
Implementing 
broadcast and accept

A process that wants to broadcast   , does so 
through a series of witnesses

Sends    to all 
Each correct process becomes a witness by 
relaying    to all

If a process receives enough witness confirmations, 
it accepts 
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Can we rely on 
witnesses?

Only if not too many faulty processes!

Otherwise, a set of faulty processes could fool 
a correct process by acting as witnesses of a 
message that was never broadcast

How large can be   with respect to   ?f n



Byzantine Generals

One General G, a set of Lieutenants Li

General can order Attack (A)  or Retreat (R)
General may be a traitor; so may be some of the 

Lieutenants
* * *

I. If G is trustworthy, every trustworthy Li must 
follow G’s orders

II. Every trustworthy Li must follow same battleplan



The plot thickens...
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A Lower Bound

Theorem
There is no algorithm that solves TRB for 
Byzantine failures if 
(Lamport, Shostak, and Pease,  The Byzantine Generals Problem,  
ACM TOPLAS, 4 (3), 382-401, 1982)

n ≤ 3f



Back to the protocol...
To broadcast a message in round  ,   sends              to all

A confirmation has the form 

A witness sends               if either:
it receives              from   directly or
it receives confirmations for          from at least    
processes             (at least one correct witness)

A process accepts          if it has received       
confirmations   (as many as possible…)

Protocol proceeds in rounds. Each round has 2 phases

f + 1(p, m, r)

(p, m, r) n − f

(echo, p, m, r)

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) p

pr



Implementation of 
broadcast and accept

Phase 2r - 1 
1: p sends (init,p,m,r) to all
Phase 2r
2: if q received (init,p,m,r) in phase 2r - 1 then
3: q sends (echo,p,m,r)  to all    /* q becomes a witness */
4: if q receives (echo,p,m,r) from at least n - f distinct processes in phase 2r then
5: q accepts (p,m,r)
Phase j > 2r
6: if q has received (echo,p,m,r) from at least f + 1 distinct processes in phases    
.                         then
7: q sends (echo,p,m,r) to all processes /* q becomes a witness */
8: if q has received (echo,p,m,r) from at least n - f processes in phases            
.                     then
9: q accepts (p,m,r)

Is termination a problem?

(2r, 2r + 1, . . . , j)

(2r, 2r + 1, . . . , j − 1)



The implementation 
is correct

Theorem

If        , the given implementation of 
broadcast         and accept       
satisfies Unforgeability, Correctness, and 
Relay

Assumption
Channels are authenticated

n > 3f

(p, m, r) (p, m, r)



Correctness
If  p is correct then 

p sends (init,p,m,r) to all in round r 
(phase 2r - 1)

by Validity of the underlying send and 
receive, every correct process 
receives (init,p,m,r) in phase 2r - 1

every correct process becomes a 
witness

every correct process sends (echo,p,m,r) 
in phase 2r 

since there are at least n - f correct 
processes, every correct process 
receives at least  n - f echoes in 
phase 2r

every correct process executes 
accept(p,m,r) in phase 2r (in round r)

If a correct process p 
executes broadcast(p,m,r) 
in round r, then all 
correct processes will 
execute accept(p,m,r) in 
round r



Unforgeability - 1
If a correct process q 
executes accept(p,m,r) in 
round j ≥ r, and p is correct, 
then p did in fact execute 
broadcast(p,m,r) in round r

• Suppose q executes accept(p,m,r) 
  in round j
• q received (echo,p,m,r) from at 
  least n - f distinct processes by
  phase k, where              or  
  
• Let k’ be the earliest phase in 
  which some correct process q’  
  becomes a witness to (p,m,r)

k = 2j − 1

k = 2j



Unforgeability - 1
Case 1: 

q’ received (init,p,m,r) from p
since p is correct, it follows that 
p did execute broadcast(p,m,r) in 
round r

Case 2: 
q’ has become a witness by 
receiving (echo,p,m,r) from  f + 1 
distinct processes
at most f are faulty; one is 
correct
this process was a witness to 
(p,m,r) before phase k’

CONTRADICTION
The first correct process receives 

(init,p,m,r) from p!

If a correct process q 
executes accept(p,m,r) in 
round j ≥ r, and p is correct, 
then p did in fact execute 
broadcast(p,m,r) in round r

• Suppose q executes accept(p,m,r) 
  in round j
• q received (echo,p,m,r) from at 
  least n - f distinct processes by
  phase k, where              or  
  
• Let k’ be the earliest phase in 
  which some correct process q’  
  becomes a witness to (p,m,r)

k′ = 2r − 1

k′ > 2r − 1

k = 2j − 1

k = 2j



Unforgeability -2

For   to accept, some correct process must 
become witness.
Earliest correct witness    becomes so in phase     
.      ,  and only if   did indeed executed 
broadcast
Any correct process that becomes a witness later 
can only do so if a correct process is already a 
witness.
For any correct process to become a witness,  
must have executed broadcast

q

q
′

2r − 1

p

(p, m, r)

(p, m, r)

p



Relay

If a correct process  
executes accept         in 
round      , then all 
correct processes will 
execute accept         by 
round  

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r



Relay
Suppose correct q executes accept         in 
round        (phase             or        )

  received at least                      from 
distinct processes by phase  

At least         of them are correct. 

All correct processes received               from 
at least         correct processes by phase 

From        , it follows that                 . 
Then, all correct processes become witnesses by 
phase 

All correct processes send                by  
phase .

Since there are at least n - f correct processes, 
all correct processes will accept         by 
phase         (round    or        ) 

If a correct process  
executes accept         in 
round      , then all 
correct processes will 
execute accept         by 
round  

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

n − 2f

k = 2j − 1 k = 2j

n − 2f k

k

k + 1

2j 2j + 1

(p,m, r)

k + 1

n − 2f ≥ f + 1

n − f

k

n > 3f

(p,m, r)

(echo, p,m, r)

(echo, p,m, r)

(echo, p,m, r)

q

j



Taking a step back...
Specified Consensus and TRB
In the synchronous model :

solved Consensus and TRB for General 
Omission failures
proved lower bound on rounds required by TRB
solved TRB for AFMA
proved lower bound on replication for solving 
TRB with AF
solved TRB with AF



What about the 
asynchronous model?

 Theorem
There is no deterministic protocol that solves 

Consensus in a message-passing 
asynchronous system in which at most one 
process may fail by crashing

(Fisher, Lynch, and Paterson. Impossibility of distributed 
consensus with one faulty process. JACM, Vol. 32, no. 2, 
April 1985, pp. 374-382)



The Intuition

In an asynchronous system, a process   cannot 
tell whether a non-responsive process   has 
crashed or it is just slow

If   waits, it might do so forever

If   decides, it may find out later that   came 
to a different decision

p

p

p

q

q



The Model - 1

   processes

a message buffer

message: (  , data,  ) or λ

sender receiver

null message

Message Buffer

p6

p5

p4

p3

p2

p1

pn
. . . . . . . . .

p q
n



The Model - 2

An algorithm     is a sequence of steps

Each step consists of two phases

Receive phase – some   removes from buffer 
(x,data,p) or λ

Send phase –   changes its state; adds zero or 
more messages to buffer 

   can receive λ even if there are messages for   in 
the buffer

A

p

p

p p



Assumptions

Liveness Assumption: 
Every message sent will be eventually received 
if intended receiver tries infinitely often

One-time Assumption: 
  sends    to   at most once

WLOG, process    can only propose a single bit 

p q

pi bi

m



Configurations

A configuration C of   is a pair        where:
  is a function that maps each    to its local state
M is the set of messages in the buffer

A step e ≡           is applicable to C =        if and only if 
                  Note:          is always applicable to C

C’ ≡ e(C) is the configuration resulting from applying e to C 

A

pis

(s, M)

(s, M)(p, m,A)

m ∈ M ∪ {λ} (p, λ,A)



Schedules

A schedule of   is a finite or infinite sequence of 
steps   of 

A schedule   is applicable to a configuration C if and 
only if either

  is the empty schedule        or
     is applicable to C ;
     is applicable to     (C) ;  etc.

If   is finite,   (C) is the unique configuration obtained 
by applying   to C

A

AS

S

S⊥S

S[1]

S[2] S[1]

S

S

S



Schedules and 
configurations

A configuration C’ is accessible from a 
configuration C if there exist a schedule  
such that  C’= S(C)

C’ is a configuration of S(C) if      prefix of  
such that S’(C) = C’

∃S′

S

S



Runs

A run of   is a pair <     > where
   is an initial configuration
   is an infinite schedule of    applicable to 

A run is partial if   is a finite schedule of 

The run is admissible if every process, except possibly 
one, takes infinitely many steps in

The run is unacceptable if every process, except 
possibly one, takes infinitely many steps in    without 
deciding

A

A

I, S

I

S I

AS

S

S



Structure of the proof

Show that, for any given consensus algorithm     
.  , there always exists an unacceptable run

In fact, we will show an unacceptable run in 
which no process crashes!

A



Classifying 
Configurations

0-valent: A configuration C is 0-valent if some 
process has decided 0 in C, or if all 
configurations accessible from C are 0-valent

1-valent: A configuration C is 1-valent if some 
process has decided 1 in C, or if all 
configurations accessible from C are 1-valent

Bivalent: A configuration C is bivalent if some of 
the configurations accessible from it are 0-valent 
while others are 1-valent



Bivalent initial 
configurations happen

Lemma 1  
There exists a bivalent 

initial configuration



Proof
Suppose    solves consensus with 1 crash failure

Let    be the initial configuration in which the first     ’s are 1

   is 0-valent;    is 1-valent

By contradiction, suppose no bivalent

Let   be smallest index such that    is 1-valent

Obviously,      is 0-valent

Suppose    crashes before taking any step.

Since     solves consensus even with one crash failure, there is a 
finite schedule    applicable to    that has no steps of    and 
such that some process decides in 

   is also applicable to         
CONTRADICTION
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Commutativity Lemma

Lemma 2  
Let    and    be schedules applicable to some 
configuration C, and suppose that the set of 
processes taking steps in    is disjoint from the 
set of processes taking steps in    . 

Then,        and        are both sequences 
applicable to C, and they lead to the same 
configuration.

S1

S1

S2

S1; S2 S2; S1

S2



Procrastination Lemma 

Lemma 3  
Let C be bivalent, and let e be a step applicable 
to C. 

Then, there is a (possibly empty) schedule   not 
containing e such that          is bivalente(S(C))

S



Proof Sketch - 1

By contradiction, assume 
there is an e for which 
no such   exists

Then,      is monovalent; 
WLOG assume 0-valent

Mini Lemma: 
There exists an e-free 
schedule    such that   
.            and       is    
1-valent

De

e0

1

C

    (e-free)

S0

D = S0(C) e(D)

e(C)

S

S0



Proof Sketch- 2
Proof of mini Lemma.

Since C is bivalent, there 
exists a schedule S1 such 
that             is 1-valent

e

1

Ee

C

1

S1

0

E = S1(C)

Otherwise, let    be the 
largest e-free prefix of 

S0

S1

(e-free)

0 1

S1

S0

eD
E

If    is e-free, then D = ES1

≡ D



Proof Sketch - 3
Consider configuration e(D).
By assumption, e(D) cannot be 
bivalent (otherwise we would 
have proved the Procrastination 
Lemma with S =    )
Since e(D) is monovalent, E is 
accessible from e(D), and E is 1-
valent, then e(D) is 1-valent

(e-free)

0 1

S1

S0

e

1

C

D
E

S0



Proof Sketch - 3
Consider configuration e(D).
By assumption, e(D) cannot be 
bivalent (otherwise we would 
have proved the Procrastination 
Lemma with S =    )
Since e(D) is monovalent, E is 
accessible from e(D), and E is 1-
valent, then e(D) is 1-valent

By the mini Lemma, on the “path” 
from C to D there must be two 
neighboring configurations A and 
B and a step f such that 

• B = f(A)
• e(A) is 0-valent
• e(B) is 1-valent

(e-free)

0 1

S1

S0

1

C

D
E

11
0

00

  (e-free)S0C

DB
A

0

S0

f
e

e
e

e

e
e
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0 0 0
0

1 1

Proof Sketch - 4

Claim: The same processes 
p must take steps e and f

Suppose not
By Commutativity lemma,  
e(B) = e(f(A)) = f(e(A))

Consider now A and B = f(A)

A
B D

C

f
e

e

e

e

e

e
f



0 0 0
0

1 1

Proof Sketch - 4

Claim: The same processes 
p must take steps e and f

Suppose not
By Commutativity lemma,  
e(B) = e(f(A)) = f(e(A))
Impossible since e(B) is 
1-valent and e(A) is 0-
valent

Consider now A and B = f(A)

A
B D

C

f
e

e

e

e

e

e
f



Proof Sketch - 5

Since our protocol tolerates 
a failure, there is a schedule 
ρ applicable to A such that:

R = ρ(A)
Some process decides in R
p does not take any steps in ρ

We show that the decision 
value in R can be neither 0 
nor 1!

?

A

R

ρ



Proof Sketch - 6

Cannot be 0:
Consider e(B) = e(f(A))

?

ρ

f
B

e

R

A



Proof Sketch - 6

Cannot be 0:
Consider 
By Mini Lemma, we know it is 
1-valent

e(B) = e(f(A))

?

ρ

f
B

e

1

R

A



Proof Sketch - 6

Cannot be 0:
Consider 
By Mini Lemma, we know it is 
1-valent
Because it contains no steps 
of   , ρ is applicable to 

e(B) = e(f(A))

p e(B)

?

ρ

ρ

f
B

e

1

R

A



Proof Sketch - 6

Cannot be 0:
Consider 
By Mini Lemma, we know it is 
1-valent
Because it contains no steps 
of   , ρ is applicable to 
The resulting configuration is 
1-valent

e(B) = e(f(A))

p

?

ρ

ρ

f
B

e

1

1

R

A

e(B)



Proof Sketch - 6

Cannot be 0:
Consider 
By Mini Lemma, we know it is 
1-valent
Because it contains no steps 
of   , ρ is applicable to 
The resulting configuration is 
1-valent
By Commutativity Lemma

e(B) = e(f(A))

p

?

ρ

ρ

ρ(e(f(A)))=e(f(ρ(A)))=e(f(R))

f
B

e

f

e

1

1

R

A

e(B)



Proof Sketch - 6

Cannot be 0:
Consider 
By Mini Lemma, we know it is 
1-valent
Because it contains no steps 
of   , ρ is applicable to 
The resulting configuration is 
1-valent
By Commutativity Lemma

Since          is accessible 
from R, and         is 1-valent, 
R cannot be 0-valent

e(B) = e(f(A))

p e(B)

?

ρ

ρ

ρ(e(f(A)))=e(f(ρ(A)))=e(f(R))

f

f
B

e

e

1

1

R

A

ρ(e(B))
ρ(e(B))

0



Proof Sketch - 7

Cannot be 1:
Consider 

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)e



Proof Sketch - 7

Cannot be 1:
Consider 
By construction, it is 0-valent

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)e
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Proof Sketch - 7

Cannot be 1:
Consider 
By construction, it is 0-valent
Because it contains no steps 
of   , ρ is applicable to p

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)

e(A)ρ

e

0



Proof Sketch - 7

Cannot be 1:
Consider 
By construction, it is 0-valent
Because it contains no steps 
of   , ρ is applicable to 
The resulting configuration is 
0-valent

p
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ρ

ρ
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f
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Proof Sketch - 7

Cannot be 1:
Consider 
By construction, it is 0-valent
Because it contains no steps 
of   , ρ is applicable to 
The resulting configuration is 
0-valent
By Commutativity Lemma

p

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)

e(A)

ρ(e(A))=e(ρ(A))=e(R)

ρ

e

e

0

0



Proof Sketch - 7

Cannot be 1:
Consider 
By construction, it is 0-valent
Because it contains no steps 
of   , ρ is applicable to 
The resulting configuration is 
0-valent
By Commutativity Lemma

Since          is accessible 
from R, and         is 0-valent, 
R cannot be 1-valent

p

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)

e(A)

ρ(e(A))=e(ρ(A))=e(R)

ρ(e(A))
ρ(e(A))1

ρ

e

e

0

0

Cannot decide in R: contradiction



Proving the FLP 
Impossibility Result

Theorem
There is no deterministic protocol that solves 
Consensus in a message-passing asynchronous system 
in which at most one process may fail by crashing

• By Lemma 1, there exists an initial 
  bivalent configuration 
• Consider any ordering              
  of 
• Pick any applicable step             
• Apply Procrastination lemma to obtain
  another bivalent configuration

• Pick a step                 applicable 
  to 
• Apply Procrastination lemma to 
  obtain another bivalent configuration  
• Continue as before in a round-robin 
  fashion. How do we choose a step?
• We have built an unacceptable run!

pl1 , . . . , pln

p1, . . . , pn

e1 =(pl1 , m1)

C
1

biv
=e1(S1(Ibiv))

Ibiv

e2 =(pl2 , m2)

C
1

biv



How can one get 
around FLP?
Weaken the problem

Weaken termination

use randomization to terminate with probability 1

Weaken agreement

ε - agreement
real-valued inputs and outputs
agreement within real-valued small positive tolerance ε

k-set agreement
Agreement: In any execution, there is a subset W of the set of input values, 
|W| =k, s.t. all decision values are in W
Validity: In any execution, any decision value for any process is the input value 
of some process



How can one get 
around FLP?

Constrain input values

Characterize the set of input values for which 
agreement is possible

Strengthen the system model

Introduce failure detectors to distinguish between 
crashed processes and very slow processes


