
On Model Checking Mechanisms

Federico Mari, Igor Melatti, and Enrico Tronci

Dep. of Computer Science University of Rome “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

{mari,melatti,tronci}@di.uniroma1.it

Abstract. In this position paper we present some preliminary consid-
erations and experimental results about the design and implementation
of a model checker for mechanisms, in particular for BAR systems.

1 Introduction

Model checking has been very successful in digital hardware verification (e.g.
see [4]), protocol verification (e.g. see [13, 9]) and, more recently, in software
verification (e.g. see [6, 2]).

Systems which description involves possibly complicated arithmetical compu-
tations have also been analyzed using model checking techniques. Examples are:
hybrid systems (e.g. [11, 7, 14, 3]) as well as stochastic (hybrid) systems (e.g. [12,
8]).

Thus, investigating if model checking techniques can be used to verify mech-

anism designs appears to be a quite natural step. More specifically here we are
interested in Byzantine Altruistic Rational (BAR) systems [1].

In this position paper we will informally discuss the obstructions to be over-
come in the design and implementation of a model checker for BAR systems.
Moreover we will present some very preliminary results on experiments we car-
ried out with a prototype model checker we built for a class of BAR systems.

We assume from the reader some basic knowledge of game theory (e.g. [10])
and model checking (e.g. see [5]).

2 Model Checking Mechanisms

In this Section we will discuss some of the issues to be considered when designing
a model checker for mechanisms.

2.1 Scenario

We are given a population of nodes or agents. Agents are classified as rational,
altruistic or byzantine depending upon their possible behavior. More specifically:

– Rational agents behave in such a way as to maximize their gain.
– Altruistic agents obey to the given protocol.



2

– Byzantine agents behave arbitrarily.

Typically, it is assumed that each agent knows the system history, that is
all past actions fired by each agent. On the base of such knowledge all agents
simultaneously decide the next action.

2.2 As for the past

First of all, model checking technology rests on a notion of state. A state just
represents the system past history. Thus representing history by itself is not a
problem. However, since our systems are nonterminating ones, history will be
infinite. This leads to consider systems with an infinite number of states. This
is a problem since model checking typically works well for finite state systems.
For this reason we only consider finite state systems. This means, among other
things, that we restrict ourselves to histories of finite length.

2.3 As for the future

When an agent takes a decision it does so on the basis of the possible future

consequences of the chosen action. A protocol is a nonterminating (infinite)
game. Thus we should consider an infinite horizon, for example considering a
discounting schema for gains. Along the same line we may consider that beyond
a certain horizon gains become negligible (e.g. because of the discount rate) and
thus carry out an approximate finite horizon analysis.

2.4 About observability of actions

The fact that an agent knows all past actions of all agents means that each
agent knows the state of all other agents (as well as its own, of course). In other
words, the system state is observable for each agent. This in general may not be
true at least for two reasons. First, an agent may not be able to observe other
agents actions. Second, our finite length histories may not be long enough to
reconstruct the state of each agent.

2.5 Synchronous vs asynchronous parallelism

Essentially we can model agents (nodes) behavior in two ways: synchronous or
asynchronous. The synchronous model for parallelism is that of synchronous
digital hardware. Namely, all nodes move together. The asynchronous model for
parallelism is that of software processes, e.g. UNIX processes. Namely, exactly

one node move at each turn.
When a node moves it does not know what other nodes will do in the same

round. This appears to be easier to model by using a synchronous model for
parallelism. Thus we plan to use a synchronous approach in our modeling.



3

2.6 Communication

Since we plan to use a synchronous model for parallelism it appears to be quite
natural to use shared variables in order to model communication between nodes.
Of course, typically, this is not what happens in reality. However, buffers, com-
munications channels, etc can be easily modeled by using shared variables.

2.7 The meaning of rationality

Each rational agent will select one (or more) actions on the basis of some defini-
tion of rationality . Well know ones are: Nash equilibrium and Pareto optimality.

Depending on the situation, one notion of rationality may be better suited
than others. Thus it would be nice if a mechanism model checker could be, to
same extent, parametric with respect to a (hopefully large) class of definitions
of rationality.

3 Experimental Results

Here we show the experimental results we obtained with our approach on the
TRB (Terminating Reliable Broadcast [15]) protocol. Our modeling of TRB
relies on the following assumptions.

3.1 TRB nodes

Each node involved in TRB may be either altruistic (i.e. it follows TRB specifi-
cation), rational (i.e. it strives to maximize its utility) or byzantine (i.e. it may
deviate arbitrarily from TRB specification).

3.2 Model of parallelism

During execution, all nodes move simultaneously. Thus, a transition of the whole
system consists of a n-tuple of actions, one for each node.

3.3 Communication modeling

Communication between TRB nodes is implemented via shared variables (mail-
boxes).

3.4 Payoffs

We assume that a payoff function is defined for each action a = 〈a1, . . . , an〉 in
each possible system state s = 〈s1, . . . , sn〉. The payoff function returns a tuple g

= 〈g1, . . . , gn〉 of real numbers, where gi is the payoff of node i if action a is fired
in state s. As usual, a finite sequence a

(1), . . . , a(k) of transitions, with payoffs
g

(1), . . . , g(k), has payoff
∑k

i=1 g
(i) (where the sum, as usual, is componentwise).



4

3.5 Rationality

In order to define how rational nodes maximize their own utility, we proceed as
follows. First, we fix a rational horizon k. Then, each rationale node will compute
its set of profitable actions as follows. Let s be a system state and a be an allowed
action for node i in state s. Let P [Pa] be the set of all sequences of k consecutive
system transitions from state s [with first action a for node i]. To decide if a

is profitable, node i takes into account the payoffs of the transition sequences
in Pa and P . Namely, a will be discarded (i.e. considered not profitable) iff for
each sequence α in Pa there exists a sequence β in P such that the payoff of
α is dominated by the payoff of β. As usual, a payoff tuple g = 〈g1, . . . , gn〉 is
dominated by a payoff tuple g

′ = 〈g′1, . . . , g
′

n〉 iff for all i, gi ≤ g′i and there exists
j s.t. gj 6= g′j . In other words, each rational node will consider profitable only
actions on the Pareto surface of (the payoffs of) P .

3.6 Properties

We intend to verify the following properties.

Agreement If a non-byzantine node delivers a message m, then all non-byzantine
nodes eventually deliver m.

Termination Every non-byzantine process eventually delivers exactly one mes-
sage.

Integrity If a non-byzantine node delivers m, then the sender sent m.

Non-Triviality In periods of synchrony, if the sender is non-byzantine and
sends a message m, then the sender eventually delivers m.

3.7 Some preliminary experimental results

Tables 1, 2 show some preliminary results with horizon k set to 1. These results
were obtained on a 2GHz Pentium 4 with 512 MB.

Column TOT shows n, i.e. the number of nodes. Column A (resp., B, R)
shows the number of altruistic (resp., byzantine, rational) nodes. Column Send

(resp., Lead) shows if the sender (resp., leader) is altruistic (A), byzantine (B) or
rational (R). Column States gives the number of global states of the TRB sys-
tem. Column Time gives the CPU time (in seconds) to complete the verification
task. The remaining two columns deal with the properties to be verified. Namely,
column Expected shows the expected result for the considered properties. More
specifically, “OK” means that all four properties are expected to hold since B

≤
⌊

TOT−2
3

⌋

(see [1]). On the other hand, “Any” means that some property may

not hold, since B >
⌊

TOT−2
3

⌋

. The last column shows the verification result we



5

obtained with our approach for the considered properties. Namely, “OK” means
that all the properties hold, “NO” means that at least one property does not
hold.

Parameters Properties

TOT A R B Send Lead States Time Expected Obtained

3 1 1 1 A R 5156 1.96 Any OK

3 1 1 1 R B 6660 1.43 Any NO

3 1 1 1 R B 55126 5.83 Any NO

3 1 1 1 B A 1443 1.11 Any NO

3 1 1 1 B A 27248 3.66 Any NO

5 2 2 1 A A 16785 8.02 OK OK

5 2 2 1 A R 15588 7.36 OK OK

5 2 2 1 R R 14634 6.91 OK OK

5 2 2 1 B A 16785 8.07 OK OK

2 0 1 1 R B 730 1.09 Any OK

2 0 1 1 B R 5276 1.31 Any OK

3 0 2 1 R R 5156 1.60 Any OK

3 0 2 1 R B 21642 3.09 Any NO

3 0 2 1 R B 112876 16.04 Any NO

3 0 2 1 B R 3931 1.30 Any NO

3 0 2 1 B R 6504 1.50 Any NO

4 0 3 1 R R 11622 9.05 Any OK

4 0 3 1 B R 18273 8.68 Any NO

4 0 3 1 B R 18943 9.07 Any NO

5 0 4 1 R R 16785 93.92 OK OK

Table 1. Experimental results for TRB where Byzantine behavior is not constrained

4 Conclusions

We have shown some preliminary considerations and experimental results on
model checking mechanisms. We think our preliminary investigation shows the
following.

– Mechanism model checking can be made viable for small systems and some
suitable hypotheses on the memory of rational nodes as well on observability

of node actions.



6

Parameters Properties

TOT A R B Send Lead States Time Expected Obtained

3 1 1 1 A R 213 0.10 Any OK

3 1 1 1 R B 50 0.10 Any OK

3 1 1 1 B A 192 0.10 Any NO

3 1 1 1 B A 573 0.24 Any NO

5 2 1 2 A A 1665 1.14 Any OK

5 2 1 2 A R 1665 1.09 Any OK

5 2 1 2 R B 2148 1.42 Any OK

5 2 1 2 B B 2578 1.71 Any OK

5 1 2 2 A R 1665 1.11 Any OK

5 1 2 2 R R 1665 1.12 Any OK

5 1 2 2 R B 2148 1.27 Any OK

5 1 2 2 B B 8975 2.05 Any NO

5 2 2 1 A A 47 0.10 OK OK

5 2 2 1 A R 47 0.10 OK OK

5 2 2 1 R R 47 0.10 OK OK

5 2 2 1 R B 47 0.10 OK OK

5 2 2 1 B A 15727 5.18 OK OK

2 0 1 1 R B 43 0.10 Any OK

2 0 1 1 B R 203 0.10 Any OK

3 0 2 1 R R 213 0.10 Any OK

3 0 2 1 R B 65 0.10 Any NO

3 0 2 1 R B 66 0.10 Any NO

3 0 2 1 B R 1066 0.40 Any NO

3 0 2 1 B R 1534 0.58 Any NO

3 0 2 1 B R 8823 0.98 Any NO

4 0 3 1 R R 47 0.10 Any OK

4 0 3 1 R B 47 0.10 Any OK

4 0 3 1 R B 5803 3.67 Any NO

4 0 3 1 B R 68180 46.25 Any NO

4 0 2 2 R R 15498 3.87 Any OK

4 0 2 2 R B 1798 1.23 Any NO

4 0 2 2 R B 2046 1.28 Any NO

4 0 2 2 B R 11848 2.35 Any NO

4 0 2 2 B R 20826 3.88 Any NO

5 0 3 2 R R 1665 2.14 Any OK

5 0 3 2 R B 2148 2.47 Any OK

Table 2. Experimental results for TRB where Byzantine behavior is constrained



7

– The notion of rationality to be used during verification has to be an input
to the model checker, unless somehow it is shown that there is only one
meaningful notion of rationality for mechanisms.

– We expect that a model checker for mechanisms will mainly be useful to find
errors (bug hunting) in a mechanism rather than to prove its correctness.

Acknowledgment

We are very grateful to Lorenzo Alvisi, Allen Clement and Harry Li for very help-
ful discussions about the topics of this paper. Indeed, we are currently working all
together towards the realization of an infinite horizon mechanism model checker
based on a discounting schema for payoffs.

References

1. Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. Bar fault tolerance for cooperative services. In SOSP ’05:

Proceedings of the twentieth ACM symposium on Operating systems principles,
pages 45–58, New York, NY, USA, 2005. ACM Press.

2. Thomas Ball and Sriram K. Rajamani. The slam project: debugging system soft-
ware via static analysis. In POPL, pages 1–3, 2002.

3. Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on
uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal Methods for

the Design of Real-Time Systems, International School on Formal Methods for

the Design of Computer, Communication and Software Systems, SFM-RT 2004,

Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume 3185 of Lecture

Notes in Computer Science, pages 200–236. Springer, 2004.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

6. Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for

the Construction and Analysis of Systems, 10th International Conference, TACAS

2004, Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings,
volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

7. G. Della Penna, B. Intrigila, I. Melatti, M. Minichino, E. Ciancamerla, A. Parisse,
E. Tronci, and M. Venturini Zilli. Automatic verification of a turbogas control
system with the murϕ verifier. In Oded Maler and Amir Pnueli, editors, Hy-

brid Systems: Computation and Control, 6th International Workshop, HSCC 2003

Prague, Czech Republic, April 3-5, 2003, Proceedings, volume 2623 of Lecture Notes

in Computer Science, pages 141–155. Springer, 2003.

8. G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli. Finite
horizon analysis of markov chains with the murϕ verifier. STTT, 8(4):397–410,
2006.



8

9. David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol veri-
fication as a hardware design aid. In Proceedings of the 1991 IEEE International

Conference on Computer Design on VLSI in Computer & Processors, pages 522–
525. IEEE Computer Society, 1992.

10. D. Fudenberg and J. Tirole. Game theory. MIT Press, aug 1991.
11. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid

systems. Software Tools for Technology Transfer, 1(1):110–122, dec 1997.
12. Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism:

A tool for automatic verification of probabilistic systems. In Holger Hermanns and
Jens Palsberg, editors, Tools and Algorithms for the Construction and Analysis of

Systems, 12th International Conference, TACAS 2006 Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna,

Austria, March 25 - April 2, 2006, Proceedings, volume 3920 of Lecture Notes in

Computer Science, pages 441–444. Springer, 2006.
13. G. J. Holzmann. The SPIN model checker: Primer and reference manual. Addison

Wesley, 2004.
14. F. Mari and E. Tronci. Cegar based bounded model checking of discrete time

hybrid systems. In A. Bemporad, A. Bicchi, and G. Buttazzo, editors, Hybrid

Systems: Computation and Control, 10th International Conference, HSCC 2007,

Pisa, Italy, April 3-5, 2007, Proceedings to appear, Lecture Notes in Computer
Science. Springer, 2007.

15. J.-P. Martin, A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, and C. Porth. Bar
tolerance for cooperative services. Technical Report TR-05-10, The University of
Texas at Austin, 2005.


