
Implementing
broadcast and accept

A process that wants to broadcast , does so
through a series of witnesses

Sends to all
Each correct process becomes a witness by
relaying to all

If a process receives enough witness confirmations,
it accepts

m

m

m

m

Can we rely on
witnesses?

Only if not too many faulty processes!

Otherwise, a set of faulty processes could fool
a correct process by acting as witnesses of a
message that was never broadcast

How large can be with respect to ?f n

Byzantine Generals

One General G, a set of Lieutenants Li

General can order Attack (A) or Retreat (R)
General may be a traitor; so may be some of the

Lieutenants
* * *

I. If G is trustworthy, every trustworthy Li must
follow G’s orders

II. Every trustworthy Li must follow same battleplan

The plot thickens...

G

L1

G

L1 L2

G

L1
L2L2

One traitor

A Lower Bound

Theorem
There is no algorithm that solves TRB for
Byzantine failures if
(Lamport, Shostak, and Pease, The Byzantine Generals Problem,
ACM TOPLAS, 4 (3), 382-401, 1982)

n ≤ 3f

Back to the protocol...
To broadcast a message in round , sends to all

A confirmation has the form

A witness sends if either:
it receives from directly or
it receives confirmations for from at least
processes (at least one correct witness)

A process accepts if it has received
confirmations (as many as possible…)

Protocol proceeds in rounds. Each round has 2 phases

f + 1(p, m, r)

(p, m, r) n − f

(echo, p, m, r)

(echo, p, m, r)

(init, p, m, r)

(init, p, m, r) p

pr

Implementation of
broadcast and accept

Phase 2r - 1
1: p sends (init,p,m,r) to all
Phase 2r
2: if q received (init,p,m,r) in phase 2r - 1 then
3: q sends (echo,p,m,r) to all /* q becomes a witness */
4: if q receives (echo,p,m,r) from at least n - f distinct processes in phase 2r then
5: q accepts (p,m,r)
Phase j > 2r
6: if q has received (echo,p,m,r) from at least f + 1 distinct processes in phases
. then
7: q sends (echo,p,m,r) to all processes /* q becomes a witness */
8: if q has received (echo,p,m,r) from at least n - f processes in phases
. then
9: q accepts (p,m,r)

Is termination a problem?

(2r, 2r + 1, . . . , j)

(2r, 2r + 1, . . . , j − 1)

The implementation
is correct

Theorem

If , the given implementation of
broadcast and accept
satisfies Unforgeability, Correctness, and
Relay

Assumption
Channels are authenticated

n > 3f

(p, m, r) (p, m, r)

Correctness
If p is correct then

p sends (init,p,m,r) to all in round r
(phase 2r - 1)

by Validity of the underlying send and
receive, every correct process
receives (init,p,m,r) in phase 2r - 1

every correct process becomes a
witness

every correct process sends (echo,p,m,r)
in phase 2r

since there are at least n - f correct
processes, every correct process
receives at least n - f echoes in
phase 2r

every correct process executes
accept(p,m,r) in phase 2r (in round r)

If a correct process p
executes broadcast(p,m,r)
in round r, then all
correct processes will
execute accept(p,m,r) in
round r

Unforgeability - 1
If a correct process q
executes accept(p,m,r) in
round j ≥ r, and p is correct,
then p did in fact execute
broadcast(p,m,r) in round r

• Suppose q executes accept(p,m,r)
 in round j
• q received (echo,p,m,r) from at
 least n - f distinct processes by
 phase k, where or

• Let k’ be the earliest phase in
 which some correct process q’
 becomes a witness to (p,m,r)

k = 2j − 1

k = 2j

Unforgeability - 1
Case 1:

q’ received (init,p,m,r) from p
since p is correct, it follows that
p did execute broadcast(p,m,r) in
round r

Case 2:
q’ has become a witness by
receiving (echo,p,m,r) from f + 1
distinct processes
at most f are faulty; one is
correct
this process was a witness to
(p,m,r) before phase k’

CONTRADICTION
The first correct process receives

(init,p,m,r) from p!

If a correct process q
executes accept(p,m,r) in
round j ≥ r, and p is correct,
then p did in fact execute
broadcast(p,m,r) in round r

• Suppose q executes accept(p,m,r)
 in round j
• q received (echo,p,m,r) from at
 least n - f distinct processes by
 phase k, where or

• Let k’ be the earliest phase in
 which some correct process q’
 becomes a witness to (p,m,r)

k′ = 2r − 1

k′ > 2r − 1

k = 2j − 1

k = 2j

Unforgeability -2

For to accept, some correct process must
become witness.
Earliest correct witness becomes so in phase
. , and only if did indeed executed
broadcast
Any correct process that becomes a witness later
can only do so if a correct process is already a
witness.
For any correct process to become a witness,
must have executed broadcast

q

q
′

2r − 1

p

(p, m, r)

(p, m, r)

p

Relay

If a correct process
executes accept in
round , then all
correct processes will
execute accept by
round

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

Relay
Suppose correct q executes accept in
round (phase or)

 received at least from
distinct processes by phase

At least of them are correct.

All correct processes received from
at least correct processes by phase

From , it follows that .
Then, all correct processes become witnesses by
phase

All correct processes send by
phase .

Since there are at least n - f correct processes,
all correct processes will accept by
phase (round or)

If a correct process
executes accept in
round , then all
correct processes will
execute accept by
round

q

(p, m, r)

j + 1

(p, m, r)

j ≥ r

n − 2f

k = 2j − 1 k = 2j

n − 2f k

k

k + 1

2j 2j + 1

(p,m, r)

k + 1

n − 2f ≥ f + 1

n − f

k

n > 3f

(p,m, r)

(echo, p,m, r)

(echo, p,m, r)

(echo, p,m, r)

q

j

Taking a step back...
Specified Consensus and TRB
In the synchronous model :

solved Consensus and TRB for General
Omission failures
proved lower bound on rounds required by TRB
solved TRB for AFMA
proved lower bound on replication for solving
TRB with AF
solved TRB with AF

What about the
asynchronous model?

 Theorem
There is no deterministic protocol that solves

Consensus in a message-passing
asynchronous system in which at most one
process may fail by crashing

(Fisher, Lynch, and Paterson. Impossibility of distributed
consensus with one faulty process. JACM, Vol. 32, no. 2,
April 1985, pp. 374-382)

The Intuition

In an asynchronous system, a process cannot
tell whether a non-responsive process has
crashed or it is just slow

If waits, it might do so forever

If decides, it may find out later that came
to a different decision

p

p

p

q

q

The Model - 1

 processes

a message buffer

message: (, data,) or λ

sender receiver

null message

Message Buffer

p6

p5

p4

p3

p2

p1

pn
.

p q
n

The Model - 2

An algorithm is a sequence of steps

Each step consists of two phases

Receive phase – some removes from buffer
(x,data,p) or λ

Send phase – changes its state; adds zero or
more messages to buffer

 can receive λ even if there are messages for in
the buffer

A

p

p

p p

Assumptions

Liveness Assumption:
Every message sent will be eventually received
if intended receiver tries infinitely often

One-time Assumption:
 sends to at most once

WLOG, process can only propose a single bit

p q

pi bi

m

Configurations

A configuration C of is a pair where:
 is a function that maps each to its local state
M is the set of messages in the buffer

A step e ≡ is applicable to C = if and only if
 Note: is always applicable to C

C’ ≡ e(C) is the configuration resulting from applying e to C

A

pis

(s, M)

(s, M)(p, m,A)

m ∈ M ∪ {λ} (p, λ,A)

Schedules

A schedule of is a finite or infinite sequence of
steps of

A schedule is applicable to a configuration C if and
only if either

 is the empty schedule or
 is applicable to C ;
 is applicable to (C) ; etc.

If is finite, (C) is the unique configuration obtained
by applying to C

A

AS

S

S⊥S

S[1]

S[2] S[1]

S

S

S

Schedules and
configurations

A configuration C’ is accessible from a
configuration C if there exist a schedule
such that C’= S(C)

C’ is a configuration of S(C) if prefix of
such that S’(C) = C’

∃S′

S

S

Runs

A run of is a pair < > where
 is an initial configuration
 is an infinite schedule of applicable to

A run is partial if is a finite schedule of

The run is admissible if every process, except possibly
one, takes infinitely many steps in

The run is unacceptable if every process, except
possibly one, takes infinitely many steps in without
deciding

A

A

I, S

I

S I

AS

S

S

Structure of the proof

Show that, for any given consensus algorithm
. , there always exists an unacceptable run

In fact, we will show an unacceptable run in
which no process crashes!

A

Classifying
Configurations

0-valent: A configuration C is 0-valent if some
process has decided 0 in C, or if all
configurations accessible from C are 0-valent

1-valent: A configuration C is 1-valent if some
process has decided 1 in C, or if all
configurations accessible from C are 1-valent

Bivalent: A configuration C is bivalent if some of
the configurations accessible from it are 0-valent
while others are 1-valent

Bivalent initial
configurations happen

Lemma 1
There exists a bivalent

initial configuration

Proof
Suppose solves consensus with 1 crash failure

Let be the initial configuration in which the first ’s are 1

 is 0-valent; is 1-valent

By contradiction, suppose no bivalent

Let be smallest index such that is 1-valent

Obviously, is 0-valent

Suppose crashes before taking any step.

Since solves consensus even with one crash failure, there is a
finite schedule applicable to that has no steps of and
such that some process decides in

 is also applicable to
CONTRADICTION

A

Ij

Ik

Ik−1

S(Ik)

InI0

bi

pk

j

k

A

S Ik pk

Ik−1S

Commutativity Lemma

Lemma 2
Let and be schedules applicable to some
configuration C, and suppose that the set of
processes taking steps in is disjoint from the
set of processes taking steps in .

Then, and are both sequences
applicable to C, and they lead to the same
configuration.

S1

S1

S2

S1; S2 S2; S1

S2

Procrastination Lemma

Lemma 3
Let C be bivalent, and let e be a step applicable
to C.

Then, there is a (possibly empty) schedule not
containing e such that is bivalente(S(C))

S

Proof Sketch - 1

By contradiction, assume
there is an e for which
no such exists

Then, is monovalent;
WLOG assume 0-valent

Mini Lemma:
There exists an e-free
schedule such that
. and is
1-valent

De

e0

1

C

 (e-free)

S0

D = S0(C) e(D)

e(C)

S

S0

Proof Sketch- 2
Proof of mini Lemma.

Since C is bivalent, there
exists a schedule S1 such
that is 1-valent

e

1

Ee

C

1

S1

0

E = S1(C)

Otherwise, let be the
largest e-free prefix of

S0

S1

(e-free)

0 1

S1

S0

eD
E

If is e-free, then D = ES1

≡ D

Proof Sketch - 3
Consider configuration e(D).
By assumption, e(D) cannot be
bivalent (otherwise we would
have proved the Procrastination
Lemma with S =)
Since e(D) is monovalent, E is
accessible from e(D), and E is 1-
valent, then e(D) is 1-valent

(e-free)

0 1

S1

S0

e

1

C

D
E

S0

Proof Sketch - 3
Consider configuration e(D).
By assumption, e(D) cannot be
bivalent (otherwise we would
have proved the Procrastination
Lemma with S =)
Since e(D) is monovalent, E is
accessible from e(D), and E is 1-
valent, then e(D) is 1-valent

By the mini Lemma, on the “path”
from C to D there must be two
neighboring configurations A and
B and a step f such that

• B = f(A)
• e(A) is 0-valent
• e(B) is 1-valent

(e-free)

0 1

S1

S0

1

C

D
E

11
0

00

 (e-free)S0C

DB
A

0

S0

f
e

e
e

e

e
e

e

0 0 0
0

1 1

Proof Sketch - 4

Claim: The same processes
p must take steps e and f

Suppose not
By Commutativity lemma,
e(B) = e(f(A)) = f(e(A))

Consider now A and B = f(A)

A
B D

C

f
e

e

e

e

e

e
f

0 0 0
0

1 1

Proof Sketch - 4

Claim: The same processes
p must take steps e and f

Suppose not
By Commutativity lemma,
e(B) = e(f(A)) = f(e(A))
Impossible since e(B) is
1-valent and e(A) is 0-
valent

Consider now A and B = f(A)

A
B D

C

f
e

e

e

e

e

e
f

Proof Sketch - 5

Since our protocol tolerates
a failure, there is a schedule
ρ applicable to A such that:

R = ρ(A)
Some process decides in R
p does not take any steps in ρ

We show that the decision
value in R can be neither 0
nor 1!

?

A

R

ρ

Proof Sketch - 6

Cannot be 0:
Consider e(B) = e(f(A))

?

ρ

f
B

e

R

A

Proof Sketch - 6

Cannot be 0:
Consider
By Mini Lemma, we know it is
1-valent

e(B) = e(f(A))

?

ρ

f
B

e

1

R

A

Proof Sketch - 6

Cannot be 0:
Consider
By Mini Lemma, we know it is
1-valent
Because it contains no steps
of , ρ is applicable to

e(B) = e(f(A))

p e(B)

?

ρ

ρ

f
B

e

1

R

A

Proof Sketch - 6

Cannot be 0:
Consider
By Mini Lemma, we know it is
1-valent
Because it contains no steps
of , ρ is applicable to
The resulting configuration is
1-valent

e(B) = e(f(A))

p

?

ρ

ρ

f
B

e

1

1

R

A

e(B)

Proof Sketch - 6

Cannot be 0:
Consider
By Mini Lemma, we know it is
1-valent
Because it contains no steps
of , ρ is applicable to
The resulting configuration is
1-valent
By Commutativity Lemma

e(B) = e(f(A))

p

?

ρ

ρ

ρ(e(f(A)))=e(f(ρ(A)))=e(f(R))

f
B

e

f

e

1

1

R

A

e(B)

Proof Sketch - 6

Cannot be 0:
Consider
By Mini Lemma, we know it is
1-valent
Because it contains no steps
of , ρ is applicable to
The resulting configuration is
1-valent
By Commutativity Lemma

Since is accessible
from R, and is 1-valent,
R cannot be 0-valent

e(B) = e(f(A))

p e(B)

?

ρ

ρ

ρ(e(f(A)))=e(f(ρ(A)))=e(f(R))

f

f
B

e

e

1

1

R

A

ρ(e(B))
ρ(e(B))

0

Proof Sketch - 7

Cannot be 1:
Consider

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)e

Proof Sketch - 7

Cannot be 1:
Consider
By construction, it is 0-valent

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)e

0

Proof Sketch - 7

Cannot be 1:
Consider
By construction, it is 0-valent
Because it contains no steps
of , ρ is applicable to p

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)

e(A)ρ

e

0

Proof Sketch - 7

Cannot be 1:
Consider
By construction, it is 0-valent
Because it contains no steps
of , ρ is applicable to
The resulting configuration is
0-valent

p

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)

e(A)ρ

e

0

0

Proof Sketch - 7

Cannot be 1:
Consider
By construction, it is 0-valent
Because it contains no steps
of , ρ is applicable to
The resulting configuration is
0-valent
By Commutativity Lemma

p

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)

e(A)

ρ(e(A))=e(ρ(A))=e(R)

ρ

e

e

0

0

Proof Sketch - 7

Cannot be 1:
Consider
By construction, it is 0-valent
Because it contains no steps
of , ρ is applicable to
The resulting configuration is
0-valent
By Commutativity Lemma

Since is accessible
from R, and is 0-valent,
R cannot be 1-valent

p

?

ρ

ρ

f

f
B

e

e

1

1

R

A

0

e(A)

e(A)

ρ(e(A))=e(ρ(A))=e(R)

ρ(e(A))
ρ(e(A))1

ρ

e

e

0

0

Cannot decide in R: contradiction

Proving the FLP
Impossibility Result

Theorem
There is no deterministic protocol that solves
Consensus in a message-passing asynchronous system
in which at most one process may fail by crashing

• By Lemma 1, there exists an initial
 bivalent configuration
• Consider any ordering
 of
• Pick any applicable step
• Apply Procrastination lemma to obtain
 another bivalent configuration

• Pick a step applicable
 to
• Apply Procrastination lemma to
 obtain another bivalent configuration
• Continue as before in a round-robin
 fashion. How do we choose a step?
• We have built an unacceptable run!

pl1 , . . . , pln

p1, . . . , pn

e1 =(pl1 , m1)

C
1

biv
=e1(S1(Ibiv))

Ibiv

e2 =(pl2 , m2)

C
1

biv

How can one get
around FLP?
Weaken the problem

Weaken termination

use randomization to terminate with probability 1

Weaken agreement

ε - agreement
real-valued inputs and outputs
agreement within real-valued small positive tolerance ε

k-set agreement
Agreement: In any execution, there is a subset W of the set of input values,
|W| =k, s.t. all decision values are in W
Validity: In any execution, any decision value for any process is the input value
of some process

How can one get
around FLP?

Constrain input values

Characterize the set of input values for which
agreement is possible

Strengthen the system model

Introduce failure detectors to distinguish between
crashed processes and very slow processes

