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Inefficiency in Large Networks

Fact: optimization in/of large networks is hard.
 optimal allocation of network resources
 optimal production of resources (e.g., topology)

Two reasons:
 implementation constraints: need distributed

algorithms and protocols

 economic constraints: end users non-cooperative

Consequence: optimality often unachievable.
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Optimal Protocol Design

High-level goal: identify "optimal solution" subject
to joint implementation + economic constraints.

Feasible solution: a distributed protocol meeting
the implementation constraints.

Observation: a protocol induces a game among the
end users (economic constraints).

 game depends on choice of protocol, but
underlying optimization problem does not
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Optimal Protocol Design (con'd)

Objective function: minimize worst-case efficiency
loss in game induced by protocol.

Efficiency loss: given game, optimization problem,
and equilibrium concept (e.g. Nash), can define:

(or infinity if no equilibria exist)

Price of Anarchy (POA) =
  cost(worst eq)

     cost(OPT)
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The Meta-Problem

Goal: design protocols (s.t. implementation
constraints) to minimize worst-case POA.

Why bother?:
 rigorous notion of an "optimal" protocol
 quantify trade-offs between different

objectives (e.g., fairness vs. efficiency)
 quantify trade-offs between different design

constraints (e.g., state required vs. efficiency)

6

Cost-Sharing Protocols

This talk: illustrate paradigm via design of
optimal cost-sharing protocols.
 [Chen/Roughgarden/Valiant 07]

Related work:
 coordination mechanisms for scheduling

 [Christodoulou/Koutsoupias/Nanavati ICALP 04]
 [Immorlica/Li/Mirrokni/Schulz WINE 05]
 [Azar et al 07]

 resource allocation [Johari/Tsitsiklis 07]
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A Network Formation Model

Given: G = (V,E), fixed costs ce
 k players = vertex pairs (si,ti)
 each picks an si-ti path

Cost model:
 cost of outcome = sum

of costs of edges used by
at least one player

Cost sharing: insist that this cost
is passed on to players ("budget-balance")
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Shapley Cost Sharing

Protocol design: How should
multiple players on a single
edge split costs?

Shapley cost sharing:
Players using e share costs evenly:

  ci(P) = Σ ce/ke

 players' objectives: minimize individual cost
 global objective: minimize total network cost

e є P
[Anshelevich et al FOCS 04]
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Multiple Nash Equilibria

Recall: Nash equilibrium = choice of path for
each player s.t. no profitable unilateral
deviations.

Corollary: worst-case POA of Shapley = k.
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The Optimizer's Mantra

Question #1: can we do better?
 want (much) smaller worst-case POA

Question #2: subject to what?
 i.e., what are the implementation constraints?
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In Defense of Shapley

Essential properties: (non-negotiable)
 "budget-balanced"  (total cost shares = cost)
 "separable" (cost shares defined edge-by-edge)
 pure-strategy Nash equilibria exist

Bonus good properties: (negotiable)
 "uniform" (same definition for all networks)
 "fair" (characterizes Shapley)
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Priority Protocols

Priority Cost-Sharing Protocol:
 order the players (arbitrarily)
 full cost of edge charged to its "earliest" user

Observation: always have a unique (up to ties)
Nash equilibrium.
 iterated removal of dominated strategies
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Priority Protocols

Priority Cost-Sharing Protocol:
 order the players (arbitrarily)
 full cost of edge charged to its "earliest" user

Observation: always have a unique (up to ties)
Nash equilibrium.
 iterated removal of dominated strategies

Fact: POA radically better! (in undirected graphs)
 Θ(log k) in single-sink networks [Imase/Waxman

91]
 O(log2 k) in general [Awerbuch/Azar/Bartal 96]
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Can We Do Better?

Non-Uniform Improvement: (undirected, 1 sink)
 order players via Prim's MST algorithm
 worst-case POA = 2!  [easy fact: this is best

possible]

Uniform protocols: more practical.
 Can we still get a constant worst-case POA?

Key question: what are the alternatives to the
Shapley and priority protocols?
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In Defense of Shapley (reprise)

Ambitious goal: characterize all protocols that
satisfy first 4 properties of Shapley:

 "budget-balanced"  (total cost shares = cost)
 "separable" (cost shares defined edge-by-edge)
 pure-strategy Nash equilibria exist

 "stability" --- a complex, "global" constraint

 "uniform" (same definition for all networks)
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Potential Funtions

Defn: ֊ (function from outcomes to reals) is a
potential function if for all outcomes S, players
i, and deviations by i from S:

 Δ֊ = Δci

 "tracks" deviations by players
 assures existence of a Nash eq (consider global min)
 not necessarily a natural objective function
 [Beckman/McGuire/Winsten 56], [Rosenthal 73],

[Monderer/Shapley 96]
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Potential Funtion for Shapley

Claim: every Shapley network design game has a
potential function (hence Shapley is stable).

Proof: Define  f(S) = 1+ 1/2 + 1/3 + … 1/|S|
and Ф(P1,...,Pk) = Σ ce  f(Se).   QED.
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Potential Funtion for Shapley

Claim: every Shapley network design game has a
potential function (hence Shapley is stable).

Proof: Define  f(S) = 1+ 1/2 + 1/3 + … 1/|S|
and Ф(P1,...,Pk) = Σ ce  f(Se).   QED.

Next: identify other (stable) protocols amenable
to potential function method.
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Characterization, Part I

Definition: a cost-sharing protocol is positive if it
always assigns strictly positive cost shares.
 precludes priority protocols
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Characterization, Part I

Definition: a cost-sharing protocol is positive if it
always assigns strictly positive cost shares.
 precludes priority protocols

Characterization, Part I: every stable positive
protocol is induced by a potential function.
 of the form Σ ce  f(Se) for a suitable function f
 in correspondence with interior of k-simplex
 similar but distinct from "weighted Shapley" protocol

 [Chen/Roughgarden SPAA 06]
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Concatenation

Definition: For any two cost sharing schemes ξ1
and ξ2, the concatenation of ξ1 and ξ2 is

Notes:
 If ξ1 and ξ2, are stable, then so is their

concatenation.
 Priority protocols = concatenation of 1-player

protocols.
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Characterization (final)

Theorem: a uniform cost-sharing protocol is
stable if and only if it is the concatenation
of potential-based cost-sharing protocols.
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Characterization (final)

Theorem: a uniform cost-sharing protocol is
stable if and only if it is the concatenation
of potential-based cost-sharing protocols.

Application #1: every such protocol has worst-
case POA = Ω(log k), even in single-sink
networks.

 non-trivial proof: group players according to
"weight", use one of two types of bad examples

Corollary: priority protocols are optimal!!
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Directed Graphs

Fact: every protocol (even non-uniform) has
worst-case POA = k in directed networks.

Shapley: best Nash equilibrium within Hk ≈ ln k of
optimal solution.   ("price of stability")
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Directed Graphs

Fact: every protocol (even non-uniform) has
worst-case POA = k in directed networks.

Shapley: best Nash equilibrium within Hk ≈ ln k of
optimal solution.   ("price of stability")

Application #2: every uniform and stable protocol
has POS ≥ Hk in directed networks.
 follows from "monotonicity" of stable protocols

Corollary: the Shapley protocol is optimal!!
 fairness comes for free!
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Open Questions

 quantifiable efficiency vs. fairness trade-offs
for undirected networks

 non-uniform methods in directed networks

 characterization theorem and/or lower bounds
for scheduling mechanisms

 new applications (selfish routing, queuing
disciplines, etc., etc.)


