
Do we have a quorum?

Quorum Systems

Given a set U of servers, |U| = n:

A quorum system is a set

such that

Each in is a quorum

∀Q1, Q2 ∈ Q : Q1 ∩ Q2 $= ∅

Q ⊆ 2
U

QQ

How quorum systems work:
A read/write shared register

store at each server
a (v,ts) pair

X

Write(x,d)
• Ask servers in some Q for ts
• Set tsc > max({ts}∪any previous tsc)
• Update some Q’ with (d,tsc)

How quorum systems work:
A read/write shared register

store at each server
a (v,ts) pair

X

Write(x,d)
• Ask servers in some Q for ts
• Set tsc > max({ts}∪any previous tsc)
• Update some Q’ with (d,tsc)

Read(x)
• Ask servers in some Q for (v,ts)
• Select most recent (v,ts)

How quorum systems work:
A read/write shared register

store at each server
a (v,ts) pair

X

Write(x,d)
• Ask servers in some Q for ts
• Set tsc > max({ts}∪any previous tsc)
• Update some Q’ with (d,tsc)

Read(x)
• Ask servers in some Q for (v,ts)
• Select most recent (v,ts)

What semantics?

Safe:

A read not concurrent with any write
returns the most recently written value

Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

Atomic:

Reads and writes are totally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

time

r1 r2 r3

w1(5) w2(6)

What semantics?

Safe:

A read not concurrent with any write
returns the most recently written value

Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

Atomic:

Reads and writes are totally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

time

r1 r2 r3

w1(5) w2(6)

What semantics?

Safe:

A read not concurrent with any write
returns the most recently written value

Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

Atomic:

Reads and writes are totally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

time

r1(5) r2(?)

w1(5)

r3(?)

w2(6)

What semantics?

Safe:

A read not concurrent with any write
returns the most recently written value

Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

Atomic:

Reads and writes are totally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

time

r1 r2 r3

w1(5) w2(6)

What semantics?

Safe:

A read not concurrent with any write
returns the most recently written value

Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

Atomic:

Reads and writes are totally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

time

r1(5) r2(5)

w1(5)

r3(5)

w2(6)

r2(5)

r2(6)

r2(6)

r2(6)

r2(6)

r2(5)

What semantics?

Safe:

A read not concurrent with any write
returns the most recently written value

Regular:

Safe + a read that overlaps with a
write obtains either the old or the new
value

Atomic:

Reads and writes are totally ordered so
that values returned by reads are the
same as if the operations had been
performed with no overlapping

time

r1(5) r2(5)

w1(5)

r3(5)

w2(6)

r2(5)

r2(6)

r2(6)

r2(6)

r2(6)

r2(5)

System Model

Universe U of servers, |U| = n
Byzantine faulty servers

modeled as a non-empty fail-prone system ⊆ 2U

no is contained in another
some contains all faulty servers

Clients are correct (can be weakened)
Point-to-point authenticated and reliable channels

A correct process q receives a message from
another correct process p if and only if p sent it

B ∈ B

B ∈ B

B

Masking Quorum System
[Malkhi and Reiter, 1998]

A quorum system is a masking quorum
system for a fail-prone system if the

following properties hold:

M-Consistency

M-Availability

∀Q1, Q2 ∈ Q ∀B1, B2 ∈ B : (Q1 ∩ Q2) \ B1 $⊆ B2

Q

B

∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

Dissemination
Quorum System

A masking quorum system for
self-verifying data

client can detect modification by faulty server

D-Consistency

D-Availability

∀Q1, Q2 ∈ Q ∀B ∈ B : (Q1 ∩ Q2) $⊆ B

∀B ∈ B ∃Q ∈ Q : B ∩ Q = ∅

f-threshold
Masking Quorum Systems

M-Consistency D-Consistency

∀Q1, Q2 ∈ Q : |Q1 ∩ Q2| ≥ f + 1∀Q1, Q2 ∈ Q : |Q1 ∩ Q2| ≥ 2f + 1

M-Availability D-Availability

|Q| ≤ n − f |Q| ≤ n − f

QQ

Q =

{
Q ⊆ U : |Q| =

⌈
n + 2f + 1

2

⌉}
Q =

{
Q ⊆ U : |Q| =

⌈
n + f + 1

2

⌉}

B = {B ⊆ U : |B| = f}

n n

n ≥ 4f + 1 n ≥ 3f + 1

Client c executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from |Q| different servers

Set tsc > max({t} ∪ any previous tsc)

→ Send (d,tsc) to all servers

← Wait for |Q| acknowledgments

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Q| different servers
 Select most recent (v,ts) for which at least f + 1 answers agree (if any)

A safe read/write protocol

verifiable

Reconfigurable quorums

Design a Byzantine data service that
monitors environment

uses statistical techniques to estimate number
of faulty servers

adjusts its tolerance capabilities accordingly:
fault-tolerance threshold changes within [fmin…
fmax] range

very efficient when no or few failures
can cope with new faults as they occur

does not require read/write operations to block
provides strong semantics guarantees

Managing the threshold
Keep threshold value in a variable T
Refine assumption on failures:

For any operation o, number of failures never exceeds f, the
minimum of:

a) value of T before o
b) any value written to T concurrently with o.

Which threshold value should we use to read T ?
Update T by writing to an announce set

A set of servers whose intersection with every quorum (as
defined by f in [fmin…fmax]) contains sufficiently many correct
servers to allow client to determine T’s value unambiguously.

The announce set

Intersects all quorums in at least servers

Conservative announce set size:

Hence:

n − fmax

2fmax + 1

n + 2fmin + 1

2
+ (n − fmax) − n ≥ 2fmax + 1

n ≥ 6fmax − 2fmin + 1

Updating T

Client c (with current threshold f) executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from |Q| different servers

Set tsc > max({t} ∪ any previous tsc)

→ Send (d,tsc) to all servers

← Wait for |Q| acknowledgements

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Q| different servers
 Select most recent (v,ts) for which at least f + 1 answers agree (if any)

Updating T

Client c (with current threshold f) executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from |Q| different servers an announce set

Set tsc > max({t} ∪ any previous tsc)

→ Send (d,tsc) to all servers

← Wait for |Q| acknowledgments from an announce set

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Q| different servers
 Select most recent (v,ts) for which at least f + 1 answers agree (if any)

Updating T

Client c (with current threshold f) executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from |Q| different servers an announce set

Set tsc > max({t} ∪ any previous tsc)

→ Send (d,tsc) to all servers

← Wait for |Q| acknowledgments from an announce set

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Qmin| different servers
 Select most recent (v,ts) for which at least fmax + 1 answers agree (if any)

A problem

announce set = 14

fmin = 1 fmax = 3

n = 17 Qmin = 10

Initially, T = 1

A problem

Threshold write: T = 2

announce set = 14

fmin = 1 fmax = 3

n = 17 Qmin = 10

A problem

While a client is performing a threshold
write to set T = 3…

announce set = 14

fmin = 1 fmax = 3

n = 17 Qmin = 10

A problem

…another client tries to read T

announce set = 14

fmin = 1 fmax = 3

n = 17 Qmin = 10

Countermanding
(v,ts) is countermanded if at least fmax+1 servers return a
timestamp greater than ts

Write(f)
→ Ask all servers for their current timestamp t
← Wait for answer from an announce set
 Set tsc > max({t}∪ any previous tsc)

→ Send (d,tsc) to all servers

← Wait for acknowledgements from an announce set

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Qmin| different servers

 Select most recent (v,ts) for which at least fmax+ 1 answers agree (if any)

not countermanded

Minimizing quorum size

Who cares? Machines are cheap…

But achieving independent failures is expensive!
Independently failing hardware
Independently failing software

Independent implementations of server
Independent implementation of
underlying OS
Independent versions to maintain

A simple observation

Client c (with current threshold f) executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from |Q| different servers

Set tsc > max({t} ∪ any previous tsc)

→ Send (d,tsc) to all servers

← Wait for |Q| acknowledgements

Read()
→ Ask all servers for latest value/timestamp pair
← Wait for answer from |Q| different servers
 Select most recent (v,ts) for which at least f + 1 answers
......agree (if any)

(Asynchronous)
Authenticated

Reliable channels

A correct process q
receives a message

from another correct
process p if and only

if p sent it

A-Masking
Quorum Systems

AM-Consistency

AM-Availability

A quorum system Q is an a-masking quorum system for a
fail-prone system B if the following properties hold for

Qr and Qw:

∀B ∈ B ∃Qr ∈ Qr : B ∩ Qr = ∅

∀Qr ∈ Qr ∀Qw ∈ Qw ∀B1, B2 ∈ B

(Qr ∩ Qw) \ B1 "⊆ B2 :

Tradeoffs

best known n confirmable non-confirmable

self-verifying 3f+1 2f+1

generic 4f+1 3f+1

Tradeoffs

Lower bound: never two rows again!

best known n confirmable non-confirmable

self-verifying
and generic 3f+1 2f+1

The intuition

Trade replication in space for replication in time

Traditional: 4f+1 servers

VVV
?X

Now: 3f+1 servers

X
V V ?

V

The intuition

Trade replication in space for replication in time

Traditional: 4f+1 servers

VVV
?X

Now: 3f+1 servers

X
V V ?

V

The intuition

Trade replication in space for replication in time

Traditional: 4f+1 servers

VVV
?X

Now: 3f+1 servers

X
V V V

Both cases: wait until 4th server receives write

V

The protocol
Client c executes:

Write(d)
→ Ask all servers for their current timestamp t
← Wait for answer from different servers

 Set tsc > max({t} ∪ any previous tsc)
→ Send (d,ts) to all servers
← Wait for acknowledgments

Read()
→ send read-start to server set
 repeat
 ← receive a reply (D, ts) from s in

 set answer[s,ts] := D
 until some A in answer[][] is vouched for by servers

→ send read-stop to
 return A

|Qw| |Qr|⌈
n + f + 1

2

⌉⌈
n + 3f + 1

2

⌉

Qr

|Qw|

Qr

Qr

|Qw|

|Qw|

The Slim-Fast version

1. Whenever c gets first message from a server, it
computes
 T = {largest f+1 timestamps from distinct servers}

2. (D,ts) from answer[s][] is discarded unless either
a) ts T or
b) ts is the latest timestamp received from s

∈

The Goodies

Theorem

The protocol guarantees
atomic semantics

b) After c reads ts1, no later read
returns earlier ts

• c reads ts1 servers say ts1

• At least are correct

• Remaining servers <

• Any read that starts after ts1 returns

ts ≥ ts1

Proof: Safety

Lemma 1: If it is live, it is atomic

a) After write of ts1, no read
returns earlier ts

• Suppose write for ts1 has completed

• servers acked the write

• At least are correct

• Remaining servers <

⌈
n+f+1

2

⌉
⌈

n−f+1

2

⌉
⌈

n+f−1

2

⌉
|Qw|

⌈
n+f+1

2

⌉
⌈

n−f+1

2

⌉
⌈

n+f−1

2

⌉
|Qw|

Proof: Liveness

Write: trivial, because only waits for

Read:
Consider T after c gets first message from last server.

Let tmax be the largest timestamp from a correct server in T.

A client never removes tmax from its answers[s][], for a correct s

Eventually, all correct servers see a write with ts = tmax and echo client

Since , and the read terminates

Lemma 2: Every operation eventually terminates

|Qw| < n − f

|Qw| ≤ |Qr|− f|Qr| =

⌈
n+3f+1

2

⌉

