns.

Learning-based approaches, however, learn rules from the past access patterns and

apply to the future execution.

Heurstic-Based Solutions. Many regular prefetchers predict sequential [112, 64,

44] or strided [89, 4, 25, 48, 101] streams by detecting constant strides in se-

quences of memory accesses. For example, stream buffers [64, 89, 4] confirm a

constant stride if k consecutive memory accesses are the same stride apart. Offset-

9

based prefetchers [94, 82] improve upon these ideas by testing a few pre-determined

strides to select an offset that provides the best coverage. Instead of predicting con-

stant offsets, another class of prefetchers uses delta correlation to predict recurring

delta patterns [88, 106]. Some irregular accesses can be captured by predicting re-

curring spatial patterns across different regions in memory [61, 73, 13, 14, 115].

For example, the SMS prefetcher [115] learns recurring spatial footprints within

page-sized regions and applies old spatial patterns to new unseen regions, and the

Bingo prefetcher [6] uses longer address contexts to predict footprints.

Temporal prefetchers learn irregular memory accesses by memorizing pairs

of correlated addresses [19, 125]. Early temporal prefetchers correlated consecu-

tive memory accesses in the global access stream [63, 87, 20, 114, 43, 127]. More

recent temporal prefetchers look for correlations of consecutive addresses in a PC-

localized stream [51, 134, 133]. This scheme improves coverage and accuracy due

to the superior predictability of the PC-localized stream. Instead of using localiza-

tion, Domino improve the predictability of temporal prefetchers by using two past

addresses as contextual information [5].

A common limitation of all heuristic-based prefetchers is their use of simple

known rules to identify the sequence of accesses, which limits the scope of patterns

that can be detected. Recent work has also focused on improving the accuracy of

aggressive stride prefetchers [10, 9].

Learning-Based Solutions. We now introduce previous learning-based prefetch-

ers. Peled et al., use reinforcement learning to explore the correlation between pro-

10

gram contexts and memory addresses [92]. Their solution uses tables to learn a

combinatorial number of context-address pairs, which leads to large storage over-

heads and slow training, and it precludes the learning of context-address pairs that

do not repeat often. More recent solutions have instead used self-supervised learn-

ing to predict deltas, since it is easy to reduce the number of deltas to be smaller than

than the number of addresses. For example, Hashemi et al. formulate delta prefetch-

ing as a classification problem and leverage LSTM neural networks [41] to find rich

delta patterns [33, 110]. Recent work improves the efficiency of delta-based LSTM

by compressing the input and output [117], but such work an undesirable tradeoff

between coverage and efficiency.

2.3 Neural Network Accelerator

Different from the use of traditional CPUs, the design of hardware accel-

erators is often accompanied by a customized software optimizer that determines

the use of software optimizations, such as look blocking and reordering. We now

describe prior work in the hardware and software optimizations for DNNs.

Hardware Accelerators for DNNs. Prior work has designed specialized hard-

ware to execute neural networks. From the design point of view, nearly all hardware

accelerators are manually designed. Google’s TPU [65] uses systolic arrays [74],

and NVIDIA’s GPUs have tensor cores [2]. Specialized for convolutional neural

networks (CNNs), Eyeriss [17] introduces a specific dataflow that exploits a reuse

pattern exhibited by 2D convolutions. To improve scalability, Eyeriss v2 [18] uses

11

a more sophisticated interconnect than its predecessor, and it also supports sparse

CNNs. Prior work [91, 137] has dealt with sparsity by suppressing zero-valued acti-

vations and storing and operating on compressed data. Many other domain specific

architectures have been proposed to take advantage of local communication pat-

terns [24], 3D-stacked bandwidth memory [70, 28], or multi-chip modules [105].

Recent work [135] recognizes that the design space of specialized hardware

is vast and proposes heuristics that can be leveraged to automatically synthesize

hardware using a domain-specific language, Halide.

Software Optimization for DNNs. There has been considerable work on soft-

ware optimizations for neural networks [128, 86, 11], which include optimizations,

such as loop blocking (tiling), loop reordering, and loop unrolling, that affect the

utilization of compute and storage resources. This optimization process has been

recognized as a search problem, and compilers such as TVM [15] have used learned

cost models to optimize execution efficiency. Similarly, Timeloop uses a grid or

random search to optimize software mappings on a user-specified hardware archi-

tecture [90].

12

Chapter 3

Glider Cache Replacement Policy

3.1 Background and Constraints

Since our solution uses recurrent neural networks (RNNs) and attention

mechanisms, we first provide background on hardware caches and these machine

learning topics.

3.1.1 The Hawkeye Cache

This work builds on the Hawkeye cache replacement policy [52], which

casts cache replacement as a supervised learning problem in which a predictor is

trained from the optimal caching solution for past cache accesses.

Figure 3.1 shows the overall structure of Hawkeye. Its main components

are OPTgen, which simulates the optimal solution’s behavior to produce training

labels, and the Hawkeye Predictor which learns the optimal solution. The Hawkeye

predictor is a binary classifier, whose goal is to predict whether a line loaded by

a memory access is likely to be cached or not by the optimal algorithm. Cache-

friendly data is inserted in the cache with high priority, and cache-averse data is

inserted with low priority.

Hawkeye uses the program counter (PC) as a feature and maintains a table

13

OPTgen Hawkeye
Predictor

Last Level
Cache

Computes OPT’s
decisions for the past

Remembers past OPT
decisions

Cache
Access
Stream

 OPT
 hit/miss

Insertion
Priority

PC

Figure 3.1: Overview of the Hawkeye Cache.

of counters to learn whether memory accesses by a given PC tend to be cache-

friendly or cache-averse. While the Hawkeye Cache has been quite successful—it

won the 2017 Cache Replacement Championship [1]—its simple predictor achieves

only 72.4% accuracy on a set of challenging benchmarks.

3.1.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are extremely popular because they achieve

state-of-the-art performance for many sequential prediction problems, including

those found in NLP and speech recognition. Sequential prediction problems can

make predictions either for the entire sequence (sequence classification) or for each

element within the sequence (sequence tagging or sequence labeling). More tech-

nically, RNNs use their internal hidden states h to process a sequence, such that the

hidden state of any given timestep depends on the current input and the previous

hidden state.

LSTM is a widely used variant of RNNs that is designed to learn long,

14

complex patterns within a sequence. Here, a complex pattern is one that can ex-

hibit non-linear correlation among elements in a sequence. For example, noun-verb

agreement in the English language can be complicated by prepositional phrases, so

the phrase, “the idea of using many layers” is singular, even though the preposi-

tional phrase (“of using many layers”) is plural.

We use LSTM because it has been successfully applied to problems that are

similar to our formulation of caching, which we describe in Section 3.2. For exam-

ple, part-of-speech tagging and name-entity recognition in NLP are both sequence

tagging tasks that aim to assign a label to each element of a sentence.

3.1.3 Attention Mechanisms

LSTM has recently been coupled with attention mechanisms, which enable

a sequence model to focus its attention on certain parts of the inputs. For exam-

ple, when performing machine translation from a source language, say French, to

a target language, say English, an attention mechanism could be used to learn the

correlation between words in the original French sentence and its corresponding En-

glish translation [80]. As another example, in visual question answering systems,

attention mechanisms have been used to focus on important parts of an image that

are relevant to a particular question [79].

Mathematically, a typical attention mechanism quantifies the correlation be-

tween the hidden states ht of the current step and all previous steps in the sequence

using a scoring function which is then normalized with the Softmax function:

15

at(s) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))

(3.1)

where at(s) is the attention weight that represents the impact of the past hidden

state s on the current hidden state t. Different scoring functions can be chosen [80],

and the attention weights are further applied to the past hidden states to obtain the

context vector:

ct =
∑
s

atshs (3.2)

The context vector represents the cumulative impact of all past hidden states on the

current step, which along with the current hidden states ht form the output of the

current step.

3.1.4 Hardware Constraints on the Predictor

There are three reasons why state-of-the-art machine learning models, in-

cluding LSTM, are too resource-intensive to be deployed in hardware for problems

such as cache replacement. First, the storage budget of hardware cache predictors

is typically limited to 32 kilobytes [52, 121, 131]. Second, cache predictions must

be generated in 20-30 CPU cycles (5-7 ns for a 4 GHz processor). Finally, the hard-

ware predictor is required to converge after one training iteration (online training),

as multiple training iterations increase latency, energy consumption, and storage.

In other resource-constrained applications of machine learning, online train-

ing is avoided by running inference on models that are pre-trained offline. However,

16

pre-training is difficult for cache predictions because (1) most features are categor-

ical and each program have a unique vocabulary set. (2) unlike static code analysis,

the dynamic behavior of one program can vary significantly across different inputs.

3.2 Our Solution

Our solution improves the accuracy of Hawkeye. Since Hawkeye learns

from the optimal caching solution, improvements in the Hawkeye predictor’s ac-

curacy lead to replacement decisions that are closer to Belady’s optimal solution,

resulting in higher cache hit rates. Figure 3.2 shows the results of a limit study: We

see that improving predictor accuracy leads to consistent improvements in program

performance.

0

1

2

3

4

5

6

7

8

9

10 20 30 40 50 60 70 80 90 100

Pr
og

ra
m

 S
pe

ed
up

 (%
)

Predictor Accuracy (%)

Figure 3.2: Improvements in predictor accuracy lead to increased speedup.

To improve predictor accuracy, we note that modern replacement policies [52,

67, 131], including Hawkeye, use limited program context—namely, the PC—to

learn repetitive caching behavior. For example, if lines loaded by a given PC tend

to be cache-friendly, then these policies will predict that future accesses by the

17

same PC will also be cache-friendly. Our work aims to improve prediction accu-

racy by exploiting richer dynamic program context, specifically, the sequence of

past memory accesses that led to the current memory access. Thus, we formulate

cache replacement as a sequence labeling problem where the goal is to label each

access in a sequence with a binary label. More specifically, the input is a sequence

of loads identified by their PC, and the goal is to learn whether a PC tends to access

lines that are cache-friendly or cache-averse.

There are two reasons why we choose to identify loads by their PC instead

of their memory address. First, there are fewer PCs, so they repeat more frequently

than memory addresses, which speeds up training. Second, and more importantly,

the size and learning time of LSTM both grow in proportion to the number of unique

inputs, and since the number of unique addresses is 100-1000× larger than the

typical inputs for LSTM [80], the use of memory addresses is infeasible for LSTM.

We now summarize our three-step approach:

1. Unconstrained Offline Caching Model. First, we design an unconstrained

caching model that is trained offline (see Section 3.2.1). Our offline model

uses an LSTM with an attention mechanism that identifies important PCs in

the input sequence. We show that this model significantly outperforms the

state-of-the-art Hawkeye predictor.

2. Offline Analysis. Second, we analyze the attention layer and discover an

important insight: Caching decisions depend primarily on the presence of a

few memory accesses, not on the full ordered sequence (see Section 3.2.2).

18

Thus, we can encode our input feature (the history of PCs) more compactly

so that the important memory accesses can be easily identified in hardware

by a simple hardware-friendly linear model.

3. Practical Online Model. Third, we use the insights from our analysis to build

a practical SVM model that is trained online to identify the few important

PCs; this SVM model comes close to the accuracy of the much larger and

slower LSTM (see Section 3.2.3). The online version of this SVM model is

essentially a perceptron.

3.2.1 LSTM with Scaled Attention

We now introduce our LSTM model that is designed for cache replacement.

At a high level, our LSTM takes as input a sequence of load instructions and assigns

as output a binary prediction to each element in the sequence, where the prediction

indicates whether the corresponding load should be cached or not (see Figure 3.3).

LSTMPC1, PC2, …, PCn-1, PCn 1, 0, …, 1, 1

Input sequence Output labels

Figure 3.3: Our LSTM-based sequence labeling model takes as input a sequence of PCs and
produces as output cache-friendly (1) or cache-averse (0) labels.

Figure 3.4 shows the network architecture of our LSTM model. We see that

it consists of three layers: (1) an embedding layer, (2) a 1-layer LSTM, and (3)

an attention layer. Since PCs are categorical in nature, our model uses a one-hot

19

PC-N+1

Y1 YN

Binary Caching Decisions

PC0. PCN.PC1

.

Warmup Sequence

.

Attention Layer

Embedding Layer

LSTM LSTM LSTM LSTM

Figure 3.4: The attention-based LSTM network architecture. LSTM handles a sequence of
input recurrently.

representation for PCs,1 where the size of the PC vocabulary is the total number

of PCs in the program. However, the one-hot representation is not ideal for neural

networks because it treats each PC equally. So to create learnable representations

for categorical features like the PC, we use an embedding layer before the LSTM

layer. The LSTM layer learns caching behavior, and on top of the LSTM we add

a scaled attention layer to learn correlations among PCs; we describe this layer in

Section 3.2.2. Figure 3.4 shows the attention layer at time step N .

Since the memory access trace is too long (see Table 3.3) for LSTM-based

models, we first preprocess the trace by slicing it into fixed-length sequences of

1A one-hot representation is a bit-vector with exactly one bit set.

20

Table 3.1: Statistics for benchmarks used in offline analysis.

Benchmark # Accesses # PCs # Addrs Ave. # Accesses per PC Ave. # Accesses per Addr
mcf 19.9M 650 0.87M 30K 22.9

omnetpp 4.8M 1498 0.44M 3.2K 10.9
soplex 9.4M 2348 0.39M 3.9K 24.1
sphinx 3.0M 1698 0.11M 1.7K 27.3
astar 1.2M 54 0.31M 22K 3.8
lbm 5.0M 55 0.71M 90K 7.0

length 2N . To avoid losing context for the beginning of each slice of the trace, we

overlap consecutive sequences by half of the sequence length N . The first half of

each sequence is thus a warmup sequence that provides context for the predictions

of the second half of the sequence. In particular, for a memory access sequence

PC−N+1, ..., PCN , the first half of the sequence PC−N+1 to PC0 provides con-

text of at least length N for PC1 to PCN . During training and testing, only the

output decisions Y1 to YN for time step 1, ..., N are collected from this sequence.

Table 3.3.6 shows our specific hyper-parameters.

3.2.2 Insights from Our LSTM Model

Our LSTM model is effective but impractical, so we conduct several exper-

iments to understand why our LSTM works well. First, we note that the LSTM’s

accuracy improves as we increase the PC history length from 10 to 30, and the ac-

curacy benefits saturate at a history length of 30 (see Figure 3.15). This leads us to

our first observation:

Observation 1. Our model benefits from a long history of past PCs, in particular,

the past 30 PCs.

21

To gain even deeper insights into our attention-based LSTM model, we use

the scaled attention mechanism to find the source of its accuracy. Our analysis of

the attention layer reveals that while the history of PCs is a valuable feature, a

completely ordered representation of the PC history is unnecessary. We now explain

how we designed the attention layer so that it would reveal insights.

Attention Layer Design. Our attention layer uses the state-of-the-art attention

mechanism with scaling [123] (see Equation 3.3). Our scaled attention layer uses

a scaled dot-product to compute the attention weight vector at, which captures the

correlation between the target element and the source elements in the sequence; we

define a target element to be the load instruction for which the model will make a

prediction, and we define the source elements to be the past load instructions in the

sequence that the model uses to make the prediction. Specifically, at is computed

by first using a scoring function to compare the hidden states of the current target

ht against each source element hs, before then scaling with a factor f and normal-

izing the scores to a distribution using the softmax function. The attention weight

vector is then used to compute a context vector, ct, which is concatenated with ht to

determine the output decision. In this work, we use the dot product as the scoring

function.

at(s) =
exp(f · score(ht, hs))∑
s′ exp(f · score(ht, hs′)

(3.3)

While the attention’s scaling factor was originally used to deal with the

growing magnitude of dot products with the input dimension [123], we find a new

22

use of the scaling factor: A moderate increase in the scaling factor forces sparsity

in the attention weight vectors but has minimal influence on accuracy. A sparse

attention weight vector indicates that only a few source elements in the sequence

influence the prediction. For our caching model, we would expect the attention

weights to quantify the correlation between the target memory access at time step

N and the source memory accesses from timesteps 1 to N − 1. Unfortunately, we

find that the attention layer without scaling (or scaling factor of 1) presents a nearly

uniform attention weight distribution, thus providing little useful information. To

avoid this uniform distribution, we increase the scaling factor f to force the spar-

sity in attention weight distribution, thereby revealing dependences between source

accesses and target access.

0.0 0.2 0.4 0.6 0.8 1.0
Attention Weight Distribution

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Scale=5, Acc=85.0
Scale=4, Acc=84.3
Scale=3, Acc=85.1
Scale=2, Acc=85.1
Scale=1, Acc=85.2

Figure 3.5: Cumulative distribution function of attention weight distribution for omnetpp.

23

Insights From The Scaled Attention Layer. Figure 3.5 shows for one bench-

mark the cumulative distribution function of the attention weight distributions with

different scaling factors. Surprisingly, we see that without losing accuracy, the

scaled attention weight distribution becomes biased towards a few source accesses,

which shows that our model can make correct predictions based on just a few source

memory accesses.

-20 -15 -10 -5 -1
Offset of Source Relative to Target

0
1
2
3
4
5
6
7
8
9

Ta
rg

et
 In

de
x

Figure 3.6: Attention weight vectors of consecutive memory accesses. The y-axis shows
the indices of target memory accesses, and the x-axis shows the offset of source memory
accesses from the target. The white boxes show that target memory accesses are strongly
correlated with just a few source memory accesses.

Figures 3.6show the attention weight distributions for 100 and 10 consecu-

tive memory accesses, respectively. Each row represents the attention weight vec-

tor for one target memory access; white boxes indicate strong correlation between

source and target, and black boxes indicate weak correlation. Figure 3.6 shows that

the same source memory access has dominant attention weights for nearly every

target, forming an oblique line as its offset increases with the row index. Therefore,

we obtain our second observation:

24

60

65

70

75

80

85

90

mcf omnetpp soplex sphinx3 astar lbm average

Ac
cu

ra
cy

(%
)

Original Sequence Shuffled Sequence

Figure 3.7: Accuracy for the original ordered sequence and the randomly shuffled sequence.

Observation 2. Our model can achieve good accuracy by attending to just a few

sources.

From observation 2, we posit that optimal caching decisions depend not

on the order of the sequence but on the presence of important PCs. To confirm

this conjecture, we randomly shuffle—for time step N—our test sequence from

time step 1 to N − 1; Figure 3.7 shows that this randomly shuffled sequence sees

only marginal performance degradation compared to the original, giving rise to

observation 3.

Observation 3. Prediction accuracy is largely insensitive to the order of the se-

quence.

These observations lead to an important insight into the caching problem.

Important Insight. Optimal caching decisions can be better predicted with a long

history of past load instructions, but they depend primarily on the presence of a few

25

PCs in this long history, not the full ordered sequence. Thus, with an appropriate

feature design, caching can be simplified from a sequence labeling problem to a

binary classification problem.

Sequence 1: PC0, PC1, PC3
Sequence Representation: [1, 0, 0, 0]

[0, 1, 0, 0]
[0, 0, 0, 1]

k-sparse Binary Feature: [1, 1, 0, 1]

Sequence 2: PC3, PC1, PC0
Sequence Representation: [0, 0, 0, 1]

[0, 1, 0, 0]
[1, 0, 0, 0]

k-sparse Binary Feature: [1, 1, 0, 1]

Figure 3.8: Examples of k-sparse binary feature. For simplicity, the total number of PCs is
4 and k is 3.

To better understand the program semantics behind this insight, we map

source and target PCs back to the source code and find that our model is able to learn

high-level application-specific semantics that lead to different caching behaviors of

target PCs (see Section 3.3.5).

3.2.3 Integer SVM and a k-sparse Binary Feature

Our insights reveal that it is possible to substitute the LSTM with a simpler

model that does not need to capture position and ordering information within the

input sequence. Therefore, we simplify our input feature representation to remove

duplicate PCs and to forego ordering information, and we feed this simplified hand-

crafted feature into a hardware-friendly Integer Support Vector Machine (ISVM).

Note that since we remove duplicate PCs, our hand-crafted feature can capture an

effective history length of 30 PCs with fewer history elements (5 in our experi-

ments). We denote this compressed history length as k.

In particular, we design a k-sparse binary feature to represent PCs of a

26

memory access sequence, where a k-sparse binary feature has k 1s in the vector

and 0s elsewhere. Specifically, the k-sparse binary feature vector is represented as

x ∈ {0, 1}u, where u is the total number of PCs and the tth entry xt is a 0/1 indica-

tor, denoting whether the tth PC is within the sequence or not. For a given time step,

this vector shows the last k unique PCs for the current memory access. Figure 3.8

shows the one-hot representation and k-sparse binary feature for two sequences. We

see that regardless of the order and the position of each PC, the k-sparse representa-

tions for two sequences are identical. Thus, our feature design exploits the fact that

the order is not important for the optimal caching decision, thereby simplifying the

prediction problem.

We then use an SVM with the k-sparse binary feature. Since integer op-

erations are much cheaper in hardware than floating point operations, we use an

Integer SVM (ISVM) with an integer margin and learning rate of 1. While several

variations exist, we use hinge loss as our objective function for optimization, which

is defined as

l(x, y) = max(0, 1− y ·wTx) (3.4)

where w is the weight vector of the SVM and y ∈ {±1} is the expected output.

Fact 1. With binary features, the use of gradient descent with learning rate γ = 1
n

for an integer n is equivalent to optimizing the following objective function with

learning rate 1.

27

l̃(x, y) = max(0, n− y ·wTx) (3.5)

Suppose we are optimizing (3.4) with initial weight vector w(0), and learn-

ing rate 1
n

produces the trace w(0),w(1), . . . ,w(m), Then optimizing (3.5) with

initial weight vector n ·w(0) and learning rate 1 produces n ·w(0), n ·w(1), . . . , n ·

w(m), . . ., which means that they give the same prediction on any training sample.

Therefore, by setting the learning rate to one, weight updates will be integral and

we can avoid floating point operations. Thus, ISVM trained in an online manner is

equivalent to a perceptron [121] that uses a threshold to prevent inadequate training.

ISVM is more amenable to hardware implementation than a vanilla SVM,

and because it is a simpler model, it is likely to converge faster than an LSTM model

and to achieve good performance in an online manner. In the following experiments,

we use k = 5. Thus, our Glider solution consists of the ISVM model and k-sparse

feature.

3.2.4 Hardware Design

Figure 3.9 shows the hardware implementation of Glider’s predictor, which

has two main components: (1) a PC History Register (PCHR) and (2) an ISVM

Table. The PCHR maintains an unordered list of the last 5 PCs seen by each core; we

model the PCHR as a small LRU cache that tracks the 5 most recent PCs. The ISVM

Table tracks the weights of each PC’s ISVM; we model it as a direct-mapped cache

that is indexed by a hash of the current PC and that returns the ISVM’s weights for

that PC.

28

ISVM-1

ISVM-2

.

.

.

PCcurrent
PC0, PC2, PC5, PC9, PC15

ISVM- n

Weight 0

Weight 1

Weight 2

Weight 15

.

.

.

Cache-Friendly or
Cache-Averse ∑

PC History Register (PCHR)

The ISVM Table

Figure 3.9: The Glider predictor.

Each PC’s ISVM consists of 16 weights for different possible PCs in the

history register. To find the 5 weights corresponding to the current contents of the

PCHR, we create a 4-bit hash for each element in the PCHR (creating 5 indices

in the range 0 to 15), and we retrieve the 5 weights at the corresponding indices.

For example, in Figure 3.9, the PCHR contains PC0, PC2, PC5, PC9 and PC15,

and we retrieve weight0, weight2, weight5 (not shown), weight9 (not shown) and

weight15 for both training and prediction. A detailed storage and latency analysis

is presented in Section 3.3.4.

We now discuss the operations of Glider’s predictor in more detail. For de-

tails on other aspects of the replacement policy, including insertion and eviction,

we refer the reader to the Hawkeye policy [52].

29

Training. Glider is trained based on the behavior of a few sampled sets [95, 52].

On access to a sampled set, Glider retrieves the weights corresponding to the cur-

rent PC and the PCHR. The weights are incremented by 1 if OPTgen determines

that the line should have been cached; it is decremented otherwise. In keeping with

the perceptron update rule [121, 60], the weights are not updated if their sum is

above a certain threshold. To find a good threshold, Glider’s predictor dynamically

selects among a fixed set of thresholds (0, 30, 100, 300, and 3000). While this adap-

tive threshold provides some benefit for single-core workloads, the performance is

largely insensitive to the choice of threshold for multi-core workloads.

Prediction. To make a prediction, the weights corresponding to the current PC

and the PCHR are summed. If the summation is greater than or equal to a threshold

(60 in our simulations), we predict that the line is cache-friendly and insert it with

high priority (RRPV=02). If the summation is less than 0, we predict that the line

is cache-averse and insert it with low priority (RRPV=7). For the remaining cases

(sum between 0 and 60), we determine that the line is cache-friendly with a low

confidence and insert it with medium priority (RRPV=2).

3.3 Evaluation

We evaluate our ideas by comparing in an offline setting our simple ISVM

model against a more powerful LSTM model (Section 3.3.2). We then compare

2The Re-Reference Prediction Value (RRPV) counter is used by many modern replacement poli-
cies [55, 131, 52] and indicates the relative importance of cache lines.

30

Table 3.2: Baseline configuration.

L1 I-Cache 32 KB, 8-way, 4-cycle latency
L1 D-Cache 32 KB, 8-way, 4-cycle latency

L2 Cache 256 KB, 8-way, 12-cycle latency
LLC per core 2MB, 16-way, 26-cycle latency

DRAM
tRP=tRCD=tCAS=24

800MHz, 3.2 GB/s for single-core,
and 12.8 GB/s for 4-core

Glider against other online models, ie, against three of the top policies from the 2nd

Cache Replacement Championship (Section 3.3.3), before discussing the practical-

ity of our solution (Section 3.3.4).

3.3.1 Methodology

Simulator. We evaluate our models using the simulation framework released by

the 2nd JILP Cache Replacement Championship (CRC2), which is based on Champ-

Sim [1] and models a 4-wide out-of-order processor with an 8-stage pipeline, a

128-entry reorder buffer and a three-level cache hierarchy. Table 3.2 shows the pa-

rameters for our simulated memory hierarchy.

Benchmarks. To evaluate our models, we use the 33 memory-sensitive applica-

tions of SPEC CPU2006 [37], SPEC CPU2017, and GAP [7], which we define as

the applications that show more than 1 LLC miss per kilo instructions (MPKI). We

run the benchmarks using the reference input set, and as with the CRC2, we use

SimPoint to generate for each benchmark a single sample of 1 billion instructions.

We warm the cache for 200 million instructions and measure the behavior of the

31

Table 3.3: Statistics for benchmarks used in offline analysis.

of # of # of Ave. # Ave.
Program Accesses PCs Addrs Accesses Accesses

per PC per Addr
mcf 19.9M 650 0.87M 30K 22.9

omnetpp 4.8M 1498 0.44M 3.2K 10.9
soplex 9.4M 2348 0.39M 3.9K 24.1
sphinx 3.0M 1698 0.11M 1.7K 27.3
astar 1.2M 54 0.31M 22K 3.8
lbm 5.0M 55 0.71M 90K 7.0

next 1 billion instructions.

Multi-Core Workloads. Our multi-core experiments simulate four benchmarks

running on 4 cores, choosing 100 mixes from all possible workload mixes. For

each mix, we simulate the simultaneous execution of the SimPoint samples of the

constituent benchmarks until each benchmark has executed at least 250M instruc-

tions. If a benchmark finishes early, it is rewound until every other application in the

mix has finished running 250M instructions. Thus, all the benchmarks in the mix

run simultaneously throughout the sampled execution. Our multi-core simulation

methodology is similar to that of CRC2 [1].

To evaluate performance, we report the weighted speedup normalized to

LRU for each benchmark mix. This metric is commonly used to evaluate shared

caches [52, 60, 1] because it measures the overall performance of the mix and

avoids domination by benchmarks of high IPC. The metric is computed as follows.

For each program sharing the cache, we compute its IPC in a shared environment

(IPCshared) and its IPC when executing in isolation on the same cache (IPCsingle).

32

We then compute the weighted IPC of the mix as the sum of IPCshared/IPCsingle

for all benchmarks in the mix, and we normalize this weighted IPC with the

weighted IPC using the LRU replacement policy.

Settings for Offline Evaluation. Since LSTM and SVM are typically trained

offline—requiring multiple iterations through the entire dataset—we evaluate these

models with traces of LLC accesses, which are generated by running applications

through ChampSim. For every LLC access, the trace contains a (PC, optimal de-

cision) tuple. The optimal decisions are obtained by running an efficient variant

of Belady’s algorithm [52]. Because these models require significant training time,

we run our offline learning models on 250 millions of instruction for a subset of

single-core benchmarks. These benchmarks are statically summarized in Table 3.3.

For offline evaluation, we use the first 75% of each trace for training and the last

25% for testing. The models evaluated in this section are insensitive to the split ra-

tio, as long as at least 50% is used for training. For offline evaluation, models are

iteratively trained until convergence.

Baseline Replacement Policies. Using the offline settings, we compare the accu-

racy of the attention-based LSTM and the offline ISVM models to two state-of-the-

art hardware caching models, namely, Hawkeye [52] and Perceptron [121].

Hawkeye uses a statistical model that assumes that memory accesses by

the same PC have the same caching behavior over a period of time. In particular,

Hawkeye uses a table of counters, where each counter is associated with a PC and

33

is incremented or decremented based on optimal decisions for that PC. Perceptron

uses a linear perceptron model with a list of features including the PC of the past 3

memory accesses.

The Perceptron model respects the order of these PCs, but we find that using

longer PC histories with order is not as effective as without order. For a fair com-

parison of PC history as the feature, we implement an SVM with the same hinge

loss for Perceptron that uses the PC of the past 3 memory accesses, respecting the

order, and that learns from Belady’s optimal solution.3

To evaluate Glider as a practical replacement policy, we compare Glider

against Hawkeye [52], SHiP++ [136] and MPPPB [60], which are the first, sec-

ond and fourth finishers in the most recent Cache Replacement Championship

(CRC2) [1]. For all techniques, we use code that is publicly available by CRC2.

For single-thread benchmarks, we also simulate Belady’s optimal replacement pol-

icy (MIN) [8].

3.3.2 Comparison of Offline Models

Figure 3.10 compares the accuracy of our models when trained offline. We

see that (1) our attention-based LSTM improves accuracy by 10.4% over the Hawk-

eye baseline and (2) with a 9.1% accuracy improvement over Hawkeye, our offline

ISVM comes close to the performance of LSTM. These results confirm our in-

3Although our implementation of Percepton has now become quite different from the original
implementation in terms of the features, model, and labeling, we still refer to this model as Percep-
tron in the offline comparison because it is inspired by that work [121].

34

sight that we can approximate the powerful attention-based LSTM with a simpler

hardware-friendly predictor.

50

55

60

65

70

75

80

85

90

95

mcf omnetpp soplex sphinx3 astar lbm average

Ac
cu

ra
cy

 (%
)

Hawkeye Perceptron Offline ISVM Attention-based LSTM

Figure 3.10: Accuracy comparison of offline predictors.

3.3.3 Comparison of Online Models

We now compare the accuracy and speedup of our practical models when

trained online as the program executes, i.e., we compare Glider against Hawkeye,

SHiP++, and MPPPB.

Online training accuracy. Figure 3.11 shows that Glider is more accurate than

state-of-the-art online models, including Hawkeye (88.8% vs. 84.9%). On the sub-

set of benchmarks used for training the offline models, the accuracy improves from

73.5% to 82.4%, which is similar to the offline improvements from 72.2% to 81.2%.

35

50
55
60

65
70
75

80
85

90
95
100

60
3.
bw

av
es

60
5.
m
cf

62
0.
om

ne
tp
p

62
1.
w
rf

62
8.
po

p2
65
4.
ro
m
s

65
7.
xz bc bf
s

bz
ip
2

ca
ct
us
AD

M cc
G
em

sF
D
TD lb
m

le
sl
ie
3d m
cf

om
ne
tp
p pr

so
pl
ex

sp
hi
nx
3

ss
sp tc
w
rf

av
er
ag
e

Ac
cu
ra
cy

(%
)

Hawkeye Glider

Figure 3.11: Accuracy comparison of online predictors.

-5.0

5.0

15.0

25.0

35.0

45.0

55.0

603.bwaves

605.mcf
619.lbm

620.omnetpp

621.wrf
627.cam4

649.fotonik3d

654.roms

astar
bwaves

bzip2
cactusADM

calculix
gcc GemsFDTD

lbm leslie3d
libquantum

mcf
milc

omnetpp

soplex
sphinx3

tonto
wrf xalancbmk

zeusmp
bc bfs cc tc pr sssp SPEC17

SPEC06
GAP

ALL

M
is
sR

at
e
Re

du
ct
io
n
O
ve
rL
RU

(%
)

Hawkeye

MPPPB

SHiP++

Glider

Figure 3.12: Miss rate reduction for single-core benchmarks.

Thus, Glider is as effective as the offline attention-based LSTM model, and insights

from offline training carry over to online predictors.

36

-5.0

5.0

15.0

25.0

35.0

45.0

55.0

603.bwaves

605.mcf
619.lbm

620.omnetpp

621.wrf
627.cam4

649.fotonik3d

654.roms

astar
bwaves

bzip2
cactusADM

calculix
gcc GemsFDTD

lbm leslie3d
libquantum

mcf
milc

omnetpp

soplex
sphinx3

tonto
wrf xalancbmk

zeusmp
bc bfs cc tc pr sssp SPEC17

SPEC06
GAP

All

Sp
ee
du

p
O
ve
rL
RU

(%
)

Hawkeye

MPPPB

SHiP++

Glider

Figure 3.13: Speedup comparison for single-core benchmarks.

Single-Core Performance. Figure 3.12 shows that Glider significantly reduces

the LLC miss rate in comparison with the three state-of-the-art replacement poli-

cies. In particular, Glider achieves an average miss reduction of 8.9% on the 33

memory-intensive benchmarks, while Hawkeye, MPPPB, and SHiP++ see miss

reductions of 7.1%, 6.5%, and 7.5%, respectively. Figure 3.13 shows that Glider

achieves a speedup of 8.1% over LRU. By contrast, Hawkeye, MPPPB, and SHiP++

improve performance over LRU by 5.9%, 7.6%, and 7.1%, respectively. These im-

provements indicate that even though our insights were derived from an offline

attention-based LSTM model, they carry over to the design of practical online cache

replacement policies.

Multi-Core Performance. Figure 3.14 shows that Glider performs well on a

3-core system as it improves performance by 14.7%, compared with the 13.6%,

11.4%, and 13.2% improvements for Hawkeye, SHiP++, and MPPPB, respectively,

indicating that our features and insights are applicable to both private and shared

37

caches.

-5
0
5

10
15
20
25
30
35
40
45
50
55
60

0 20 40 60 80 100

W
ei

gh
te

d
Sp

ee
du

p
O

ve
r L

RU
 (%

)

4-Core Mixes

Hawkeye

MPPPB

SHiP++

Glider

Figure 3.14: Weighted speedup for 4 cores with a shared 8MB LLC.

Effective Sequence Length. Figure 3.15 shows the relationship between his-

tory length and offline accuracy, where the sequence length for the attention-based

LSTM ranges from 10 to 100, and the number of unique PCs (k value) for offline

ISVM and the number of PCs for Perceptron range from 1 to 10. We make three

observations. First, the LSTM benefits from a history of 30 PCs, which is signif-

icantly larger than the history length of 3 considered by previous solutions [121].

Second, the offline ISVM with only 6 unique PCs approaches the accuracy of the

attention-based LSTM; thus, the k-sparse feature representation used by ISVM ef-

fectively captures a long history with fewer elements, and this representation works

well even with a linear model. Third, the accuracy curve of the perceptron, which

38

uses an ordered PC history with repetition, does not scale as well as our ISVM, and

it saturates at a history length of 4, indicating that the linear model does not work

well with an ordered history representation.

65

70

75

80

85

90

10 (1) 20 (2) 30 (3) 40 (4) 50 (5) 60 (6) 70 (7) 80 (8) 90 (9) 100 (10)

Ac
cu

ra
cy

(%
)

PC Sequence length

Attention-based LSTM

Offline ISVM

Perceptron

Figure 3.15: Sequence length for attention-based LSTM (number of unique PCs for offline
ISVM and sequence length for Perceptron).

3.3.4 Practicality of Glider vs. LSTM

We now compare the practicality of the attention-based LSTM with Glider

along two dimensions: (1) hardware budget and (2) training overhead.

Table 3.4: Model size and computation cost. LSTM uses floating point operations; the other
models use integer ops.

Model Model Size (in KB) Computational Cost per Sample (# operations)
Training Test

LSTM (predictor only) ∼ 5× 103 ∼ 2.4× 103 ∼ 0.12× 103

Glider 62 8 8
Perceptron 29 9 9
Hawkeye 32 1 1

39

Hardware Budget of Glider vs. LSTM. In Glider, we replace the predictor mod-

ule of Hawkeye with ISVM, keeping other modules the same as Hawkeye. For a

16-way 2MB LLC, Hawkeye’s budgets for replacement state per line, sampler, and

OPTgen are 12KB, 12.7KB, and 4KB, respectively. The main overhead of Glider is

the predictor that replaces Hawkeye’s per-PC counters with ISVM. For each ISVM,

we track 16 weights, and each weight is 8-bit wide. Thus, each ISVM consumes

16 bytes. Since we track 2048 PCs, Glider’s predictor consumes a total of 32.8KB.

The PCHR with the history of past 5 accesses is only 0.1KB. Thus, Glider’s total

hardware budget is 61.6 KB. Note that the attention-based LSTM model is at least

3 orders of magnitude more expensive in terms of both storage and computational

costs. (See Table 3.4.)

Since the Glider predictor requires only two table lookups to perform both

training and prediction, its latency can be easily hidden by the latency of accessing

the last-level cache.

Convergence Rate of Glider vs. LSTM. As discussed, deep learning models,

such as LSTM, typically need to train for multiple iterations to converge. For

caching, training over multiple iterations would imply that a trace of LLC accesses

would need to be stored for training iterations, which is infeasibly expensive. In-

stead, for cache replacement, we need the machine learning model to train in an

online manner, that is, by making a single pass over the input data. Figure 3.16

shows that with offline training, our offline ISVM achieves good accuracy in one

iteration, while the LSTM takes 10-15 iterations to converge. We also see that on-

40

line models, such as, Perceptron and Hawkeye, converge fast but have the limited

accuracy.

70

72

74

76

78

80

82

84

86

0 5 10 15 20 25 30

Ac
cu

ra
cy

 (%
)

iterations over the entire dataset

Attention-based LSTM

Offline ISVM

Perceptron

Hawkeye

Figure 3.16: Convergence of different models.

On the Practicality of Deep Learning for Caching. The main barriers to the

use of deep learning models for hardware prediction are model size, computational

cost, and offline training. The model size of our attention-based LSTM is at least

1 megabyte, which significantly exceeds the hardware budget for hardware caches.

In addition, LSTM typically requires floating-point operations, while models such

as Perceptron and ISVM use integer operations. Fortunately, recent studies [32, 46]

have shown the great potential of reducing the model size and computational costs

by 30× to 50× through model compression techniques, such as quantization, prun-

ing, and integerization/binarization. However, these models need to be pre-trained

offline before being compressed and deployed, which is difficult for hardware pre-

diction problems where program behavior varies from benchmark to benchmark

41

and even from one input to another input of the same benchmark. Given their prob-

lem with underfitting (poor performance in the first 10 iterations) as shown in Fig-

ure 3.16, it’s clear that even with further compression techniques, deep learning

models are still not ready for direct use in hardware predictors.

3.3.5 Learning High-Level Program Semantics

Our attention-based LSTM model is able to learn high-level program se-

mantics to better predict the optimal caching solution. For example, for the om-

netpp benchmark that simulates network protocols such as HTTP, the model dis-

covers that certain types of network messages tend to be cache-friendly, while other

types of messages tend to be cache-averse. Furthermore, the model discovers this

relationship by distinguishing the different control-flow paths for different types of

messages.

Table 3.5: The attention-based LSTM model improves accuracy for four target PCs in
scheduleAt() method, and all four target PCs attend to the same source PC.

Target PC Source PC Hawkeye’s Attention-based
Accuracy(%) LSTM’s

Accuracy (%)
44c7f6 44e141 74.8 90.1
4600ec 44e141 53.2 94.1
44dd98 44e141 67.1 92.3
43fb10 44e141 73.4 91.0

More specifically, consider the scheduleAt() method, which is frequently

called inside omnetpp to schedule incoming messages at a given time t. The sched-

uleAt() method takes as an argument a message pointer, and it dereferences this

42

pointer resulting in a memory access to the object residing at the pointer location

(see Figure 3.18). Table 3.5 shows the model’s accuracy for four target load instruc-

tions (PCs) that access this object. We see that (1) the attention-based LSTM model

significantly improves accuracy for all four target PCs, and (2) all four target PCs

share the same anchor PC (the source PC with the highest attention weight).

scheduleAt
(time, message)

sendJamSignal()
{
 ...
 scheduleAt (t, endJamMsg)
}

scheduleEndIFGPeriod()
{
 ...
 scheduleAt (t, endIFGMsg)
}

scheduleEndTXPeriod()
{
 ...
 scheduleAt (t, endTxMsg)
}

Function with anchor PC 40e141

Function with target PCs

Figure 3.17: The anchor PC belongs to one of the calling contexts for the target PCs.

To understand the accuracy improvement for the target PCs in the sched-

uleAt() method, Figure 3.17 shows that scheduleAt() is invoked from various loca-

tions in the source code, with each invocation passing it a different message pointer.

We find that the anchor PC belongs to one of these calling methods, called sched-

uleEndIFGPeriod(), implying that load instructions in the scheduleAt() method tend

to be cache-friendly when the scheduleAt() method is called from scheduleEn-

dIFGPeriod() with the endIFGMsg pointer, whereas they tend to be cache-averse

when scheduleAt() is called from other methods with other message pointers. Thus,

43

C code for Source PC 44c7f6
1 int cSimpleModule::scheduleAt(simtime_t t,	cMessage *msg)
2 {
3 if	(t<simTime())
4 throw	new	cException(eBACKSCHED);
5 . . .
6 //	set	message	parameters	and	schedule	it
7 msg->setSentFrom(this,	-1,	simTime());
8 msg->setArrival(this,	-1,	t);
9 ev.messageSent(msg);
10 simulation.msgQueue.insert(msg);
11 return 0;
12 }

Assembly Code for Target PC 44c7f6
1 <_ZN13cSimpleModule10scheduleAtEdP8cMessage>:
2 44c730: 48	89	5c	24	e8 mov %rbx,-0x18(%rsp)
3 . . .
4 44c7f6: 48	8b	03 mov (%rbx),%rax
5 44c7f9: 48	89	ee mov %rbp,%rsi
6 44c7fc: 48	89	df mov %rbx,%rd

Figure 3.18: Source code and assembly code for target PC 44c7f6 in scheduleAt() method
(lines in bold).

by correlating the control-flow histories of load instructions in the scheduleAt()

method, our model has discovered that the endIFGMsg object has better cache lo-

cality than endJamSignal and endTxMsg objects.

44

3.3.6 Model Specifications

The hyper-parameters for the attention-based LSTM model and Glider are

given in Table 3.6. Here we explain how we identify key hyper-parameters, namely,

the sequence length for the attention-based LSTM model and the number of unique

PCs (k) for Glider and Perceptron.

For the offline ISVM, we consider step sizes n from 0.0001 to 1 with a

multiple of 5 (0.0001, 0.0005, 0.001, 0.005, ...), and for the corresponding Glider

model we use an update threshold of 1
n

with a fixed step size of 1. To avoid the need

to perform floating point operations, no decay is used.

Table 3.6: Offline Model Specifications

LSTM

train/test split 0.75/0.25
embedding size 128

network size 128
Optimizer Adam

learning rate 0.001

Glider
k (# unique PCs) 5

step size 0.001

3.4 Summary

When we think of applying machine learning to hardware prediction prob-

lems, we often focus on the learning model. For example, as a learning model, the

perceptron has benefits over tables of saturating counters because the perceptron

can efficiently combine results from multiple inputs. And indeed, this work has

presented a new cache replacement policy that uses an SVM—which is equivalent

45

to a perceptron—to outperform the state-of-the-art. However, the key to Glider’s

success is not the mere use of a perceptron—we are not the first to use perceptrons

for cache replacement. Instead, it is the use of appropriate features in combination

with the perceptron that leads to its effectiveness. Thus, this work has shown how

we can use deep learning—in an offline setting—to derive insights that lead to an

improved set of features with which to make predictions for cache replacement.

More broadly, our approach in designing Glider suggests that deep learning

can play an important role in systematically exploring features and feature represen-

tations that can improve the effectiveness of much simpler models, such as percep-

trons and SVMs. However, domain knowledge is critical for this approach to work.

In particular, the domain expert must formulate the problem appropriately, supply

relevant features to build an effective offline model, and use indirect methods to

interpret the trained model. Our work illustrates one instance where this approach

is successful, but we hope that the insights and techniques presented in this work

can inspire the design of similar solutions for other microarchitectural prediction

problems, such as branch prediction, data prefetching, and value prediction.

46

Chapter 4

Voyager Data Prefetcher

4.1 Challenges of Data Prefetching as a Machine Learning
Problem

Unlike cache replacement, data prefetching presents two challenges to ma-

chine learning that branch prediction and cache replacement do not.

First, data prefetching suffers from the class explosion problem. While

cache replacement can be casted as a binary prediction problem [60, 67, 52, 107,

130], prefetchers that learn delta correlations or address correlations have enormous

input and output spaces. For a 64-bit address space, the model needs to predict from

among tens of millions of unique address values, a feature space that cannot be han-

dled by existing machine learning models for natural language, which traditionally

have input and output spaces that are orders of magnitude smaller.

Second, data prefetching has a labeling problem. Whereas branch predictors

can be trained by the ground truth answers as revealed by a program’s execution,

and whereas cache replacement policies can be trained by learning from Belady’s

MIN policy [52], data prefetchers have no known optimal solution from which to

learn. Thus, given a memory access m, the prefetcher could learn to prefetch any of

the many addresses that follow m.

47

4.2 Problem Formulation

As a foundation for our ML solution, we first derive a probabilistic formu-

lation for data prefetching that (1) outlines the design space for data prefetchers,

illustrating that features and labels can be used to describe a wide range of existing

data prefetchers within a unified framework and (2) motivates the use of ML models

to estimate the probability distribution.

4.2.1 Probabilistic Formulation of Prefetching

The goal of temporal prefetching is to exploit correlation between con-

secutive addresses to predict the next address. Therefore, temporal prefetching

can be viewed as a classification problem where each address is a class, and the

learning task can be defined as the probability that an address Addr will be ac-

cessed given a history of past events, such as the occurrence of memory accesses

Access1, Access2, ..., Accesst up to the current timestamp t:

P (Addr|Access1, Access2, ..., Accesst) (4.1)

Machine learning, especially deep learning, provides a flexible framework

for modeling probability distributions. In ML terminology, the historical events

(Access1, Access2 ..., Accesst) are known as input features, and the future event

(Addr) is known as the model’s output label.

All previous temporal prefetchers [126, 51, 5] can be viewed as instances

of this formulation with different input features and output labels. For example,

48

STMS [126] learns the temporal correlation between consecutive addresses in the

global memory access stream, so its output label is the next address in the global

memory access stream. Thus, STMS tries to learn the following probability distri-

bution:

P (Addrt+1|Addrt) (4.2)

ISB [51] implements PC localization, which improves upon STMS by pro-

viding a different output label, namely, the next address by the same program

counter (PC). Thus, ISB tries to learn the following probability distribution:

P (AddrPC |Addrt) (4.3)

where AddrPC is the next address that will be accessed by the PC that just accessed

Addrt.

Domino [5] instead improves upon STMS by using a different input feature,

using the previous two addresses to predict the next address in the global memory

access stream:

P (Addrt+1|Addrt−1, Addrt) (4.4)

Stride prefetchers can also be formulated under this probabilistic frame-

work by incorporating strides or deltas in our formulation. For example, a stride

prefetcher detects the constant stride pattern:

49

P (Stridet+1|Stridet) (4.5)

The VLDP prefetcher [106] looks at a history of past deltas and selects the

most likely deltas.

P (Stridet+1|Stridet0 , Stridet1 , ..., Stridetn) (4.6)

The first neural prefetcher [33] adopts a similar formulation. Given a history

length l, it learns the following distribution:

P (Stridet+1|Stridet−l, Stridet−l+1, ..., Stridet) (4.7)

In general, our probabilisitc formulation of prefetching defines the input fea-

tures (the historical event) and the output label (the future event). Unlike previous

learning-based work that focuses on limited features (without addresses) and the

prediction of the global stream, we explore the design choices of both the input

features and output labels to improve the predictive accuracy of our model.

4.3 Our Solution: Voyager

This section describes Voyager, our neural model for performing data

prefetching, including a discussion of the challenges that we had to overcome in

developing such a solution.

50

Input Memory Access
Sequence

PredictorsInput Embedding

Page LSTM

Offset LSTM

PC Sequence

Page Sequence

Offset Sequence

PC Embedding

Input Page
Embedding

Input Offset
Embedding

Output Page
Embedding

Output Offset
Embedding

Final Output

Page-Aware
Offset

Embedding

Address
Sequence

Output
Embedding

Output
Address

Figure 4.1: Overview of Voyager.

4.3.1 Model Overview

Figure 4.1 shows an overview of Voyager. The model takes as input a se-

quence of memory accesses, where each memory access is represented by a PC and

an address. Our model is hierarchical, so one part of the model predicts page ad-

dresses (bits 11-63) and the other predicts offsets within a page (bits 6-11). Since

our inputs are categorical in nature—their numerical values are not pertinent to the

prediction task—our model first learns embeddings for PC, page, and offset, and

then feeds them to an LSTM neural network. The neural network generates predic-

tions of the output page and offset, which are combined to generate a final address

prediction. We now discuss our hierarchical neural structure and multi-label train-

ing scheme in more detail.

4.3.2 Hierarchical Neural Structure

To better understand the need for a hierarchical model, Table 1 shows that

the number of unique addresses in typical programs ranges from hundreds of thou-

51

Table 4.1: Benchmark statistics.

Benchmark # PCs # Addresses # Pages
astar 192 0.15M 29.9K
bfs 828 0.16M 4.1K
cc 529 0.26M 4.3K

mcf 169 4.58M 91.1K
omnetpp 1101 0.48M 36.3K

pr 650 0.27M 4.2K
soplex 2129 0.36M 12.3K
sphinx 1519 0.13M 4.3K

xalancbmk 2071 0.34M 25.3K
search 6729 0.91M 22.4K

ads 21159 1.4M 28.7K

sands to tens of millions, which is orders of magnitude larger than the number

of unique categories in traditional ML tasks, such as words in natural language

processing. As pointed out by previous work [33, 107], the explosion of memory

addresses leads to an increase in memory usage that precludes the training of neu-

ral networks and that results in an ineffective representation of the memory address

space, since address only appears a few times, which is insufficient for training neu-

ral networks. Therefore, to make prefetching a tractable ML problem, we need to

design an efficient representation of memory address space with less unique classes.

Fortunately, the number of unique pages is 30-60× smaller than the num-

ber of unique addresses, so Voyager leverages this property to reduce the number

of classes that the ML model needs to learn. As a naive realization of this idea, at

each step of the memory address sequence, the input representation is the concate-

nation of the page embedding, offset embedding and pc embedding, which is fed

to the page LSTM and offset LSTM for the prediction of the page and offset of the

52

Page Embedding (200d) Offset Embedding (1000d = 5x200d)

0.1 0.2 0.6 0.0 0.1

Corresponding Attention Weights

Page-Aware Offset Embedding (200d)

Scaled Dot-Product Attention

Query Value

Weighted
Sum

Key

Figure 4.2: Page-aware offset embedding with the dot-product attention mechanism.

future address. The outputs from both LSTMs are taken by a linear layer with soft-

max activation function (not shown in Figure 4.1), which outputs the probability

distribution of pages and offsets respectively.

Unfortunately, naively splitting addresses into page and offsets results in a

problem, which we refer to as the offset aliasing issue. To understand this aliasing

issue, consider two addresses X and Y that have different page numbers PX and

PY but the same offset O. Even though X and Y have the same page offsets, their

program semantics could differ, and there is no reason to believe that the two will

always behave the same way, so it is important for the ML model to distinguish

between the same offset of these two addresses. The analogy in natural language

is polysemy where multiple meanings exist for a word, and the actual meaning

depends on the context in which the word is used; without using this context, the

53

models learn an average behavior, which is not useful.

4.3.3 Page-Aware Offset Embedding Mechanism

Thus, to effectively represent an address, its an ideal offset embedding not

only represents the offset but also includes the impact of the page that it resides on.

To achieve this, we propose a novel page-aware offset embedding mechanism that

makes the offset embedding aware of the page number that the offset originated

from. Figure 4.2 illustrates this page-aware offset embedding mechanism.

To build a page-aware offset embedding, we take inspiration from mixtures

of experts [49] where each expert represents a specific page-aware offset embed-

ding. Conditioned on the page, our model selects the appropriate expert and outputs

its offset embedding. We use the scaled dot-product attention layer [123] as the core

mechanism, as it represents the building block of state-of-the-art NLP models [97].

The attention layer can be thought of as a memory lookup, where each ele-

ment of memory is addressed by a key and stores a vector value. Given a query (the

page embedding), the mechanism compares its correlation with each key and out-

puts a probability vector. The final output value is therefore a sum over the values

in the memory, weighted by these probabilities. This mechanism is known as soft

attention and allows us to use backpropagation to learn these vectors. We use the

offset embeddings for each expert to represent both the keys and values.

Formally, we can think of the offset embedding as one large vector, and we

can think of each expert as being partitions of this vector (see Figure 4.2). When we

set the ratio between page embedding size and total offset embedding size to be n,

54

corresponding to n experts, the mechanism can be defined as

at(o, s) =
exp(f · score(hp, ho,s))∑
s′ exp(f · score(hp, ho,s′)

(4.8)

h′o =
∑
s

at(o, s)ho,s (4.9)

where f is a scaling factor that ranges from 0 to 1, hp is the page embedding,

ho = [ho,0, ho,1, ..., ho,n] is the offset embedding, where ho,i is the embedding of

the ith expert, and h′o is the page-aware offset embedding generated by the attention

mechanism. Empirically, we set the size of the offset embedding |ho| to be 5-100×

of that of the page embedding |hp|. In the example in Figure 4.2, we use a dot-

product attention layer with a 200-dimension (d) page embedding (|hp| = 200) and

1000-dimension (d) offset embedding (|ho| = 1000). The 1000-d offset embedding

|ho| is divided into 5 expert embeddings (n = 5), each of which is the same size

as the page embedding used to perform the attention operation. Attention weights

at(o, s) are computed as the dot product of the page embedding and each of the

offset expert embeddings, and a final page-aware offset embedding h′o is obtained

by a weighted sum of all the offset expert embeddings ho,k, k = 0, 1, ..., n.

As a result of the page-aware offset embedding, the input representation of

Voyager’s LSTM model becomes the concatenation of the page embedding, page-

aware offset embedding and pc embedding. The hierarchical structure assisted by

the page-aware offset embedding mechanism significantly reduces the number of

classes in both the input and output space because the number of offsets is fixed

55

(64) and is much smaller than the number of pages for all programs. For networks

with a large number of classes, the embedding layer is the primary storage and

computation bottleneck. Reducing the number of classes dramatically reduces the

size of the model by decreasing the number of embedding entries and parameters.

This reduction consequently simplifies the model and reduces training overhead. In

Section 4.4 we show that Voyager improves the model efficiency—in terms of com-

putational cost and storage overhead—by an order of magnitude when compared to

previous neural-based solutions [33].

Covering Compulsory Misses with Deltas. Compulsory misses are common in

benchmarks with large memory footprints, such as mcf and search. To improve

coverage without burdening the model with infrequent addresses, we train Voyager

to also learn deltas among addresses, allowing it to predict compulsory misses. In

particular, we focus on addresses with extremely low frequency (e.g. fewer than 2

times) and we represent these addresses using their deltas from previous addresses.

By focusing on addresses with low frequency, our model can use just a small num-

ber of deltas. For example, we find that 10 deltas can cover 99% of the compulsory

misses in mcf, whereas previous solutions [33] need millions of deltas.

4.3.4 Multi-Label Training Scheme

As explained in Section 1, data prefetchers do not have access to obvious

ground truth labels. We find that different labeling schemes work well for differ-

ent workloads: Spatial labeling schemes work well for workloads that have spa-

56

tial memory access patterns, and PC-based labeling schemes work well on pointer-

based workloads. In fact, some workloads have a mix of access patterns that require

multiple labeling schemes. Thus, we train Voyager with multiple labels so that it

can leverage the benefits of different labeling schemes and so that it can select the

most predictable label during prediction. To evaluate the effectiveness of previously

proposed labeling schemes, we also show results in which we train the model with

a single label. Section 4.4.3.3 discusses and evaluates these labeling schemes.

4.4 Evaluation

This section evaluates our ideas by comparing Voyager against both practi-

cal prefetchers and neural prefetchers.

4.4.1 Methodology

Due to slow training times, machine learning solutions—including previous

machine learning based prefetchers—are typically evaluated in an offline setting,

which means that they are trained on one portion of the benchmark’s execution and

then tested on a different portion of the benchmark’s execution. Of course, hardware

prefetchers are trained as the program run, so to simulate such an online deploy-

ment, we evaluate Voyager (and the baseline machine learning-based prefetchers)

by training them in batches of 50 million instructions, so that the prefetchers are

trained for one 50M instruction epoch and then used for the next 50M instruction

epoch.

57

Simulator. We evaluate our models using the simulation framework released

by the 2nd JILP Cache Replacement Championship (CRC2), which is based on

ChampSim [54]. ChampSim models a 4-wide out-of-order processor with an 8-

stage pipeline, a 128-entry reorder buffer and a three-level cache hierarchy. Ta-

ble 4.2 shows the parameters for our simulated memory hierarchy.

Table 4.2: Simulation configuration.

L1 I-Cache 64 KB, 4-way, 3-cycle latency
L1 D-Cache 64 KB, 4-way, 3-cycle latency

L2 Cache 512 KB, 8-way, 11-cycle latency
LLC per core 2MB, 16-way, 20-cycle latency

DRAM
tRP=tRCD=tCAS=20

2 channels, 8 ranks, 8 banks
32K rows, 8GB/s bandwidth per core

Benchmarks. We evaluate Voyager and the baselines on a set of irregular bench-

marks from the SPEC06 and GAP benchmark suites [7]. In particular, we use ir-

regular benchmarks on which an oracle prefetcher that always correctly prefetches

the next load produces ¿10% IPC improvements over the baseline with no prefetch-

ing. This results in a similar subset used by previous work [51, 134, 133]. For each

benchmark, we generate traces of length 250 million instructions, and the desired

region of execution is identified using the SimPoint [31] methodology. We use the

reference input set for SPEC06 and input graphs of size 217 nodes for GAP.

For more challenging workloads, we also evaluate our solution on Google’s

search and ads, which are state-of-the-art enterprise-scale applications.

58

Baseline Prefetchers. We compare Voyager against spatial prefetchers (the

Best Offset Prefetcher [83]), temporal prefetchers (STMS [126], ISB [51] and

Domino [5]), and impractical neural prefetchers (Delta-LSTM [33]). Since our goal

is to evaluate the prediction capabilities of different solutions, we use idealized

implementations of all baselines, so there are no constraints on model storage or

off-chip metadata, and all storage is accessed with no cost. Our baselines are partic-

ularly optimistic for the temporal prefetchers, which typically require 10-100M of

off-chip metadata, so practical implementations would incur the latency and traffic

overhead of accessing this off-chip metadata.

Metrics. We evaluate our solutions by comparing their accuracy, coverage and

IPC over a system with no prefetcher, along with a combined notion of accuracy/-

coverage. For effective training, neural models need to be given a clear objective

function, but prefetching often represents a tradeoff between coverage and accu-

racy. Thus, we follow Srivastava et al. [117] and use a strict definition of accuracy/-

coverage that unifies accuracy and coverage into a single metric: We consider the

model’s prediction to be correct if it correctly predicts the next load address. This

metric unifies accuracy and coverage because each correct prediction improves both

accuracy (as it is correct) and coverage (as the next address is covered). From a pre-

diction perspective, this unified metric means that Voyager is designed to improve

both accuracy and coverage simultaneously. We also report the conventional sepa-

rate coverage and accuracy numbers that are obtained from the actual simulation.

In the evaluation of prefetchers with higher degrees (Section 4.4.3.1), the

59

main goals are to see if the baseline prefetchers with aggressive degree and unlim-

ited resources could capture the patterns covered by Voyager. For these evaluations,

we use the standard definition of coverage, which is the percentage of memory ac-

cesses that are correctly prefetched.

We also compare the overhead of Voyager, including computational cost and

model size, against both a non-hierarchical neural network implementation [33] and

a temporal prefetcher [51].

$
FF
XU
DF
\�
��F
RY
HU
DJ
H

��

���

���

���

����

DV
WDU

RP
QH
WSS PF

I
EIV

VR
SOH
[FF SU

[D
ODQ

VS
KLQ
[

VH
DUF
K

DG
V

DY
HUD
JH

6706 'RPLQR ,6% %2 'HOWD�/670 9R\DJHU

Figure 4.3: Unified accuracy/coverage, including Google’s Search and Ads.

4.4.2 Comparison With Prior Art

Figure 4.3 shows that Voyager achieves superior accuracy/coverage com-

pared to the baselines. On average, Voyager achieves 73.9% accuracy/coverage,

compared with 38.6% for STMS, 43.3% for Domino, 51.1% for ISB, 20.5% for IP-

stride, 28.8% for BO, and 52.9% for the Delta-LSTM. A closer look at Figure 4.3

60

A
cc
ur
ac
y

0%

25%

50%

75%

100%

as
tar bfs cc mc

f

om
ne
tpp pr

so
ple
x

sp
hin
x3

xa
lan
cb
mk

av
era
ge

STMS Domino ISB BO Delta-LSTM Voyager

Figure 4.4: Accuracy.

shows that Voyager is particularly effective for Google’s search and ads where it

improves accuracy/coverage to 37.8% and 57.5% compared to 27.9% and 43.1%

by Delta-LSTM.

While the single accuracy/coverage metric is helpful for evaluating the neu-

ral model, we also present coverage and accuracy from simulation. Figure 4.4 and

4.5 show that Voyager improves the accuracy of our SPEC and GAP benchmarks

from 81.6% to 90.2% and coverage from 47.2% to 65.7%.

Figure 4.6 shows that Voyager achieves a higher IPC improvement than

prior art. Normalized to a baseline that has no prefetcher, Voyager improves perfor-

mance by 41.6%, compared with 14.9% for STMS, 21.7% for Domino, 28.2% for

ISB, 6.9% for IP-stride, 13.3% for BO, and 24.6% for Delta-LSTM.

61

C
ov
er
ag
e

0%

25%

50%

75%

100%

as
tar bfs cc mc

f

om
ne
tpp pr

so
ple
x

sp
hin
x3

xa
lan
cb
mk

av
era
ge

STMS Domino ISB BO Delta-LSTM Voyager

Figure 4.5: Coverage.

4.4.3 Understanding Voyager’s Benefits

In this section, we provide an in-depth analysis of Voyager by (1) compar-

ing Voyager against baselines with higher prefetch degrees and against baselines

that hybridize prefetchers, (2) analyzing the memory access patterns which account

for Voyager’s improved coverage, and (3) studying the effectiveness of different

features and labels.

4.4.3.1 Prefetch with High Degree

For these evaluations, we use a standard definition of coverage, which is the

percentage of memory accesses that are correctly prefetched by each prefetcher.

Figure 4.7 shows that as we increase degree from 1 to 8, the coverage of

all prefetchers grows, but even with a degree of 8, a hybrid of ISB+BO can barely

62

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

er

0%

20%

40%

60%

80%

as
tar

om
ne
tpp mc

f
bfs

so
ple
x cc pr

xa
lan

sp
hin
x

av
era
ge

STMS Domino ISB BO Delta-LSTM Voyager

Figure 4.6: IPC.

reach the coverage of Voyager with a degree of 1. Note that in the hybrid prefetcher,

ISB, and BO equally share the available degree if higher than 1, and with a degree

of 1, the hybrid falls back to ISB.

4.4.3.2 Access Patterns Breakdown

To better understand Voyager’s benefits for temporal prefetching, we create

a version of Voyager that is trained using only addresses and without deltas. We

call this version Voyager w/o delta, and much like ISB, Voyager w/o delta cannot

prefetch any compulsory misses. We find that Voyager w/o delta achieves 19.4%

better coverage than ISB, indicating Voyager’s superiority in predicting temporal

access patterns.

We further classify the coverage into spatial and non-spatial patterns; a

prefetch candidate is considered to be spatial if the distance between the last address

63

C
ov

er
ag

e

0%

20%

40%

60%

80%

Degree 1 Degree 2 Degree 4 Degree 8

ISB ISB+BO Voyager

Figure 4.7: Sensitivity to Prefetch degree.

and the prefetched address is less than a certain threshold (256 cache lines [83]).

Figures 4.8 and 4.9 show that Voyager w/o delta improves the prediction of spatial

patterns from 45.2% to 56.8%, and it improves the prediction of non-spatial patterns

from 13.1% to 22.2%.

Finally, to understand uncovered cases, we further classify the uncovered

patterns of Voyager w/o delta and ISB into several categories: (1) uncovered spatial

refers to spatial patterns that are not covered, (2) uncovered co-occurrence-k refers

to non-spatial patterns that are commonly seen patterns with the top-k frequency, (3)

uncovered others refers to remaining non-spatial patterns that are not seen too often,

and (4) uncovered compulsory refers to compulsory misses, which are addresses

that have not been seen in the training set. Not surprisingly, we see that Voyager w/o

delta reduces the percentage of all types of uncovered patterns except compulsory

misses.

Of course, compulsory misses are important for benchmarks with large

64

memory footprints, such as mcf, search and ads. Since machine learning frame-

works are flexible, Voyager can easily include the 10 most frequent deltas as labels.

On mcf, this reduces the ratio of compulsory misses from 21.6% to 0.2%, improving

total coverage from 49.1% to 68%.
A

cc
ur

ac
y

/ c
ov

er
ag

e

0%

25%

50%

75%

100%

as
tar

om
ne

tpp mcf bfs

so
ple

x cc pr
xa

lan
sp

hin
x

av
era

ge

uncovered compulsory

uncovered others

uncovered co-occurrence-3

uncovered co-occurrence-1

uncovered spatial

covered non-spatial

covered spatial

Figure 4.8: Breakdown of the patterns of ISB.

A
cc

ur
ac

y
/ c

ov
er

ag
e

0%

25%

50%

75%

100%

as
tar

om
ne

tpp mcf bfs

so
ple

x cc pr
xa

lan
sp

hin
x

av
era

ge

uncovered compulsory

uncovered others

uncovered co-occurrence-3

uncovered co-occurrence-1

uncovered spatial

covered non-spatial

covered spatial

Figure 4.9: Breakdown of the patterns of Voyager w/o delta.

4.4.3.3 Features and Labels

Voyager improves accuracy/coverage by introducing both new features and

65

a new labeling scheme. This section isolates the effects of each change to under-

stand their relative benefits.

Features. By effectively representing the memory address space with a hierarchi-

cal structure, Voyager is able to leverage neural networks to utilize data addresses

as features. We study the effectiveness of Voyager’s new features by fixing the la-

beling scheme. In particular, to evaluate the effectiveness of the memory address

sequence as a feature, we compare STMS against a version of Voyager that uses the

next address in the global stream as the label, which we refer to as Voyager-global.

We also compare ISB against a version of Voyager that uses the next address of the

current PC as the label; we refer to this version as Voyager-PC.

Figure 4.10 shows that Voyager-global improves coverage over STMS by

19.8%, and Voyager-PC improves coverage over ISB by 16.4%. The right two bars

represent two versions of Voyager-PC, one that uses the PC history as a feature and

one that does not. We see that unlike with in branch prediction [56, 120, 81] and

cache replacement [107], control flow does not help prefetching. Thus, we conclude

that for prefetching, PC is not a useful feature. However, as we will see shortly, PC

is useful for labeling.

Labeling. We now evaluate six different labeling schemes: (1) global predicts

the next address in the global stream, (2) PC predicts the next address by the same

PC, (3) basic block predicts the next address by the PCs from the current basic

block, (4) spatial predicts the next address within a spatial offset of 256 [83], (5)

66

A
cc

ur
ac

y
/ c

ov
er

ag
e

0.0%

20.0%

40.0%

60.0%

80.0% STMS

Voyager-Global

ISB

Voyager-PC w/
PC history

Voyager-PC
w/o PC history

Figure 4.10: Comparison of different features.

A
cc

ur
ac

y
/ c

ov
er

ag
e

0.0%

20.0%

40.0%

60.0%

80.0% Global

PC

Basic block

Spatial

Co-occurrence

Hybrid

Figure 4.11: Comparison of different labeling schemes.

67

co-occurrence predicts the address that occurs most often in the future window of

10 memory accesses and (6) hybrid combines multiple labeling schemes, including

PC, spatial and co-occurrence.

Figure 4.11 compares the accuracy/coverage of these different labeling

schemes, and we see that the hybrid scheme is the most effective, but the stan-

dalone PC-based scheme performs well too. We also see that basic block labeling is

not better than global labeling. This is not surprising because a basic block consists

of multiple PCs, so the basic block scheme is the same as the global scheme except

for the last load in the basic block.

4.4.4 Why ML-Based Prefetchers

To understand why machine learning models, such as LSTM, are beneficial

for prefetching, we provide intuitive analysis by providing code examples to under-

stand how Voyager interprets program semantics through its features and labels.

Features. Figures 4.12 and 4.13 demonstrate the benefit of utilizing data address

history as a feature. The code is from the Gap benchmark PageRank, which takes

graph-structured inputs. Two loads appear in lines 44 and 49. The load in line 44 is

easy to predict since it simply traverses all nodes, or ABCD in the example input

graph. Line 49 is more complex, as it traverses all neighbors of all nodes where each

node can be a neighbor of many other nodes. Thus, the next node to be accessed

depends on both the current neighbor node and the parent node (in bold) of the cur-

rent neighbor. The prediction of the next access becomes harder since the notion of

68

line Code Prefetch Accuracy
(Baseline -> Voyager)

43 for (NodeID n=0; n < g.num_nodes(); n++)

44 outgoing_contrib[n] = scores[n] /
g.out_degree(n); 99.5% -> 99.5%

45 for (NodeID u=0; u < g.num_nodes(); u++) {

46 ScoreT incoming_total = 0;

47 for (NodeID v : g.in_neigh(u))

48 incoming_total += outgoing_contrib[v]; 23.5% -> 95.1%

49 ScoreT old_score = scores[u];

50 scores[u] = base_score + kDamp *
incoming_total;

51 error += fabs(scores[u] - old_score);

Figure 4.12: Code example from PageRank.

a parent node does not exist from the hardware perspective. For example, depend-

ing on the parent node, node B can be followed by any other node, which confuses

existing temporal prefetchers that only look at one or two past data addresses. Voy-

ager, however, accurately prefetches line 49’s load, since it is able to recognize the

parent node through the sequence of unique neighbor nodes. For example, based on

the neighbors A and C, Voyager can recognize that the parent node is A and predict

that the next neighbor is D.

Labeling. The second code example, shown in Figure 4.14, illustrates the impor-

tance of labeling schemes in predicting memory access patterns. The code comes

from soplex in the SPEC06 benchmark suite. Lines 98-120 determine the value of

the variable leave. This variable is used later, if greater than 0, to index the arrays

upd, ub, lb and vec. Voyager prefetches the load of upd, ub and lb by learning from

69

A

B C

D

 Accesses from line 44: ABCD
 Accesses from line 49: ABCBACDCBDBC

Figure 4.13: An example input graph to PageRank.

the data address sequence with PC localization. One particularly interesting pattern

corresponds to vec in lines 125 and 127. vec[leave] will be accessed regardless of

whether the branch is actually taken, but it will be accessed by one of the two PCs

(line 125 or 127), depending on the outcome of the branch. From the perspective

of either individual PC, the access to vec is hard to predict, as the pattern is shared

across the two different PCs. However, our co-occurrence labeling scheme corre-

lates vec[leave] with upd[leave], since it is always accessed after upd[leave]. This

correlation makes the pattern more predictable, so Voyager significantly improves

over the baseline by prefetching vec[leave] at the point of upd[leave].

4.4.5 Model Compression and Overhead

Voyager’s hierarchical representation yields significant storage and com-

putational efficiency, when compared against Hashemi et al.’s Delta-LSTM

prefetcher [33]. In particular, Voyager improves the training overhead by 15.1 ×

and prediction latency by 15.6×. Although the prediction is still relatively slow

(18000 nanoseconds per prediction), this is mainly because Tensorflow’s Python

70

Figure 4.14: Code example from Soplex.

front-end has a large invocation overhead; we expect that this latency can be opti-

mized by 15× [71].

Voyager also enjoys a dramatically lower storage overhead than the

embedding-based Delta-LSTM because of its hierarchical structure. In particular,

since the storage cost for neural-prefetchers is dominated by the embedding layer,

the hierarchical structure reduces the model storage by 20-56×.

To further reduce the storage of Voyager, we apply standard pruning and

quantization methods. We find that 80-85% of weights can be pruned with minimal

accuracy loss, leading to an additional compression of 5-7×. Quantization from

32 bits to 8 bits can provide another 4× compression with minimal accuracy loss

(less than 1%). Together, both optimizations enable Voyager to realize 110-200×

improvements in storage compared to Delta-LSTM. Significantly, after these opti-

71

mizations, Voyager is 5-10× smaller than conventional temporal prefetchers, such

as STMS, Domino and ISB.

 Accuracy

Speedup Storage efficiency

0.2

0.4

0.6

0.8

0.1
0.2

0.3
0.4

0.25
0.5

0.75
1.0

Voyager
delta LSTM
ISB

Figure 4.15: Voyager wins on accuracy, speedup, and storage efficiency. Here storage effi-
ciency is log-scaled and defined as 1

1+log10(storage)

To summarize, Figure 4.15 shows that Voyager outperforms ISB and Delta-

LSTM along multiple dimensions.

4.4.6 Model Specifications

For better reproducibility, we report all the hyperparameters used in Voyager

in Table 4.3.

4.4.7 Paths to Practicality

We see multiple paths to building a practical prefetcher from Voyager. First,

future work can use insights gained from Voyager to build a practical prefetcher

without a complex neural network. For example, Glider [107] showed how to re-

place LSTMs with simple perceptrons for cache replacement.

72

Table 4.3: Hyperparameters for training Voyager.

Sequence length 16
Learning rate 0.001

Learning rate decay ratio 2
Embedding size for PC 64
Embedding size of page 128
Embedding size of offset 12800

Page and offset LSTM # layers 1
Page and offset LSTM # units 256

Dropout keep ratio 0.8
Batch size 256
Optimizer Adam

On example of such an insight is that by using longest matching [103] on

the address sequence, a table-based solution can approach 70-75% of the benefits

of Voyager. The advantage of table-based solution is that tables do not involve the

computational overhead of neural network that is hard to optimize. Further, we find

that the both PC-localized stream and the global stream provide useful patterns,

and as shown in Figure 4.16, performing longest matching on both address streams

(with degree 2) provide even more benefits than Voyager (with degree 1). To op-

timize the storage overhead, we have an importance observation that ignoring the

order of the longest matched patterns only hurts the IPC by 0.2% but reduces the

storage by 33.4%.

Second, there are indications that neural networks itself can be made more

computationally practical. For example, few shot learning [124] can reduce the size

of training data by 20-80×, and we estimate that hierarchical softmax [84] will

reduce both training and inference time by 3-5× by further reducing the number

73

IP
C

 im
pr

ov
em

en
ts

 o
ve

r n
o

pr
ef

et
ch

er

0.00

0.10

0.20

0.30

0.40

0.50

bfs soplex astar omnetpp average

Longest-matching Longest-matching on two sequences Voyager

Figure 4.16: Longest matching on a single sequence and two sequences (global and PC-
localized) approximate Voyager.

of classes. Related work also shows that a low-level optimized implementation of

neural networks without Tensorflow’s python interface can improve the prediction

latency by 15× in a similar setting [71].

It is also possible to train application-specific neural prefetchers offline, par-

ticularly for workloads such as Search or Ads where rule-based prefetchers are

ineffective. For example, recent work proposed an offline-trained neural network

branch predictor with OS and ISA interfaces that allow the runtime system to pass

parameters to the hardware [81].

4.5 Summary

In this section, we have created a probabilistic model of data prefetching

in terms of features and localization. We have then presented a new neural model

of data prefetching that accommodates both delta patterns and address correlation.

74

The key to accommodating address correlation is our hierarchical treatment of data

addresses: We separate the addresses into pages and offsets, and our model makes

predictions for them jointly. Our neural model shows that there is significant head-

room for data prefetchers. For a set of irregular SPEC and graph benchmarks, our

model achieves 79.6% accuracy/coverage and improves IPC over a baseline with no

prefetching by 41.6%, compared with 57.9% and 28.2%, respectively, for an ide-

alized ISB prefetcher. We also present results for two important commercial pro-

grams, Google’s Search and Ads, which until now have seen little benefit from

any data prefetcher. Voyager gets 37.8% coverage for Search (13.8% for ISB) and

57.5% for Ads (26.2% for ISB). Voyager’s success comes from its ability to use

data addresses as a feature and from its ability to use multiple localization schemes.

Work remains in further reducing the computational costs of our neural

prefetcher. And even if literal neural models remain impractical, their insights will

guide the development of practical prefetchers, in terms of features and localization

schemes.

75

Chapter 5

Hardware-Software Co-Design of Neural Accelerator
with Bayesian Optimization

Hardware/software co-design typically performed manually, but we believe

that this vast design space is best navigated by an intelligent search process. To

facilitate this automation, we need a formal representation of the design space.

5.1 A Formal Representation of Software and Hardware

This section formally defines the hardware and software design spaces.

5.1.1 Parameterizing the Design Space

Software design points can be parameterized by the loop ordering, loop

tiling, and computational parallelism of the seven-level loop nest used to compute

a convolutional layer (see Figure 5.1), as has been noted by recent work [90, 135].

These software parameters are subject to hardware constraints, such as the quantity

and layout of processing elements (PEs) and the size of storage elements.

Hardware parameters are generally more specific to the low-level resource

and memory configurations or the layout of PEs. These can be broken down into a

two broad categories:

76

f o r n i n [0 :N)
f o r k i n [0 :K)

f o r r i n [0 : R)
f o r s i n [0 : S)

f o r p i n [0 : P)
f o r q i n [0 :Q)

f o r c i n [0 : C)
o u t p u t s [n] [k] [q] [p] += w e i g h t s [k] [c] [s] [r] *

i n p u t s [n] [c] [q+s] [p+ r]

Figure 5.1: Computing a 2D convolution with a seven-level nested loop.

Resource configurations represent the physical aspects of hardware, such as

buffer sizes, tile sizes, and the cluster size of global buffers, as well as the layouts

of the PE array and of the global buffer.

Dataflow configurations represent the usage of the PE array that are imple-

mented in hardware, such as the blocking factors and degree of parallelism at the

PE level, which also determines the communication patterns among PEs.

Figure 5.2 shows two possible design points for a 1D convolution. Both

design points tile and parallelize the channel (C) dimension. To the right of each

component in the architecture is a set of loops that specifies the control logic for

the component, which can be broken down into temporal streaming (for loops)

and spatial distribution (parallel for loops). For example, in the architecture

on the left, the global buffer distributes across the PEs 1 weight from 4 separate

channels (c2), and the PEs perform all operations that the weight participates in. In

this design, all data reuse is captured within the PE, so the global buffer need not

store anything. By contrast, the architecture on the right distributes a single output

77

element across the PEs to compute partial sums, which are stored in the global

buffer across iterations. Both these design points consist of the same architectural

components, but the dataflows vary, imposing different constraints on the software.

To show the details of the parameterization of a more practical 2D convolu-

tion, Figure 5.3 shows a design point for the CONV4 layer of ResNet. The archi-

tecture components are again the same as in the 1D example, but since the memory

footprint is significantly larger, the PE can no longer capture all data reuse, so the

Global Buffer must store large portions of the inputs and outputs.

R=3 P=5
C=256 C=256

x1
x5
x5

PE

x1
x5
x5

PE

x768 (3*256)
x1792 (7*256)
x5

x1
x5
x5

PE

x1
x5
x5

PE

P+R-1=7

Weights Inputs Outputs

Global Bu�er

for(p=0; p<5; p+=1)
 out[p] += in[c0+c1+c2][p+r] *
 w[c0+c1+c2][r]

for(c1=0; c1<64; c1+=4)
 for(r=0; r<3; r+=1)
 parallel_for(c2=0; c2<4; c2+=1)

for(c0=0; c0<256; c0+=64)

c0,c1,r
c2

DRAM

c0

x3

x1
PE

x3

x768 (3*256)
x1792 (7*256)
x5

Global Bu�er

for(r=0; r<3; r+=1)
 for(c3=0; c3<4; c3+=1)
 out[p] += in[c0+c1+c2+c3][p+r] *
 w[c0+c1+c2+c3][r]

for(c1=0; c1<128; c1+=16)
 for(p=0; p<5; p+=1)
 parallel_for(c2=0; c2<16; c2+=4)

for(c0=0; c0<256; c0+=128)

c0,c1,p
c2

DRAM

c0

x3

x1
PE

x3
x3

x1
PE

x3
x3

x1
PE

x3

x5

1D Convolution

= temporal

= spatial

Figure 5.2: Two architectures computing a 1D convolution.

R=3

P=14

C=256

C=256
P+R-1=16

Weights Inputs Outputs

x9

PE

x3*3*256*256
x16*16*256
x14*14*256

Global Bu�er

for(q=0; q<14; q+=1)
 for(p=0; p<14; p+=1)
 for(s=0; s<3; s+=1)
 for(r=0; r<3; r+=1)
 for(c3=0; c3<2; c3+=1)
 out[k][q][p] += in[c0+c1+c2+c3][q+s][p+r] *
 w[k][c0+c1+c2+c3][s][r]

for(k=0; k<256; k+=1)
 for(c1=0; p<128; p+=8)
 parallel_for(c2=0; c2<8; c2+=2)

for(c0=0; c0<256; c0+=128)

c0,c1,k
c2

DRAM

c0

2D Convolution

= temporal = spatial

x9

PE

x9

PE

x9

PE

x16*16*128
x14*14*256

S=3

Q=14

K=256

1

Q+S-1=16
K=256

Figure 5.3: An architecture computing the CONV4 layer of ResNet.

78

5.1.2 Constraints in the Design Space

There are several reasons why the vast space of hardware and software pa-

rameters is filled with impractical or invalid design points. First, hardware designs

are fundamentally constrained by area (the total amount of compute and storage

resources) and factors such as available memory bandwidth. Second, the design

cost and latency of additional area grow super-linearly [105], which leads to many

impractical design points.

Software constraints are generally governed by feasibility instead of prac-

ticality and predominantly depend on the hardware configuration and the specific

neural network workload. For a specific hardware accelerator, there is a limited

number of available resources, so the software optimization problem can be viewed

as a search for the most efficient use of hardware PEs and buffers. For example,

the loop blocking optimization factors a neural network across multiple hardware

storage buffers—and the feasible factorizations are constrained by the size of the

hardware buffers.

5.2 Bayesian Optimization
5.2.1 Overview

Bayesian optimization [62, 12, 104] is an effective approach for the opti-

mization of expensive, possibly noisy black-box functions. BO has been used to

optimize hyperparameters [113], configure algorithms [45], optimize A/B experi-

ments [77], and more. For our problem, we have a parameterized representation and

access to a simulator. Since one of our main concerns is sample efficiency, Bayesian

79

optimization is particularly suitable.

The actual cost of evaluation depends on the experimental infrastructure,

but in general, it is much more expensive to evaluate a hardware design choice

than to evaluate software optimizations, because hardware design can take hours

(to produce a hardware simulator or an FPGA) to days or even months (to produce

an ASIC).

Bayesian optimization has two major components: (1) a surrogate model

provides a Bayesian posterior probability distribution that predicts potential values

of the objective function. (2) an acquisition function uses the model to identify the

next point to evaluate.

5.2.2 Gaussian processes

A common surrogate model is a Gaussian process (GP) [98] due to its sim-

plicity and flexibility. A GP is prior distribution over the space of functions com-

prised of a mean function m(x) and a covariance, or kernel function k(x,x′). Sup-

pose we are given a dataset of N input/output pairs over a bounded domain Ω with

D input dimensions and scalar outputs. For brevity, we write this as (X,y), where

X ∈ ΩN×D and y ∈ RN . The posterior predictive distribution over function values

f for a new input x is given by P (f | x, X,y) = N(µ(x), σ2(x)), where

µ(x) = KxXK
−1
XX(y −mX) +m(x),

σ2(x) = k(x,x)−KxXK
−1
XXK

>
xX .

80

Where KXX is a matrix formed by evaluating the kernel on X , KxX is the vector

of kernel evaluations between x and X , and mX is the vector of mean function

evaluations on the input dataset.

A common choice for the kernel is squared exponential. Given two input

vectors xi and xj , this is defined as k(xi,xj) = α2 exp
(
−‖xi−xj‖2

`2

)
. α and ` are

kernel hyperparameters.

Another kernel that we find particularly useful is a linear kernel on top of ex-

plicit features. Given a feature mapping φ(x) : RD → RK , the linear kernel can be

written as k(xi,xj) = φ(xi)
>φ(xj). When we have strong prior information about

the relevant feature interactions that govern the black-box function, this kernel al-

lows us to encode these interactions directly and produces a more sample-efficient

posterior estimate.

In cases where the observations from the black-box function are noisy, we

can add a noise kernel Knoise = τ 2I to KXX , where τ 2 is a hyperparameter. This

implies a Gaussian observation likelihood.

Following common practice, we use the constant mean m(x) = c ∀ x. All

kernel and mean hyperparameters are learned by maximizing the marginal likeli-

hood of the GP on the current dataset.

5.2.3 Acquisition functions

A critical component in the BO framework is the choice of acquisition func-

tion a(·) that assigns each design point a value that represents the utility of testing

81

this point. Two commonly used acquisition functions are expected improvement

(EI) and lower confidence bound (LCB).

EI computes the amount we expect to improve upon the current best ob-

served objective value y∗ ≡ max{yi}Ni=1 by evaluating a design point x. Formally,

it can be written as

aEI(x) =

∫ ∞
−∞

max(y∗ − f, 0)P (f | x, X,y)df.

where f is the latent function from the surrogate model, and y∗ is the best

value observed.

LCB [116] provides an explicit tradeoff between the predictive mean and

variance and is defined as

aLCB(x) = µ(x) + λσ(x).

Where λ represents a tradeoff parameter. A small λ promotes greater exploitation,

and a large λ promotes greater exploration. We found λ = 1 to work well in our

experiments. Beyond these, there are many other possible acquisition functions that

could be used in future exploration [122, 36, 39, 26].

5.2.4 Constraints

In our problem, the vast majority of the design space will produce invalid

solutions. When the constraints are a known function of the input features, we can

directly account for them as input constraints. Otherwise, we must run the simula-

tion and treat invalid points using an output constraint. Here, we will describe these

constraint types, and how they are incorporated into BO.

82

Input constraints are explicit constraints that are used when optimizing the

acquisition function. They directly prevent the search from suggesting points that

will violate the constraints. As some constraints are non-linear, this optimization

is itself very challenging, as it is a global optimization problem with non-convex

constraints. In the unconstrained case, maximizing the acquisition function often

takes a hybrid approach: generating a random initial set of points and refining them

by gradient ascent. Maintaining feasibility with non-convex constraints is far more

challenging, however.

We therefore optimize the acquisition function in a simple way by perform-

ing rejection sampling on the design space: we randomly sample parameters until

we obtain 150 feasible points, and then choose the one the maximizes the acqui-

sition function. On average the sampling takes 22K random samples to get a pool

of 150 feasible points. We have found that practically this is a simple yet effective

strategy for our problems, we leave more involved optimization schemes for future

work.

Output constraints are used when we do not know the form of the constraint

a-priori and must run the simulator to test feasibility. This is also referred to as an

“unknown” constraint, and BO has been adapted to incorporate a constraint model

in addition to the regression model [29]. These simultaneously learn about the con-

straint boundaries while modeling the objective.

Let C(x) denote the event that x satisfies constraint C. Constrained BO uses

a Bayesian classifier to model P (C(x)). It is relatively straightforward to adapt a

GP regressor to classification [98]. In our case, observations come in the form of

83

binary observations, 1 if the observation is feasible and 0 otherwise. A GP mod-

els this by assuming a real valued function f(x) is drawn from a GP prior, which

is then transformed through a link function (e.g., sigmoid or probit) to form a

Bernoulli probability. Inference is no longer closed-form, but can be efficiently ap-

proximated through variational inference, expectation propagation, or Monte-carlo

sampling [98].

Under a Bayesian classifier, the acquisition function a(x) is modified to

account for the probability that the constraint is satisfied, with 0 utility if it is not

satisfied.

ā(x) = E[a(x)I[C(x)]] = P (C(x))a(x).

Where I[C(x)] is the indicator function that evaluates to 1 if the constraint is sat-

isfied and 0 otherwise. We therefore maintain two models: one regression model

to capture the objective and one classifier to model the constraint in order to avoid

evaluations in infeasible regions.

5.3 Bayesian Optimization for Hardware/Software Co-design
5.3.1 Overview of Nested Hardware/Software Optimization

Provided the constraints discussed in Section 5.1 and the BO formulation

from Section 5.2, we propose a nested approach for co-optimizing hardware/soft-

ware parameters. The overall approach is outlined in Figure 5.4. The goal is to find

the optimal hardware parameters for a neural model and the optimal set of software

parameters for each layer in the neural model. Since software constraints depend on

84

a feasible hardware design, we first propose the hardware parameters, then for that

hardware co-optimize the software mapping.

Available Hardware Resources

Compute
Global

Storage
PE

PEPE

PE Global
Local

DRAM

Hardware
Optimizer

Hardware Budget
(input constraints)

Model Zoo

ResNet

Transformer

MLP

DQN
Interconnect,
etc.

...

Layerwise
Software Optimizer

Target Model
(input constraints)

Hardware

Generate Hardware
(input constraints)

1

Code

Generate a Mapping
2

Compute Cost
3

Hardware Feedback
(output constraints)

4

n layers

HW
SW

// pick a target model (e.g. ResNet) and hardware budget
target = “ResNet”
// hardware optimization loop
for i = 1 : number of hardware trials
 hardware BO optimizer generates hardware hi
 // software optimization loop
 for j = 1 : number of layers in target
 // get Layer_EDP on hi
 for k = 1 : number of software trials
 software BO optimizer generates a mapping sijk
 evaluate mapping sijk on hardware hi as
 Layer_EDP and feed back to layerwise
 software BO optimizer
 // compute Model_EDP on hi
 compute Model_EDP on hi as sunm of best layerwise EDP
 and feed back to hardware BO optimizermink j∑ (sijk)

3

4

2

1

Figure 5.4: Overview of BO-based nested search for hardware/software co-design.

Specifically, let xh and xs denote the set of hardware and software param-

eters in the parameter space to be optimized. In the nested search process, we first

use the hardware optimizer to generate a design of hardware. In particular, we per-

form the hardware search in the space of possible hardware Sh to optimize all hard-

ware parameters, where the objective is to minimize f(xh | NN) which we de-

fine as the energy-delay product (EDP) of running the neural network (NN) model

on the given hardware, assuming the optimal software mapping for each individ-

ual layer. This step produces a hardware specification and can be formalized as

argminh∈Shf(xh | NN).

For the chosen hardware design, our framework performs the software

search for each individual neural layer in its constrained software mapping space

Ss|h,NNj to optimize the mapping parameters, where NNj denotes the jth layer

in the neural network model, and the objective becomes f(xs | xh,NNj), which is

defined as the EDP of running the layer j on the fixed hardware. This step produces

85

a design point that represents the best set of software mappings for each layers on

the given hardware structure, and can be formalized as argmins∈Ss|hf(xs | xh). The

layerwise EDPs are then summed up as the EDP of the neural model, which is fed

back to the hardware optimizer to generate the next hardware setting.

The iterative search between hardware and software will repeat for a user-

defined number of trials. In this work, we set 50 for hardware search and 250 for

software search. The combination of hardware and software that achieves the best

EDP during the optimization process becomes the final model-specific hardware

structure and layer-specific software mappings. A random sample is used in the first

iteration of both the hardware and software search. In our Bayesian optimization

(BO) framework, we use separate BO models to search in the hardware and software

space. In Figure 5.5 we report the hyperparamters for BO. We now describe their

design considerations, particularly the choice of kernel and feature transformation.

number of independent trials 5 (HW), 10 (SW)

number of random data points 50 (HW), 150 (SW)

number of warmup data points 5 (HW), 30 (SW)

number of samples for EI 1000

lambda for LCB 1.0

Figure 5.5: Hyperparamters for BO.

86

5.3.2 BO for Optimizing Hardware Architectures

Kernel design. The main design choice for BO is the GP kernel to use. For the

hardware search, we choose a linear kernel on top of feature transformations that

represent the relationship between the different parameters. This feature transfor-

mation allows us to explicitly encode domain knowledge. For example, by com-

paring the layout parameters of the 2D PE array and global buffer we can obtain

the ratio between these adjacent storage layers, which correlates to the maximal

degree of parallel buffer accesses in each dimension. The details of the features are

given in Figure 5.8. We also add a noise kernel to deal with noise in the hardware

evaluation. This is because the software optimizer is not guaranteed to find the best

software mapping for each layer. There is some randomness in the software search,

and therefore independent runs of software optimization for a fixed hardware design

may yield different results.

Constraints. There are both known and unknown constraints in the hardware

search. The known constraints, such as the compute and storage budget, are treated

as input constraints that reject invalid samples. The unknown constraints have to

do with feasibility (if there exist valid software mappings of neural layers onto the

hardware, and if the valid mappings can be sampled during the software optimiza-

tion). Following Section 5.2, these constraints are treated as output constraints and

are modeled by a GP with a squared exponential kernel.

87

Type Index Hardware Parameters Valid Range Meaning

PE
H1 PE mesh-X Factors of # PEs Decide the arrangement of the 2-D

PE array.H2 PE mesh-Y Factors of # PEs

Local
buffer

H3
Input entries in Local

buffer
0 to # local buffer

entries Decide the partition of local buffer.
The partition leads to sub-buffers
with inflexible sizes. This is useful
as the latency to access each
smaller sub-buffer decreases.

H4 weights entries in Local
buffer

0 to # local buffer
entries

H5
outputs entries in Local

buffer
0 to # local buffer

entries

Global
buffer

H6 Global buffer instances Factors of #PEs Determine the arrangement of
global buffer, and its connection
between global buffer and per PE’s
local buffer (Local buffer of PEs
along the X-axis shares the
instances of global buffer along the
X-axis).

H7 Global buffer mesh-X Factors of PE-mesh-X

H8 Global buffer mesh-Y Factors of PE-mesh-Y

H9 Global buffer block size Factors of 16
Determines the width of a global
buffer entry

H10 Global buffer cluster size Factors of 16
Determines of the number of
wider structures where multiple
entries are ganged into

Dataflow
H11

Dataflow option of filter
width 1, 2

Options that determine the size of
filter width in PE’s local buffer

H12 Dataflow option of filter
height

1, 2 Options that determine the size of
filter height in PE’s local buffer

Figure 5.6: Hardware parameters.

5.3.3 BO for Optimizing Software Mappings

Kernel design. Similar to hardware optimization, we use a linear kernel and

transform the parameters to features that encode relational information. As the hard-

ware is fixed in the search of software mappings, we are able to compute features

such as buffer usage, which potentially help make the predictions more accurate.

The evaluation of a mapping on a given hardware is deterministic in our infrastruc-

ture, thus there is no need for a noise kernel in the GPs.

88

Type Hardware Constraints

PE PE mesh-X (H1) * PE mesh-Y (H2) = # PEs

Local buffer The sum of local sub-buffers (H3, H4, H5) does not exceed buffer size

Global buffer Global buffer mesh-X (H7) * global buffer mesh-Y (H8) = # Global buffer instances (9)

Local buffer & global buffer
(unknown)

A valid software mapping exists depending mainly on local buffer partition (H3, H4,
H5) and global buffer arrangement (H6, H7, H8)

Figure 5.7: Hardware constraints.

Model Feature name Description

Hardware
mesh_x_ratio The ratio of PE array and global buffer along x-axis

mesh_y_ratio The ratio of PE array and global buffer along y-axis

Software

input_buffer_usage input data size / input (local) buffer size

weight_buffer_usage weight data size / input (local) buffer size

output_buffer_usage output data size / input (local) buffer size

global_buffer_usage all data size / global buffer size

parallelism_ratio_x used parallelism / available parallelism in the x-axis of global buffer

parallelism_ratio_y used parallelism / available parallelism in the y-axis of global buffer

Figure 5.8: Extra features used by the hardware and software BO optimizers.

Constraints. As both the hardware and neural model are known during software

optimization, all constraints are known and are treated as input constraints that au-

tomatically reject invalid samples.

5.4 Evaluation
5.4.1 Methodology

Infrastructure. We conduct our evaluation on Timeloop [90], which is an open-

source infrastructure for evaluating the hardware design and software optimiza-

tion of DNN accelerators. Timeloop represents the key architecture attributes of

DNN accelerators that realize a broad space of hardware structure and topology,

which generate an accurate projection of performance and energy efficiency for

89

Type Index Software Parameters Valid Range Meaning

Loop blocking and
degree of parallelism

S1 Blocking factors of R Factors of R Determines the size
(parallelism) of each type
of data (inputs, weights

and outputs) in each
storage layer (except
those that are in the
hardware dataflow).

S2 Blocking factors of S Factors of S

S3 Blocking factors of P Factors of P

S4 Blocking factors of Q Factors of Q

S5 Blocking factors of C Factors of C

S6 Blocking factors of K Factors of K

Loop reorder

S7 Loop order in local buffer
Permutations of

non-1 factors Affects the reuse of each
type of data (inputs,

weights and outputs) in
each storage layer.

S8 Loop order in global buffer
Permutations of

non-1 factors

S9 Loop order in DRAM
Permutations of

non-1 factors

Figure 5.9: Software parameters.

DNN workloads. In the evaluation, Timeloop takes two inputs: 1) the hardware con-

figuration, which consists of the hardware-related parameters, and 2) the software

mapping, which consists of the software parameters that describe the mapping. As

most accelerators are designed for neural network inference, we limit the use case

to inference in this work and leave training for future work.

Workloads. One of the goals of the work is to demonstrate that the optimizer can

automatically co-design optimal hardware for a variety of neural network models

without human effort. Therefore, we use our BO framework to optimize critical

layers from CNNs (ResNet [34] and DQN [85]), as well as an MLP and Trans-

former [123]. In Figure 5.11 and Figure 5.12 we report the specifications of neural

models benchmarked in this work.

90

Type Software Constraints

Loop blocking and
degree of parallelism

Product of all blocking factors of R (S1) equals R of the target neural layer

Product of all blocking factors of S (S2) equals S of the target neural layer

Product of all blocking factors of P (S3) equals P of the target neural layer

Product of all blocking factors of Q (S4) equals Q of the target neural layer

Product of all blocking factors of C (S5) equals C of the target neural layer

Product of all blocking factors of K (S6) equals K of the target neural layer

Buffer capacity (local) Inputs/weights/outputs sizes (S1-S6) cannot exceed corresponding local sub-buffer capacity

Buffer capacity (global) Size of all types of data (S1-S6) does not exceed global buffer capacity

Parallelism
Product of blocking factors in global buffer X-axis (S1-S6) cannot exceed # PEs in X-axis

Product of blocking factors in global buffer (S1-S6) cannot exceed total # PEs

Figure 5.10: Software constraints.

Experimental Setup. We use Eyeriss [17], a state-of-the-art DNN accelerator,

as our baseline. All workloads are evaluated on the Eyeriss implementation with

168 PEs [17] except for the Transformer model, which runs on the larger version

of Eyeriss with 256 PEs [90]. In the software mapping search, we use Eyeriss’s

hardware specifications and search for the best software mapping for each neural

layer. In the hardware search, we perform the search under the same compute and

storage resource constraints as Eyeriss for each neural model. 1

Metrics. Hardware accelerators are designed to achieve both speed and energy

efficiency. In this work, we adopt the widely used energy-delay product (EDP) as

the objective. As the actual EDP values vary across an order of magnitude, we

normalize by dividing by the best (minimal) EDP value, and take the reciprocal

for optimization curves. For the hardware/software co-design, we report the EDP

1This work focuses on model-specific hardware, but hardware specialization provides larger ben-
efits at a finer granularity, i.e. if different layers can execute on customized hardware. We leave this
for future work.

91

Model Layers Specifications

ResNet

ResNet-K1

Filter size: 3×3
Output size: 56×56
input channel: 64
output channel: 64

Stride: 2

ResNet-K2

Filter size: 3×3
Output size: 28×28
input channel: 128
output channel: 128

Stride: 1

ResNet-K3

Filter size: 3×3
Output size: 14×14
input channel: 256
output channel: 256

Stride: 1

ResNet-K4

Filter size: 3×3
Output size: 7×7

input channel: 512
output channel: 512

Stride: 1

DQN

DQN-K1

Filter size: 8×8
Output size: 20×20
input channel: 4

output channel: 16
Stride: 4

DQN-K2

Filter size: 4×4
Output size: 9×9
input channel: 16
output channel: 32

Stride: 2

Figure 5.11: Specifications of ResNet (ResNet-18) [34] and DQN [85]

improvements of each neural model, which is averaged across all layers (see Figure

5.11 and 5.12). For software mapping optimizations, we report the layer-wise EDP

92

Model Layers Specifications

MLP
MLP-K1

din: 512
dout: 512

MLP-K2
din: 64

dout: 1024

Transformer

Transformer-K1

dmodel = 512
dv = 32
dk = 32
h = 16

Transformer-K2

dmodel = 512
dv = 64
dk = 64
h = 8

Transformer-K3

dmodel = 512
dv = 128
dk = 128
h = 4

Transformer-K4

dmodel = 512
dv = 512
dk = 512
h = 1

Figure 5.12: Specifications of MLP and Transformer [123]

improvements.

Baselines. In hardware search, we compare against constrained random search

that repeatedly takes the first random sample in the design space that satisfies the

constraints. In software search, we use both constrained random search, and out-

of-the-box BO that optimizes in a continuous parameter space and rounds to the

nearest valid parameters.

93

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(a) ResNet-K1

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(b) ResNet-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(c) ResNet-K3

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(d) ResNet-K4

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(e) DQN-K1

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(f) DQN-K2

0 200 400 600 800 1000
Number of trials

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(g) MLP-K1

0 200 400 600 800 1000
Number of trials

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(h) MLP-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(i) Transformer-K1

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(j) Transformer-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(k) Transformer-K3

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(l) Transformer-K4

Figure 5.13: Software mapping optimization on ResNet, DQN, MLP, and Transformer. The
Y-axis shows the reciprocal of energy-delay product (EDP) (normalized against the best
EDP value). Higher is better.

5.4.2 Software Mapping Optimization

We show the results of software mapping optimization first, as the capability

of finding a good mapping is the base of evaluating a hardware design. Figure 5.13
94

shows the improvements of BO over our constrained random search formulation.

Our BO formulation outperforms random search as well as a standard BO formula-

tion that treats parameters as continuous and uses a relax-and-round approach. This

result is particularly interesting when compared to using BO for hyperparameter

tuning, where out-of-the-box BO works much better in a less-constrained parame-

ter space.

0 10 20 30 40 50
Number of trials

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(a) ResNet

0 10 20 30 40 50
Number of trials

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(b) DQN

0 10 20 30 40 50
Number of trials

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(c) MLP

0 10 20 30 40 50
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(d) Transformer

Figure 5.14: Hardware/software co-optimization. The x-axis shows the number of trials for
hardware search, and 250 attempts are made to find the optimal software mapping for each
layer in the model on the hardware specification. Best viewed in color.

5.4.3 Hardware Configuration Optimization

The evaluation of hardware search also involves the search of the software

mapping. Figure 5.14 shows the optimization curves for hardware/software co-

design. The comparison of hardware search algorithms shows that BO provides

consistently better performance than the constrained random search, and the com-

parison of software search algorithms shows the importance of mapping optimiza-

tion in the co-design process. We find that the designs searched by BO achieve

significantly better EDP on all neural models compared to the state-of-the-art man-

ually designed accelerator (18.3%, 40.2%, 21.8% and 16.0% for ResNet, DQN,

MLP and Transformer respectively).

95

5.4.4 Ablations

In Figure 5.15 we compare different surrogate models and acquisition func-

tions for Bayesian optimization of the software mapping. We found Gaussian pro-

cesses with LCB to consistently outperform other alternatives.

0 200 400 600 800 1000
Number of trials

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

GP+LCB
RF+LCB
GP+EI
RF+EI
Constrained Random Search

(a) ResNet-K2

0 200 400 600 800 1000
Number of trials

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

GP+LCB
RF+LCB
GP+EI
RF+EI
Constrained Random Search

(b) ResNet-K3

0 200 400 600 800 1000
Number of trials

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

GP+LCB
RF+LCB
GP+EI
RF+EI
Constrained Random Search

(c) ResNet-K4

Figure 5.15: GP with different surrogate models and acquisition functions.

In Figure 5.16 we investigate the robustness of LCB for software optimiza-

tion using different values of λ. We found that λ = 0.1 tends to be too greedy, but

that above λ = 0.5, LCB tends to be fairly robust.

0 200 400 600 800 1000
Number of trials

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

lambda=0.1
lambda=0.5
lambda=1.0
lambda=1.5
lambda=2.0

(a) ResNet-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

lambda=0.1
lambda=0.5
lambda=1.0
lambda=1.5
lambda=2.0

(b) ResNet-K3

0 200 400 600 800 1000
Number of trials

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
ED

P
(re

cip
ro

ca
l)

lambda=0.1
lambda=0.5
lambda=1.0
lambda=1.5
lambda=2.0

(c) ResNet-K4

Figure 5.16: LCB acquisition function with different lambda values.

96

5.5 Summary

In this section, we have cast hardware/software co-design as a Bayesian

optimization problem. We have shown that standard mechanisms have difficulty

navigating the complex, highly constrained design space, so we have presented a

novel constrained formulation that allows the optimizer to efficiently identify de-

sirable points in this design space. The use of machine learning to automate hard-

ware/software co-design opens many opportunities for future work. For example,

transfer learning could dramatically reduce design time across designs and mod-

els. The techniques described here are not limited to DNN architectures, which is

significant because as we enter the golden age of computer architecture [35], it is

essential that we develop automatic mechanisms for architectural exploration that

quickly produce custom hardware accelerators.

97

Chapter 6

Conclusions

In this thesis, we have presented machine learning solutions that signifi-

cantly advance the state-of-the-art for three architectural problems, namely, cache

replacement, data prefetching and the design automation of neural network accel-

erators. For cache replacement, we have introduced the Glider replacement pol-

icy that uses a long history of past memory accesses with a simple SVM model.

For data prefetching, we have introduced Voyager, which is the first learning-based

prefetcher that combines address and delta prediction, and provides insights to prac-

tical solutions. Finally, we have introduced a Bayesian optimization framework to

automatically explore the design space of neural network accelerators. The key fea-

ture of our framework is its ability to navigate through the highly constrained space.

Prior to this thesis, the field of computer architecture has seen some suc-

cess in the use of off-the-shelf machine learning models, such as perceptron. But

while the linear perceptron model was sufficiently simple to be practically deployed

in hardware—after some hardware optimizations—the constraints of hardware pre-

diction problems prevent the direct use of more powerful learning algorithms, which

are potentially more beneficial. A unifying theme of this thesis is that our solutions

are not limited to simple machine learning algorithms in their off-the-shelf uses.

98

Instead, our solutions handle the constraints of hardware prediction problems by

innovating in the machine learning space, which provides substantial improvements

by enabling more powerful learning algorithms, such as deep learning.

Looking to the future, this thesis opens up broad research questions. First,

can our offline-to-online approach be applied to other hardware predictors beyond

cache replacement and data prefetchers? Most of the other important predictors,

such as TLB prefetching/management, DRAM scheduling, and memory disam-

biguation, are still dominated by heuristic-based solutions. We believe that our

offline-to-online approach offers exciting opportunities for future research of both

computer architecture and machine learning. Second, our Bayesian optimization

framework sheds light on significantly improving the efficiency of design explo-

ration with machine learning. Future work can apply our framework to other prob-

lems, such as routing and scheduling, or further improve on our framework in a

more realistic hardware setting (e.g. FPGA).

In summary, this thesis has shown successful applications of machine learn-

ing to three hardware prediction problems, where the unique constraints can be

effectively handled through machine learning innovations. Much of success in the

future of this area will require innovations in the machine learning space, which

provides challenging interdisciplinary research questions, as well as the potential

to make substantial benefits. We believe that our design philosophy is extensible

to many other hardware predictors and design exploration problems in computer

architecture.

99

Bibliography

[1] “The 2nd cache replacement championship,” 2017. [Online]. Available:

http://crc2.ece.tamu.edu/

[2] “NVIDIA Tesla V100 GPU Architecture, The World’s Most Advanced Data

Center GPU,” NVIDIA Corporation, 2017.

[3] J. Abella, A. González, X. Vera, and M. F. O’Boyle, “Iatac: a smart predic-

tor to turn-off l2 cache lines,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 2, no. 1, pp. 55–77, 2005.

[4] J.-L. Baer and T.-F. Chen, “Effective hardware-based data prefetching for

high-performance processors,” IEEE Transactions on Computers, vol. 44,

no. 5, pp. 609–623, May 1995.

[5] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino tempo-

ral data prefetcher,” in 2018 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA). IEEE, 2018, pp. 131–142.

[6] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad,

“Bingo spatial data prefetcher,” in 2019 IEEE International Symposium on

High Performance Computer Architecture (HPCA). IEEE, 2019, pp. 399–

411.

100

[7] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,” arXiv

preprint arXiv:1508.03619, 2015.

[8] L. A. Belady, “A study of replacement algorithms for a virtual-storage com-

puter,” IBM Systems Journal, pp. 78–101, 1966.

[9] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “Dspatch: Dual spatial

pattern prefetcher,” in Proceedings of the 52nd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture. ACM, 2019, pp. 531–544.

[10] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A. Jiménez,

“Perceptron-based prefetch filtering,” in Proceedings of the 46th Interna-

tional Symposium on Computer Architecture. ACM, 2019, pp. 1–13.

[11] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical

automatic polyhedral parallelizer and locality optimizer,” in Proceedings of

the 29th ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2008, pp. 101–113.

[12] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian optimiza-

tion of expensive cost functions, with application to active user modeling and

hierarchical reinforcement learning,” arXiv preprint arXiv:1012.2599, 2010.

[13] D. Burger, T. R. Puzak, W.-F. Lin, and S. K. Reinhardt, “Filtering superfluous

prefetches using density vectors,” in ICCD ’01: Proceedings of the Interna-

tional Conference on Computer Design: VLSI in Computers & Processors,

2001, pp. 124–133.

101

[14] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate and

complexity-effective spatial pattern prediction,” in Proceedings of the 10th

International Symposium on High Performance Computer Architecture, ser.

HPCA ’04, 2004, pp. 276–288.

[15] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin, and

A. Krishnamurthy, “Learning to optimize tensor programs,” in Advances in

Neural Information Processing Systems, 2018, pp. 3389–3400.

[16] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-

nao: A small-footprint high-throughput accelerator for ubiquitous machine-

learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284, 2014.

[17] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-

efficient dataflow for convolutional neural networks,” ACM SIGARCH Com-

puter Architecture News, vol. 44, no. 3, pp. 367–379, 2016.

[18] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accel-

erator for emerging deep neural networks on mobile devices,” IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp.

292–308, 2019.

[19] T. M. Chilimbi, “Efficient representations and abstractions for quantifying

and exploiting data reference locality,” in SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI), 2001, pp. 191–202.

102

[20] Y. Chou, “Low-cost epoch-based correlation prefetching for commercial ap-

plications,” in MICRO, 2007, pp. 301–313.

[21] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and

O. Temam, “Shidiannao: Shifting vision processing closer to the sensor,”

in Proceedings of the 42nd Annual International Symposium on Computer

Architecture (ISCA), 2015, pp. 92–104.

[22] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Vei-

denbaum, “Improving cache management policies using dynamic reuse dis-

tances,” in 45th International Symposium on Microarchitecture, ser. MICRO,

2012, pp. 389–400.

[23] P. Faldu and B. Grot, “Leeway: Addressing variability in dead-block pre-

diction for last-level caches,” in 26th International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT, 2017, pp. 180–193.

[24] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,

“Neuflow: A runtime reconfigurable dataflow processor for vision,” in Cvpr

2011 Workshops. IEEE, 2011, pp. 109–116.

[25] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “Memory-system design

considerations for dynamically-scheduled processors,” in ISCA ’97: Pro-

ceedings of the 24th Annual International Symposium on Computer Archi-

tecture, 1997, pp. 133–143.

103

[26] P. I. Frazier, “Knowledge-gradient methods for statistical learning,” Ph.D.

dissertation, Citeseer, 2009.

[27] H. Gao and C. Wilkerson, “A dueling segmented LRU replacement algorithm

with adaptive bypassing,” in JWAC 2010-1st JILP Workshop on Computer

Architecture Competitions: Cache Replacement Championship, 2010.

[28] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable

and efficient neural network acceleration with 3d memory,” in Proceedings

of the Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, 2017, pp. 751–764.

[29] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with un-

known constraints,” Uncertainty in Artificial Intelligence, 2014.

[30] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-managed

cache design,” in 27th International Symposium on Computer Architecture

(ISCA), 2000, pp. 107–116.

[31] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and

more flexible program phase analysis,” Journal of Instruction Level Paral-

lelism, vol. 7, no. 4, 2005.

[32] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding,”

arXiv preprint arXiv:1510.00149, 2015.

104

[33] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis,

and P. Ranganathan, “Learning memory access patterns,” in 35th Interna-

tional Conference on Machine Learning, ser. ICML, 2018, pp. 1924–1933.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[35] J. L. Hennessy and D. A. Patterson, “A new golden age for computer archi-

tecture,” Communications of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[36] P. Hennig and C. J. Schuler, “Entropy search for information-efficient global

optimization,” Journal of Machine Learning Research, vol. 13, no. Jun, pp.

1809–1837, 2012.

[37] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.

Archit. News, pp. 1–17, 2006.

[38] D. Hernandez and T. B. Brown, “Measuring the algorithmic efficiency of

neural networks,” 2020.

[39] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani, “Predictive

entropy search for efficient global optimization of black-box functions,” in

Advances in neural information processing systems, 2014, pp. 918–926.

[40] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural networks for

105

acoustic modeling in speech recognition,” IEEE Signal processing magazine,

vol. 29, 2012.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the memory sys-

tem: predicting and optimizing memory behavior,” in Computer Architec-

ture, 2002. Proceedings. 29th Annual International Symposium on. IEEE,

2002, pp. 209–220.

[43] Z. Hu, M. Martonosi, and S. Kaxiras, “TCP: tag correlating prefetchers,” in

HPCA, 2003, pp. 317–326.

[44] I. Hur and C. Lin, “Memory prefetching using adaptive stream detection,”

in Proceedings of the 39th International Symposium on Microarchitecture,

2006, pp. 397–408.

[45] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based op-

timization for general algorithm configuration,” in International conference

on learning and intelligent optimization. Springer, 2011, pp. 507–523.

[46] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and

K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters

and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[47] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing memory

controllers: A reinforcement learning approach,” in ACM SIGARCH Com-

106

puter Architecture News, vol. 36, no. 3. IEEE Computer Society, 2008, pp.

39–50.

[48] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for high per-

formance data cache prefetch,” in Journal of Instruction-Level Parallelism,

vol. 13, 2011, pp. 1–24.

[49] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mix-

tures of local experts.” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

[50] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved

correlated prefetching,” in 46th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), December 2013.

[51] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved

correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture. ACM, 2013, pp. 247–259.

[52] A. Jain and C. Lin, “Back to the future: leveraging belady’s algorithm for

improved cache replacement,” in 43nd Annual International Symposium on

Computer Architecture, ser. ISCA. IEEE, 2016, pp. 78–89.

[53] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate

prefetching,” in 45th Annual International Symposium on Computer Archi-

tecture (ISCA). IEEE, 2018, pp. 110–123.

[54] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmp$im: A Pin-based

on-the-fly multi-core cache simulator,” in Proceedings of the Fourth Annual

107

Workshop on Modeling, Benchmarking and Simulation (MoBS), co-located

with ISCA, 2008, pp. 28–36.

[55] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance

cache replacement using re-reference interval prediction (RRIP),” in 37th

International Symposium on Computer Architecture (ISCA). ACM, 2010,

pp. 60–71.

[56] D. A. Jiménez, “Multiperspective perceptron predictor.”

[57] D. A. Jiménez, S. W. Keckler, and C. Lin, “The impact of delay on the de-

sign of branch predictors,” in Proceedings of the 33th Annual International

Symposium on Microarchitecture, December 2000, pp. 67–76.

[58] D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,” in

Proceedings HPCA Seventh International Symposium on High-Performance

Computer Architecture. IEEE, 2001, pp. 197–206.

[59] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in 2017

50th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO). IEEE, 2017, pp. 436–448.

[60] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in 50th

Annual IEEE/ACM International Symposium on Microarchitecture, ser. MI-

CRO, 2017, pp. 436–448.

108

[61] T. L. Johnson, M. C. Merten, and W.-M. W. Hwu, “Run-time spatial locality

detection and optimization,” in Proceedings of the 30th Annual ACM/IEEE

International Symposium on Microarchitecture, 1997, pp. 57–64.

[62] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization

of expensive black-box functions,” Journal of Global optimization, vol. 13,

no. 4, pp. 455–492, 1998.

[63] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in Pro-

ceedings of the 24th Annual International Symposium on Computer Archi-

tecture, 1997, pp. 252–263.

[64] N. P. Jouppi, “Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers,” in International Sym-

posium on Computer Architecture (ISCA), 1990, pp. 364–373.

[65] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance

analysis of a tensor processing unit,” in Proceedings of the 44th Annual In-

ternational Symposium on Computer Architecture (ISCA), 2017, pp. 1–12.

[66] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to improve

disk system performance,” Computer, no. 3, pp. 38–46, 1994.

[67] S. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block prediction for

last-level caches,” in 43rd International Symposium on Microarchitecture

(MICRO), 2010, pp. 175–186.

109

[68] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algorithms,”

in International Conference on Computer Design (ICCD), 2005, pp. 61–68.

[69] C. S. Kim, “LRFU: a spectrum of policies that subsumes the least recently

used and least frequently used policies,” IEEE Transactions on Computers,

pp. 1352–1361, 2001.

[70] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neu-

rocube: A programmable digital neuromorphic architecture with high-

density 3d memory,” ACM SIGARCH Computer Architecture News, vol. 44,

no. 3, pp. 380–392, 2016.

[71] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The

case for learned index structures,” 2018. [Online]. Available: https:

//arxiv.org/abs/1712.01208

[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[73] S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches using

spatial footprints,” SIGARCH Computer Architecture News, vol. 26, no. 3,

pp. 357–368, April 1998.

[74] H. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” in Sparse Matrix

Proceedings 1978, vol. 1. Society for industrial and applied mathematics,

1979, pp. 256–282.

110

[75] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, p. 436, 2015.

[76] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim,

“On the existence of a spectrum of policies that subsumes the least recently

used (lru) and least frequently used (lfu) policies,” in ACM SIGMETRICS

Performance Evaluation Review, vol. 27, no. 1. ACM, 1999, pp. 134–143.

[77] B. Letham, B. Karrer, G. Ottoni, E. Bakshy et al., “Constrained bayesian

optimization with noisy experiments,” Bayesian Analysis, vol. 14, no. 2, pp.

495–519, 2019.

[78] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new approach

for eliminating dead blocks and increasing cache efficiency,” in 41st Interna-

tional Symposium on Microarchitecture (MICRO), 2008, pp. 222–233.

[79] J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-image co-

attention for visual question answering,” in Advances In Neural Information

Processing Systems, 2016, pp. 289–297.

[80] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches

to attention-based neural machine translation,” arXiv preprint

arXiv:1508.04025, 2015.

[81] S. Z. S. P. S. Lym and Y. N. Patt, “Branchnet: Using offline deep learning to

predict hard-to-predict branches,” 2019.

111

[82] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2016, pp.

469–480.

[83] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE,

2016, pp. 469–480.

[84] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed language

model,” in Advances in neural information processing systems, 2009, pp.

1081–1088.

[85] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv

preprint arXiv:1312.5602, 2013.

[86] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian,

“Automatically scheduling halide image processing pipelines,” ACM Trans-

actions on Graphics (TOG), vol. 35, no. 4, pp. 1–11, 2016.

[87] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, “Ac/dc: An adaptive data

cache prefetcher,” in IEEE PACT, 2004, pp. 135–145.

[88] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global history

buffer,” IEEE Micro, vol. 25, no. 1, pp. 90–97, 2005.

112

[89] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a secondary

cache replacement,” in Proceedings of the International Symposium on Com-

puter Architecture (ISCA), April 1994, pp. 24–33.

[90] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,

R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A sys-

tematic approach to dnn accelerator evaluation,” in 2019 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS).

IEEE, 2019, pp. 304–315.

[91] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,

J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for

compressed-sparse convolutional neural networks,” in Proceedings of the

44th Annual International Symposium on Computer Architecture (ISCA),

2017, pp. 27–40.

[92] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality and

context-based prefetching using reinforcement learning,” in 42nd Interna-

tional Symposium on Computer Architecture (ISCA), 2015, pp. 285–297.

[93] D. D. Penney and L. Chen, “A survey of machine learning applied to com-

puter architecture design,” arXiv preprint arXiv:1909.12373, 2019.

[94] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott, A. Jaleel,

S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox prefetching: Safe

113

run-time evaluation of aggressive prefetchers,” in High Performance Com-

puter Architecture (HPCA), 2014 IEEE 20th International Symposium on.

IEEE, 2014.

[95] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive

insertion policies for high performance caching,” in 34th International Sym-

posium on Computer Architecture (ISCA). ACM, 2007, pp. 381–391.

[96] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for MLP-

aware cache replacement,” in 33rd International Symposium on Computer

Architecture, ser. ISCA, 2006, pp. 167–178.

[97] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-

guage models are unsupervised multitask learners,” OpenAI Blog, vol. 1,

no. 8, 2019.

[98] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine

Learning. MIT Press, 2006.

[99] J. T. Robinson and M. V. Devarakonda, “Data cache management using

frequency-based replacement,” in the ACM Conference on Measurement and

Modeling Computer Systems (SIGMETRICS), 1990, pp. 134–142.

[100] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of

Brain Mechanisms. Spartan, 1962.

114

[101] S. Sair, T. Sherwood, and B. Calder, “A decoupled predictor-directed stream

prefetching architecture,” IEEE Transactions on Computers, vol. 52, no. 3,

pp. 260–276, March 2003.

[102] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-address

filter: A unified mechanism to address both cache pollution and thrashing,”

in the 21st Int’l Conference on Parallel Architectures and Compilation Tech-

niques, 2012, pp. 355–366.

[103] A. Seznec, “A 256 kbits l-tage branch predictor,” Journal of Instruction-Level

Parallelism (JILP) Special Issue: The Second Championship Branch Predic-

tion Competition (CBP-2), vol. 9, pp. 1–6, 2007.

[104] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking

the human out of the loop: A review of bayesian optimization,” Proceedings

of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[105] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,

B. Keller, A. Klinefelter, N. Pinckney, and P. Raina, “Simba: Scaling deep-

learning inference with multi-chip-module-based architecture,” in Proceed-

ings of the 52nd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), 2019.

[106] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley,

and Z. Chisthi, “Efficiently prefetching complex address patterns,” in Pro-

ceedings of the 48th International Symposium on Microarchitecture. ACM,

2015, pp. 141–152.

115

[107] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to the cache

replacement problem,” in Proceedings of the 52nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture. ACM, 2019, pp. 413–425.

[108] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin, “A

neural hierarchical sequence model for irregular data prefetching.”

[109] Z. Shi, C. Sakhuja, M. Hashemi, K. Swersky, and C. Lin, “Learned

hardware/software co-design of neural accelerators,” arXiv preprint

arXiv:2010.02075, 2020.

[110] Z. Shi, K. Swersky, D. Tarlow, P. Ranganathan, and M. Hashemi, “Learn-

ing execution through neural code fusion,” arXiv preprint arXiv:1906.07181,

2019.

[111] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: simple and effective

adaptive page replacement,” in ACM SIGMETRICS Performance Evaluation

Review, 1999, pp. 122–133.

[112] A. Smith, “Sequential program prefetching in memory hierarchies,” IEEE

Transactions on Computers, vol. 11, no. 12, pp. 7–12, December 1978.

[113] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of

machine learning algorithms,” in Advances in neural information processing

systems, 2012, pp. 2951–2959.

116

[114] Y. Solihin, J. Lee, and J. Torrellas, “Using a user-level memory thread for

correlation prefetching,” in Proceedings of the 29th Annual International

Symposium on Computer Architecture, 2002, pp. 171–182.

[115] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Spa-

tial memory streaming,” in ISCA ’06: Proceedings of the 33th Annual Inter-

national Symposium on Computer Architecture, 2006, pp. 252–263.

[116] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process

optimization in the bandit setting: No regret and experimental design,” arXiv

preprint arXiv:0912.3995, 2009.

[117] A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K. Prasanna,

“Predicting memory accesses: The road to compact ml-driven prefetcher,”

in Proceedings of the International Symposium on Memory Systems,

ser. MEMSYS ’19. New York, NY, USA: Association for Computing

Machinery, 2019, p. 461–470. [Online]. Available: https://doi.org/10.1145/

3357526.3357549

[118] R. Subramanian, Y. Smaragdakis, and G. H. Loh, “Adaptive caches: Effective

shaping of cache behavior to workloads,” in 39th International Symposium

on Microarchitecture, ser. MICRO. IEEE Computer Society, 2006, pp. 385–

396.

[119] M. Takagi and K. Hiraki, “Inter-reference gap distribution replacement: an

improved replacement algorithm for set-associative caches,” in Proceedings

117

of the 18th annual international conference on Supercomputing. ACM,

2004, pp. 20–30.

[120] S. J. Tarsa, C.-K. Lin, G. Keskin, G. Chinya, and H. Wang, “Improving

branch prediction by modeling global history with convolutional neural net-

works,” arXiv preprint arXiv:1906.09889, 2019.

[121] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse pre-

diction,” in 49th Annual IEEE/ACM International Symposium on Microar-

chitecture, ser. MICRO. IEEE, 2016, pp. 1–12.

[122] W. R. Thompson, “On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples,” Biometrika, vol. 25, no. 3/4,

pp. 285–294, 1933.

[123] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in

Neural Information Processing Systems, 2017, pp. 5998–6008.

[124] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few ex-

amples: A survey on few-shot learning,” ACM Computing Surveys (CSUR),

vol. 53, no. 3, pp. 1–34, 2020.

[125] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,

“Temporal streams in commercial server applications,” in IISWC, 2008, pp.

99–108.

118

[126] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,

“Practical off-chip meta-data for temporal memory streaming,” in 2009 IEEE

15th International Symposium on High Performance Computer Architecture.

IEEE, 2009, pp. 79–90.

[127] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,

“Practical off-chip meta-data for temporal memory streaming,” in HPCA,

2009, pp. 79–90.

[128] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra soft-

ware,” in SC’98: Proceedings of the 1998 ACM/IEEE conference on Super-

computing. IEEE, 1998, pp. 38–38.

[129] W. A. Wong and J.-L. Baer, “Modified LRU policies for improving second-

level cache behavior,” in High-Performance Computer Architecture, ser.

HPCA, 2000, pp. 49–60.

[130] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr., and

J. Emer, “SHiP: Signature-based hit predictor for high performance caching,”

in 44th IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), ser. MICRO, 2011, pp. 430–441.

[131] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr, and

J. Emer, “Ship: Signature-based hit predictor for high performance caching,”

in 44th International Symposium on Microarchitecture, ser. MICRO. ACM,

2011, pp. 430–441.

119

[132] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and J. Emer, “PAC-

Man: prefetch-aware cache management for high performance caching,” in

44th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), 2011, pp. 442–453.

[133] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin, “Tempo-

ral prefetching without the off-chip metadata,” in Proceedings of the 52nd

Annual IEEE/ACM International Symposium on Microarchitecture. ACM,

2019, pp. 996–1008.

[134] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata

management for irregular data prefetching,” in Proceedings of the 46th In-

ternational Symposium on Computer Architecture, 2019, pp. 449–461.

[135] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha,

P. Raina et al., “Interstellar: Using halide’s scheduling language to analyze

dnn accelerators,” in Proceedings of the Twenty-Fifth International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2020, pp. 369–383.

[136] V. Young, A. Jaleel, and M. Qureshi, “Ship++: Enhancing signature-based hit

predictor for improved cache performance,” in Cache Replacement Champi-

onship (CRC’17) held in Conjunction with the International Symposium on

Computer Architecture (ISCA), 2017.

[137] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and

Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in 2016

120

49th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO). IEEE, 2016, pp. 1–12.

121

Vita

Zhan Shi was born in Beijing, China on March 31, 1994. He joined the

graduate program in Computer Science at The University of Texas at Austin in

August 2017.

Permanent address: 110 Jacob Fontaine Ln, Austin, TX, 78752

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

122

