Do we have a quorum?

Quorum Systems

Given a set U of servers, |U| = n: A quorum system is a set $\mathcal{Q} \subseteq 2^U$ such that

 $\forall Q_1, Q_2 \in \mathcal{Q} : Q_1 \cap Q_2 \neq \emptyset$

Each Q in $\mathcal Q$ is a quorum

How quorum systems work: A read/write shared register

store at each server a (v,ts) pair

Write(x,d)

- Ask servers in some Q for ts
- Set ts_c > max({ts} \cup any previous ts_c)
- Update some Q' with (d, ts_c)

How quorum systems work: A read/write shared register

store at each server a (v,ts) pair

Write(x,d)

- Ask servers in some Q for ts
- Set ts_c > max({ts} \cup any previous ts_c)
- Update some Q' with (d, ts_C)

Read(x)

- Ask servers in some Q for (v, ts)
- Select most recent (v,ts)

How quorum systems work: A read/write shared register

store at each server a (v,ts) pair

Write(x,d)

- Ask servers in some Q for ts
- Set ts_c > max({ts} \cup any previous ts_c)
- Update some Q' with (d, ts_C)

Read(x)

- Ask servers in some Q for (v, ts)
- Select most recent (v,ts)

time

 $1 \quad r$

 $2 \frac{r}{r}$

 $w_2(6)$

 r_{3}

r

 $w_1(5)$

Safe:

A read not concurrent with any write returns the most recently written value

Regular:

Safe + a read that overlaps with a write obtains either the old or the new value

& Atomic:

time

 $1 \quad r$

 $2 \frac{r}{r}$

 $w_2(6)$

 r_{3}

r

 $w_1(5)$

Safe:

A read not concurrent with any write returns the most recently written value

Regular:

Safe + a read that overlaps with a write obtains either the old or the new value

& Atomic:

Safe:

A read not concurrent with any write returns the most recently written value

Regular:

Safe + a read that overlaps with a write obtains either the old or the new value

& Atomic:

Safe:

A read not concurrent with any write returns the most recently written value

\odot

Safe + a read that overlaps with a write obtains either the old or the new value

& Atomic:

Safe:

A read not concurrent with any write returns the most recently written value

\odot

Safe + a read that overlaps with a write obtains either the old or the new value

& Atomic:

Safe:

A read not concurrent with any write returns the most recently written value

Regular:

Safe + a read that overlaps with a write obtains either the old or the new value

& Atomic:

System Model

- Universe U of servers, |U| = n
- Byzantine faulty servers

modeled as a non-empty fail-prone system $\mathcal{B} \subseteq \mathsf{2^U}$ no $B\in\mathcal{B}$ is contained in another some $B\in\mathcal{B}$ contains all faulty servers Clients are correct (can be weakened) Point-to-point authenticated and reliable channels

> A correct process q receives a message from another correct process p if and only if p sent it

Masking Quorum System [Malkhi and Reiter, 1998]

A quorum system $\mathcal Q$ is a masking quorum system for a fail-prone system $\mathcal B$ if the following properties hold:

M-Consistency M-Availability $\forall Q_1, Q_2 \in \mathcal{Q} \ \forall B_1, B_2 \in \mathcal{B} : (Q_1 \cap Q_2) \setminus B_1 \not\subseteq B_2$ $\forall B \in \mathcal{B} \; \exists Q \in \mathcal{Q} : B \cap Q = \emptyset$

Dissemination Quorum System

A masking quorum system for self-verifying data client can detect modification by faulty server

D-Consistency D-Availability $\forall Q_1, Q_2 \in \mathcal{Q} \ \forall B \in \mathcal{B} : (Q_1 \cap Q_2) \not\subseteq B$ $\forall B \in \mathcal{B} \; \exists Q \in \mathcal{Q} : B \cap Q = \emptyset$

f-threshold Masking Quorum Systems

M-Consistency D-Consistency $\forall Q_1, Q_2 \in \mathcal{Q}: |Q_1 \cap Q_2| \geq 2f + 1$ $\forall Q_1, Q_2 \in \mathcal{Q}: |Q_1 \cap Q_2| \geq f + 1$

M-Availability D-Availability $|Q| \leq n - f$ $|Q| \leq n - f$

 $\mathcal Q$, we can also a set of $\mathcal Q$ $\mathcal{Q} =$ \int $Q \subseteq U : |Q| =$ $\lceil n+2f+1 \rceil$ 2 #\$ ^Q ⁼ ! $Q \subseteq U : |Q| =$ $\lceil n + f + 1 \rceil$ 2 $B = \{B \subseteq U : |B| = f\}$

D-Consistency
 $\geq 2f + 1$ $\forall Q_1, Q_2 \in \mathcal{Q} : |Q_1 \cap Q_2| \geq f + 1$

D-Availability
 $|Q| \leq n - f$
 \mathcal{Q}
 $2f + 1$) $n \hspace{0.5cm}$ $n \ge 4f + 1$ $n \ge 3f + 1$

A safe read/write protocol

Client c executes:

Write(d)

 \rightarrow Ask all servers for their current timestamp t

- ← Wait for answer from |Q| different servers Set ts_c > max($\{t\}$ \cup any previous ts_c)
- \rightarrow Send (d, ts_c) to all servers
- ← Wait for |Q| acknowledgments

Read()

 \rightarrow Ask all servers for latest value/timestamp pair

← Wait for answer from |Q| different servers

verifiable

Select most recent (v,ts) for which at least fridly answers agree (if any)

Reconfigurable quorums

Design a Byzantine data service that monitors environment uses statistical techniques to estimate number of faulty servers adjusts its tolerance capabilities accordingly: □ fault-tolerance threshold changes within [f_{min}... fmax] range - very efficient when no or few failures - can cope with new faults as they occur \Box does not require read/write operations to block provides strong semantics guarantees

Managing the threshold

Keep threshold value in a variable T Refine assumption on failures:

> For any operation o, number of failures never exceeds f, the minimum of:

- a) value of T before o
- b) any value written to T concurrently with o.

Which threshold value should we use to read T ? Update T by writing to an announce set

A set of servers whose intersection with every quorum (as defined by f in [f_{min}...f_{max}]) contains sufficiently many correct servers to allow client to determine T's value unambiguously.

The announce set

Intersects all quorums in at least $2f_{max} + 1$ servers \odot Conservative announce set size: $n-f_{max}$ \circledcirc $n+2f_{min}+1$ $\frac{m n}{2}$ + (n – f_{max}) – n $\geq 2f_{max}$ + 1 Hence: $n \geq 6f_{max} - 2f_{min} + 1$

Updating T

Client c (with current threshold f) executes:

Write(d)

- \rightarrow Ask all servers for their current timestamp t
- ← Wait for answer from |Q| different servers Set ts_c > max({t} \cup any previous ts_c)
- \rightarrow Send (d, ts_c) to all servers
- ← Wait for |Q| acknowledgements

Read()

- \rightarrow Ask all servers for latest value/timestamp pair
- ← Wait for answer from |Q| different servers Select most recent (v,ts) for which at least f + 1 answers agree (if any)

Updating T

Client c (with current threshold f) executes:

Write(d)

- \rightarrow Ask all servers for their current timestamp t
- ← Wait for answer from $\frac{1}{2}$ different servers an announce set Set ts_c > max({t} \cup any previous ts_c)
- \rightarrow Send (d, ts_c) to all servers
- ← Wait for $\left\langle \mathbf{Q} \right\rangle$ acknowledgments from an announce set

Read()

- \rightarrow Ask all servers for latest value/timestamp pair
- ← Wait for answer from |Q| different servers Select most recent (v,ts) for which at least f + 1 answers agree (if any)

Updating T

Client c (with current threshold f) executes:

Write(d)

- \rightarrow Ask all servers for their current timestamp t
- ← Wait for answer from tal-different servers an announce set Set ts_c > max({t} \cup any previous ts_c)
- \rightarrow Send (d, ts_c) to all servers
- ← Wait for (Q) acknowledgments from an announce set

Read()

- \rightarrow Ask all servers for latest value/timestamp pair
- \leftarrow Wait for answer from $|Q_{min}|$ different servers Select most recent (v,ts) for which at least $f_{max} + 1$ answers agree (if any)

 \bullet

announce set $= 14$ $f_{min} = 1$ $f_{max} = 3$ $n = 17$ $Q_{min} = 10$

Initially, $T = 1$

announce set = 14 $\boxed{f_{min}=1}$ $\boxed{f_{max}=3}$ $n = 17$ $Q_{min} = 10$

Threshold write: T = 2

announce set $= 14$ $f_{min} = 1$ $f_{max} = 3$ $n = 17$ $Q_{min} = 10$

While a client is performing a threshold write to set $T = 3...$

announce set = 14 $f_{min} = 1$ $f_{max} = 3$ $n = 17$ $Q_{min} = 10$

…another client tries to read T

Countermanding

(v,ts) is countermanded if at least $f_{max}+1$ servers return a timestamp greater than ts

Write(f)

- \rightarrow Ask all servers for their current timestamp t
- ← Wait for answer from an announce set Set ts_c > max({t} \cup any previous ts_c)
- \rightarrow Send (d, ts_c) to all servers
- ← Wait for acknowledgements from an announce set

Read()

- \rightarrow Ask all servers for latest value/timestamp pair
- ← Wait for answer from |Q_{min}| different servers
	- Select most recent (v,ts) for which at least f_{max} + 1 answers agree (if any)

not countermanded

Minimizing quorum size

Who cares? Machines are cheap…

But achieving independent failures is expensive! Independently failing hardware Independently failing software Independent implementations of server Independent implementation of underlying OS \Box Independent versions to maintain

A simple observation

Client c (with current threshold f) executes:

Write(d)

- \rightarrow Ask all servers for their current timestamp t
- ← Wait for answer from |Q| different servers Set ts_c > max({t} \cup any previous ts_c)
- \rightarrow Send (d, ts_c) to all servers
- ← Wait for 2 / acknowledgements

Read()

- \rightarrow Ask all servers for latest value/timestamp pair
- ← Wait for answer from |Q| different servers Select most recent (v, ts) for which at least $f + 1$ answers agree (if any)

(Asynchronous) Authenticated Reliable channels

A correct process q receives a message from another correct process p if and only if p sent it

A-Masking Quorum Systems

A quorum system Q is an a-masking quorum system for a fail-prone system B if the following properties hold for Q_r and Q_w :

AM-Consistency AM-Availability $\forall Q_r \in \mathcal{Q}_r \ \forall Q_w \in \mathcal{Q}_w \ \forall B_1, B_2 \in \mathcal{B}$ $(Q_r \cap Q_w) \setminus B_1 \not\subseteq B_2$:

 $\forall B \in \mathcal{B} \ \exists Q_r \in \mathcal{Q}_r : B \cap Q_r = \emptyset$

Tradeoffs

Tradeoffs

Lower bound: never two rows again!

The intuition

Trade replication in space for replication in time

Traditional: 4f+1 servers

V

Now: 3f+1 servers

The intuition

Trade replication in space for replication in time

Traditional: 4f+1 servers

V

Now: 3f+1 servers

The intuition

Trade replication in space for replication in time

Traditional: 4f+1 servers

V

Now: 3f+1 servers

Both cases: wait until 4th server receives write

The protocol

Client c executes:

Write(d)

- \rightarrow Ask all servers for their current timestamp t
- \leftarrow Wait for answer from $|Q_w|$ different servers \blacksquare Set ts_c > max($\{t\}$ ∪ any previous ts_c)
- \rightarrow Send (d,ts) to all servers
- \leftarrow Wait for $|Q_w|$ acknowledgments

Read()

 \rightarrow send read-start to server set Q_r repeat

 \leftarrow receive a reply (D, ts) from s in Q_r

set answer[s,ts] := D

- until some A in answer[][] is vouched for by $\left|Q_w\right|$ servers

 \rightarrow send read-stop to Q_r return A

The Slim-Fast version

1. Whenever c gets first message from a server, it computes

T = {largest f+1 timestamps from distinct servers}

2. (D,ts) from answer[s][] is discarded unless either a) ts \in T or b) ts is the latest timestamp received from s

The Goodies

Theorem

The protocol guarantees atomic semantics

Proof: Safety

Lemma 1: If it is live, it is atomic

- b) After c reads ts1, no later read returns earlier ts a) After write of ts1, no read returns earlier ts
	- Suppose write for ts1 has completed
	- $\bullet \left\lceil \frac{n+f+1}{2} \right\rceil$ servers acked the write 2 "
	- At least $\left\lceil \frac{n-f+1}{2} \right\rceil$ are correct 2 1
	- Remaining $\left\lceil \frac{n+f-1}{2} \right\rceil$ servers < 2 $\big]$ servers < $|Q_w|$
- \bullet c reads ts $_{1} \rightarrow \left\lceil \frac{n+f+1}{2} \right\rceil$ servers say ts $_{1}$ 2 "
- At least $\left\lceil \frac{n-f+1}{n}\right\rceil$ are correct 2 "
- Remaining $\left\lceil \frac{n+f-1}{2}\right\rceil$ servers < 2 $\big\}$ servers < $|Q_w|$
- Any read that starts after ts1 returns $ts \geq ts_1$

Proof: Liveness

Lemma 2: Every operation eventually terminates

WRITE: trivial, because only waits for $\left|Q_w\right| < n-f$ Read:

- Consider T after c gets first message from last server.
- **EXAM** Let t_{max} be the largest timestamp from a correct server in T.
- ϵ A client never removes t_{max} from its answers[s][], for a correct s
- Eventually, all correct servers see a write with ts = t_{max} and echo client Since $|Q_r|=\left\lceil \frac{n+3f+1}{2}\right\rceil$, $|Q_w|\leq |Q_r|-f$ and the read terminates 2 "