

Our Problem

To compute predicates over the state of a distributed application

Model

Message passing

No failures

- Two possible timing assumptions:
	- 1. Synchronous System
	- 2. Asynchronous System
		- No upper bound on message delivery time
		- No bound on relative process speeds D No centralized clock

Clock Synchronization

External Clock Synchronization:

keep processor clock within some maximum deviation from an external time source.

- can exchange of info about timing events of different systems
- can take actions at real-time deadlines
- synchronization within 0.1 ms

Internal Clock Synchronization:

keep processor clocks within some maximum deviation from each other.

- can measure duration of distributed activities that start on one process and terminate on another
- can totally order events that occur on a distributed system

Synchronizion clocks: Take 1

- Assume an upper bound max and a lower bound min on message delivery time
- Guarantee that processes stay synchronized within max - min

Synchronizion clocks: Take 1

- Assume an upper bound max and a lower bound min on message delivery time
- Guarantee that processes stay synchronized within max - min

Clock Synchronization: Take 2

- No upper bound on message delivery time...
- ...but lower bound min on message delivery time
- Use timeout maxp to detect process failures
- slaves send messages to master
- Master averages slaves value; computes fault-tolerant average

Precision: 4 maxp - min

Probabilistic Clock Synchronization (Cristian)

- Master-Slave architecture
- Master is connected to external time source
- Slaves read master's clock and adjust their own

How accurately can a slave read the master's clock?

The Idea

- Clock accuracy depends on message roundtrip time
	- \Box if roundtrip is small, master and slave cannot have drifted by much!
- Since no upper bound on message delivery, no certainty of accurate enough reading...
- … but very accurate reading can be achieved by repeated attempts

Asynchronous systems

- Weakest possible assumptions
	- cfr. "finite progress axiom"
- Weak assumptions \equiv less vulnerabilities
- \bullet Asynchronous \neq slow
- "Interesting" model wrt failures (ah ah ah!)

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)

c \overrightarrow{c} s

A client requests a service by sending the server a message. The client blocks while waiting for a response

Processes exchange messages using Remote Procedure Call (RPC)

A client requests a service by sending the server a message. The client blocks while waiting for a response

c

The server computes the response (possibly asking other servers) and returns it to the client

#!?%!

Goal

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds

Wait-For Graphs

 \bullet Draw arrow from p_i to p_j if p_j has received a request but has not responded yet

Wait-For Graphs

- p_i to p_j if p_j has received $\qquad \qquad \bullet$ Draw arrow from p_i to p_j if p_j has received a request but has not responded yet
	- Cycle in WFG $\;\Rightarrow$ $\;$ deadlock
	- Deadlock $\qquad \Rightarrow \Diamond \quad$ cycle in WFG

The protocol

- p_0 sends a message to $p_1 \ldots p_3$
- On receipt of p_0 's message, p_i replies with its state and wait-for info

Houston, we have a problem...

- Asynchronous system
	- \Box no centralized clock, etc. etc.
- Synchrony useful to
	- coordinate actions
	- $>$ order events
- Mmmmhhh...

Events and Histories

- Processes execute sequences of events
- Events can be of 3 types: local, send, and receive
- e_p^i is the i-th event of process p
- The local history h_p of process p is the sequence of events executed by process p
	- \boldsymbol{h}^k_p : prefix that contains first k events
	- h_p^0 : initial, empty sequence
- The history H is the set $h_{p_0}\cup h_{p_1}\cup \ldots h_{p_{n-1}}$ NOTE: In H, local histories are interpreted as sets, rather than sequences, of events

Ordering events

Observation 1:

Events in a local history are totally ordered

 $p_i \longrightarrow - \circ - \circ$

Observation 2:

 $\overline{p_i}$

 p_j .

For every message m , $send(m)$ precedes $receive(m)$

m

time

time

time

Happened-before (Lamport[1978])

A binary relation \rightarrow defined over events

- 1. if $e_i^k, e_i^l \in h_i$ and $k < l$, then $e_i^k \rightarrow e_i^l$
- 2. if $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$
- 3. if $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$

Space-Time diagrams

A graphic representation of a distributed execution

Space-Time diagrams

Space-Time diagrams

A graphic representation of a distributed execution

Space-Time diagrams A graphic representation of a distributed execution p_1

Runs and Consistent Runs

- A run is a total ordering of the events in H that is consistent with the local histories of the processors
	- Ex: h_1, h_2, \ldots, h_n is a run
- A run is consistent if the total order imposed in the run is an extension of the partial order induced by \rightarrow
- A single distributed computation may correspond to several consistent runs!

Cuts

A cut C is a subset of the global history of H $C = h_1^{c_1} \cup h_2^{c_2} \cup \ldots h_n^{c_n}$

 p_1

 p_2

 p_3

A cut C is a subset of the global history of H The frontier of C is the set of events **Cuts** p_1 p_2 p_3 $C = h_1^{c_1} \cup h_2^{c_2} \cup \ldots h_n^{c_n}$ $e_1^{c_1}, e_2^{c_2}, \ldots e_n^{c_n}$

Global states and cuts

The global state of a distributed computation is an n-tuple of local states

 $\Sigma = (\sigma_1, \ldots \sigma_n)$

To each cut $(c_1 \ldots c_n)$ corresponds a global state $(\sigma_1^{c_1}, \ldots \sigma_n^{c_n})$

Consistent cuts and consistent global states

A cut is consistent if

 $\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$

A consistent global state is one corresponding to a consistent cut

What p_0 sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event

Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
	- processor states
	- $>$ channel states

Assumptions:

- FIFO channels
- $>$ Each m timestamped with with $T(send(m))$

Snapshot I

i. p_0 selects t_{ss}

 $\mathbf{ii}. p_0$ sends "take a snapshot at t_{ss} " to all processes

- iii. when clock of p_i reads t_{ss} then p
	- a. records its local state σ_i
	- b. starts recording messages received on each of incoming channels
	- c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Snapshot I

i. p_0 selects t_{ss}

- $\mathbf{ii}. p_0$ sends "take a snapshot at t_{ss} " to all processes
- iii. when clock of p_i reads t_{ss} then p
	- a. records its local state σ_i
	- b. sends an empty message along its outgoing channels
	- c. starts recording messages received on each of incoming channels
	- d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Theorem Snapshot I produces a consistent cut

Proof Need to prove $e_j \in C \wedge e_i \rightarrow e_j \Rightarrow e_i \in C$

< Property of real time> 3. $T(e_i) < t_{ss}$

 ≤ 0 and 1 >

 ≤ 5 and 3 < Definition > 6. $T(e_i) < t_{ss}$ 7. $e_i \in C$

< Assumption >

2. $e_i \rightarrow e_j$

 \langle 2 and 4 \rangle

5. $T(e_i) < T(e_i)$

4. $e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$

< Property of real time>

Can the Clock Condition be implemented some other way?

Lamport Clocks

A subtle problem

when $LC = t$ do <code>S doesn't</code> make sense for <code>Lamport</code> clocks!

- there is no guarantee that LC will ever be t
- S is anyway executed <u>after</u> $LC = t$

Fixes:

- if e is internal/send and $LC = t 2$
	- execute e and then S
- if $e = receive(m) \land (TS(m) \ge t) \land (LC \le t 1)$
	- D put message back in channel
	- re-enable e ; set $LC = t 1$; execute S

An obvious problem

No t_{ss} !

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

An obvious problem

No t_{ss} !

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

An obvious problem

No t_{ss} !

Choose Ω large enough that it cannot be reached by applying the update rules of logical clocks

mmmmhhhh...

- Doing so assumes
	- upper bound on message delivery time
	- upper bound relative process speeds

We better relax it...

Snapshot II

processor p_0 selects Ω

- p_0 sends "take a snapshot at $\Omega ^\prime \prime$ to all processes and sets its logical clock to Ω
- when clock of p_i reads Ω then p_i
	- records its local state σ_i
	- \Box sends an empty message along its outgoing channels
	- starts recording messages received on each incoming channel
	- \Box stops recording a channel when receives first message with timestamp greater than or equal to Ω

Relaxing synchrony

Snapshot III

- processor p_0 sends itself "take a snapshot "
- when p_i receives "take a snapshot" <u>for the first time from</u> $p_j\colon$
	- records its local state σ_i
	- sends "take a snapshot" along its outgoing channels
	- sets channel from p_j to empty
	- starts recording messages received over each of its other incoming channels
- when p_i receives "take a snapshot" beyond the first time from $p_k\colon$
	- stops recording channel from p_k
- when p_i has received "take a snapshot" on all channels, it sends collected state to p_0 and stops.

Snapshots: a perspective

The global state Σ^s saved by the snapshot protocol is a consistent global state

Snapshots: a perspective

- The global state Σ^s saved by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
	- a distributed computation provides only a partial order of events
	- many total orders (runs) are compatible with that partial order
	- all we know is that Σ^s could have occurred

Snapshots: a perspective

- The global state Σ^s saved by the snapshot protocol is a consistent global state
- But did it ever occur during the computation?
	- a distributed computation provides only a partial order of events
	- many total orders (runs) are compatible with that partial order
	- all we know is that Σ^s could have occurred
- We are evaluating predicates on states that may have never occurred!

So, why do we care about Σ^s again?

Deadlock is a stable property

 $\mathsf{Deadlock} \Rightarrow \Box$ $\mathsf{Deadlock}$

If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$

So, why do we care about Σ^s again?

Deadlock is a stable property

 $\mathsf{Deadlock} \Rightarrow \Box$ $\mathsf{Deadlock}$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$
- Deadlock in Σ^s implies deadlock in Σ^f

So, why do we care about Σ^s again?

Deadlock is a stable property

 $\mathsf{Deadlock} \Rightarrow \Box$ $\mathsf{Deadlock}$

- If a run R of the snapshot protocol starts in Σ^i and terminates in Σ^f , then $\Sigma^i \leadsto_R \Sigma^f$
- Deadlock in Σ^s implies deadlock in Σ^f
- No deadlock in Σ^s implies no deadlock in Σ^i