
Global Predicate Detection 

and Event Ordering

Our Problem

To compute predicates
over the state of 

a distributed application

Model

Message passing

No failures

Two possible timing assumptions:
1. Synchronous System
2. Asynchronous System

No upper bound on message delivery 
time
No bound on relative process speeds
No centralized clock

Clock Synchronization

External Clock Synchronization:
keep processor clock within some maximum 

deviation from an external time source.

• can exchange of info about timing 
events of different systems

• can take actions at real-time 
deadlines

• synchronization within 0.1 ms

Internal Clock Synchronization:
keep processor clocks within some 
maximum deviation from each other.

• can measure duration of distributed 
activities that start on one process 
and terminate on another

• can totally order events that occur 
on a distributed system



Synchronizion clocks:
Take 1

Assume an upper bound max and a lower 
bound min on message delivery time

Guarantee that processes stay synchronized 
within max - min

Synchronizion clocks:
Take 1

Assume an upper bound max and a lower 
bound min on message delivery time

Guarantee that processes stay synchronized 
within max - min

Time (ms) 93.174.484.22

% of 
messagesProblem:

5000 message run
(IBM Almaden)

Clock Synchronization:
Take 2

No upper bound on message delivery time...

...but lower bound min on message delivery 
time

Use timeout maxp to detect process failures

slaves send messages to master

Master averages slaves value; computes 
fault-tolerant average

Precision: 4 maxp - min

Probabilistic Clock 
Synchronization (Cristian)

Master-Slave architecture

Master is connected to external 
time source

Slaves read master’s clock and 
adjust their own

How accurately can a slave 
read the master’s clock?



The Idea

Clock accuracy depends on message roundtrip 
time

if roundtrip is small, master and slave 
cannot have drifted by much!

Since no upper bound on message delivery, no 
certainty of accurate enough reading...

… but very accurate reading can be achieved 
by repeated attempts

Asynchronous systems

Weakest possible assumptions

cfr. “finite progress axiom”

Weak assumptions   less vulnerabilities

Asynchronous ! slow

“Interesting” model wrt failures (ah ah ah!) 

≡

Client-Server

Processes exchange messages using 
Remote Procedure Call (RPC)

A client requests a service by 
sending the server a message. 
The client blocks while waiting 

for a response

sc

Client-Server

Processes exchange messages using 
Remote Procedure Call (RPC)

The server computes the 
response (possibly asking other 
servers) and returns it to the 

client

A client requests a service by 
sending the server a message. 
The client blocks while waiting 

for a response
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Deadlock!

p2

p1

p3

Goal

Design a protocol by which a 
processor can determine whether 
a global predicate (say, deadlock) 

holds

Draw arrow from    to    if    has received 
a request but has not responded yet

Wait-For Graphs

pi pj pj Draw arrow from    to    if    has received 
a request but has not responded yet

Cycle in WFG          deadlock

Deadlock               cycle in WFG

Wait-For Graphs

⇒ ♦

⇒ ·

pi pj pj



The protocol

   sends a message to 

On receipt of   ’s message,    replies with its 
state and wait-for info

p1 . . . p3p0

p0 pi

An execution

p1p1

p2 p2p3 p3

An execution

p1p1

p2 p2p3 p3

An execution

Ghost Deadlock!

p2 p2

p1p1

p3 p3



Houston,
we have a problem...

Asynchronous system

no centralized clock, etc. etc.

Synchrony useful to

coordinate actions

order events

Mmmmhhh...

Events and Histories
Processes execute sequences of events

Events can be of 3 types: local, send, and receive

   is the i-th event of process p

The local history    of process p is the sequence 
of events executed by process p

     : prefix that contains first k events

     : initial, empty sequence

The history H is the set 

hp

h
k
p

h
0

p

e
i
p

hp0
∪ hp1

∪ . . . hpn−1

NOTE: In H, local histories are interpreted as sets, rather than sequences, of events 

Ordering events

Observation 1: 
Events in a local history are totally ordered

Observation 2: 
For every message   ,           precedes 

time
pi

time
pi

time

m receive(m)send(m)

m

pj

Happened-before
(Lamport[1978])

A binary relation    defined over events

1. if            and      , then

2. if                and                  , 
then

3. if         and           then 

→

ek
i , el

i ∈ hi k < l e
k
i → e

l
i

ei = send(m) ej = receive(m)
ei → ej

e → e
′

e
′
→ e

′′
e → e

′′



Space-Time diagrams

A graphic representation of a distributed execution
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Runs and
Consistent Runs

A run is a total ordering of the events in H 
that is consistent with the local histories of 
the processors

Ex:                 is a run

A run is consistent if the total order imposed 
in the run is an extension of the partial 
order induced by

A single distributed computation may 
correspond to several consistent runs!

h1, h2, . . . , hn

→

Cuts

A cut C is a subset of the global history of H

p1

p2

p3

C = h
c1

1
∪ h
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2
∪ . . . h
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n

A cut C is a subset of the global history of H

The frontier of C is the set of events 
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Global states and cuts

The global state of a distributed computation 
is an n-tuple of local states

To each cut           corresponds a global 
state 

Σ = (σ1, . . .σn)

(σc1

1
, . . .σ

cn

n
)

(c1 . . . cn)



Consistent cuts and 
consistent global states

A cut is consistent if

A consistent global state is one corresponding 
to a consistent cut 

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C

What    seesp0

p1

p2

p3

What    sees

Not a consistent global state: the cut contains 
the event corresponding to the receipt of the 
last message by    but not the corresponding 
send event

p0

p1

p2

p3

p3

Our task

Develop a protocol by which a processor can build 
a consistent global state

Informally, we want to be able to take a snapshot 
of the computation

Not obvious in an asynchronous system...



Our approach

Develop a simple synchronous protocol

Refine protocol as we relax assumptions 

Record:
processor states
channel states 

Assumptions:
FIFO channels
Each    timestamped with with m T (send(m))

Snapshot I

i.      selects 

ii.     sends “take a snapshot at     ” to all processes

iii. when clock of     reads       then p

a. records its local state 

b. starts recording messages received on each of incoming 

channels 

c. stops recording a channel when it receives first message 

with timestamp greater than or equal to 

p0 tss

p0 tss

tss

tss

pi

σi

Snapshot I

i.      selects 

ii.     sends “take a snapshot at     ” to all processes

iii. when clock of     reads       then p

a. records its local state 

b. sends an empty message along its outgoing channels

c. starts recording messages received on each of incoming 

channels 

d. stops recording a channel when it receives first message 

with timestamp greater than or equal to 

p0 tss

p0 tss

tss

tss

pi

σi

Correctness

Theorem     Snapshot I produces a consistent cut

< Assumption >

< Assumption >

< 0 and 1>

Proof Need to prove  

< Definition >

< Property of real time>

< 2 and 4>

< 5 and 3>

< Definition >

ej ∈ C ∧ ei → ej ⇒ ei ∈ C

2. ei → ej

1. ej ∈ C

0. ej ∈ C ≡ T (ej) < tss 3. T (ej) < tss

4. ei → ej ⇒ T (ei) < T (ej)

6. T (ei) < tss

5. T (ei) < T (ej)

7. ei ∈ C



Clock Condition

< Property of real time>

4. ei → ej ⇒ T (ei) < T (ej)

Can the Clock Condition be 
implemented some other way?

Lamport Clocks

Each process maintains a local variable

value of     for event 

LC

LC(e) ≡ LC e

e
i
p e

i+1
p

e
i
p

LC(ei
p) < LC(ei+1

p )

LC(ei
p) < LC(ej

q)
e
j
q

p

q

p

Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p ) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q ), LC(ei
p)) + 1

Timestamp    with m TS(m) = LC(send(m))

Space-Time Diagrams             
and Logical Clocks
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A subtle problem

when         do S   doesn’t make sense for Lamport 
clocks! 

there is no guarantee that     will ever be 
S is anyway executed after 

Fixes: 
if   is internal/send and                   

execute    and then S

if
put message back in channel

re-enable   ; set             ; execute S

LC

e

LC = t

LC = t

t

LC = t − 2

LC = t − 1e

e

e = receive(m) ∧ (TS(m) ≥ t) ∧ (LC ≤ t − 1)

An obvious problem

No    ! 

Choose     large enough that it cannot be reached 

by applying the update rules of logical clocks

tss

Ω

An obvious problem

No    ! 

Choose     large enough that it cannot be reached 

by applying the update rules of logical clocks

mmmmhhhh...

tss

Ω

An obvious problem

No    ! 

Choose     large enough that it cannot be reached 

by applying the update rules of logical clocks

mmmmhhhh...

Doing so assumes 
upper bound on message delivery time
upper bound relative process speeds

We better relax it...

tss

Ω



Snapshot II

processor    selects 

   sends “take a snapshot at  ” to all processes and sets 
its logical clock to 

when clock of    reads   then 
records its local state 
sends an empty message along its outgoing channels
starts recording messages received on each incoming 
channel
stops recording a channel when receives first message 
with timestamp greater than or equal to 

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi

Relaxing synchrony

Process does nothing 

for the protocol 

during this time!

pi

 take a 
snapshot at   Ω

empty message: 
TS(m) ≥ Ω

monitors
channels records 

local state σi

sends empty message: 
TS(m) ≥ Ω

Use empty message to announce snapshot!

Snapshot III

processor    sends itself “take a snapshot “

when   receives “take a snapshot” for the first time from   :
records its local state 
sends “take a snapshot” along its outgoing channels
sets channel from   to empty

starts recording messages received over each of its other incoming 
channels

when   receives “take a snapshot” beyond the first time from   :

stops recording channel from  

when   has received “take a snapshot” on all channels, it sends 
collected state to    and stops. 

p0

pi pj

σi

pkpi

pi

pj

pk

p0

Snapshots: a perspective

The global state    saved by the snapshot 
protocol is a consistent global state

Σ
s



Snapshots: a perspective

The global state    saved by the snapshot 
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred
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Snapshots: a perspective

The global state    saved by the snapshot 
protocol is a consistent global state
But did it ever occur during the computation?

a distributed computation provides only a 
partial order of events
many total orders (runs) are compatible 
with that partial order
all we know is that    could have occurred

We are evaluating predicates on states that 
may have never occurred!  
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Reachability

    is reachable from     if 
there is a path from     to 
in the lattice 
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then  
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So, why do we care 
about    again?

Deadlock is a stable property

Deadlock       Deadlock

If a run    of the snapshot protocol starts 
in    and terminates in    , then

Deadlock in    implies deadlock in 

No deadlock in    implies no deadlock in 
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