Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation. (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

Observations: a few observations

 An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

 An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

 An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

 An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order

Observations: a few observations

 An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order What about consistent runs?

Causal delivery

FIFO delivery guarantees:

 $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal delivery

FIFO delivery guarantees:

 $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal delivery generalizes FIFO: $send_i(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal delivery

FIFO delivery guarantees:

 $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal delivery generalizes FIFO:

 $send_i(m) \to send_k(m') \Rightarrow deliver_j(m) \to deliver_j(m')$

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_0 delivers all received messages with timestamp up to $t - \Delta$ in increasing timestamp order

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \xrightarrow{1} 4$ Should p_0 deliver?

Problem: Lamport Clocks don't provide gap detection

Given two events e and e' and their clock values LC(e) and LC(e') – where LC(e) < LC(e')determine whether some event e'' exists s.t. LC(e) < LC(e'') < LC(e')

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message \overline{m} received by p is stable at p if pwill never receive a future message m' s.t. TS(m') < TS(m)

Implementing Stability

• Real-time clocks \Box wait for Δ time units

Implementing Stability

- Real-time clocks
 - \square wait for \triangle time units
- Lamport clocks
 - \square wait on each channel for m s.t. TS(m) > LC(e)
- Ø Design better clocks!

Clocks and STRONG Clocks

We want new clocks that implement the strong clock condition:

 $e \to e' \equiv SC(e) < SC(e')$

Causal Histories

Causal Histories

The causal history of an event e in (H,→) is the set
 $θ(e) = \{e' ∈ H | e' → e\} ∪ \{e\}$

Causal Histories • The causal history of an event e in (H, \rightarrow) is the set

How to build $\theta(e)$

Each process p_i :

- \square initializes θ : $\theta := \emptyset$
- $\label{eq:expansion} \begin{array}{c} \square \mbox{ if } e^k_i \mbox{ is an internal or send event, then} \\ \theta(e) := \{e^k_i\} \cup \theta(e^{k-1}_i) \end{array}$
- □ if e_i^k is a receive event for message m, then $\theta(e) := \{e_i^k\} \cup \theta(e_i^{k-1}) \cup \theta(send(m))$

Pruning causal histories

 Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)

 \odot Use a more clever way to encode $\theta(e)$

Vector Clocks

- ${\it extbf{o}}$ Consider $\overline{ heta_i(e)}$, the projection of $\overline{ heta(e)}$ on p_i
- ${\it otar } \ \theta_i(e)$ is a prefix of $h^i {:} \ \theta_i(e) = h_i^{k_i}$ it can be encoded using k_i
- $\theta(e) = \theta_1(e) \cup \theta_2(e) \cup \ldots \cup \theta_n(e)$ can be encoded using k_1, k_2, \ldots, k_n

Represent θ using an *n*-vector VC such that $VC(e)[i] = k \Leftrightarrow \theta_i(e) = h_i^{k_i}$

VC properties: event ordering

Given two vectors V and V', less than is defined as: $V < V' \equiv (V \neq V') \land (\forall k : 1 \le k \le n : V[k] \le V'[k])$

- Strong Clock Condition: $e \rightarrow e' \equiv VC(e) \leq VC(e')$
- Simple Strong Clock Condition: Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$

Concurrency
 Given e_i of p_i and e_j of p_j , where $i \neq j$ $e_i \parallel e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \land (VC(e_j)[j] > VC(e_i)[j])$

VC properties: consistency

Pairwise inconsistency

Events e_i of p_i and e_j of p_j $(i \neq j)$ are pairwise inconsistent (i.e. can't be on the frontier of the same consistent cut) if and only if $(VC(e_i)[i] < VC(e_j)[i]) \lor (VC(e_j)[j] < VC(e_i)[j])$

Consistent Cut

A cut defined by (c_1,\ldots,c_n) is consistent if and only if

 $\forall i, j: 1 \leq i \leq n, 1 \leq j \leq n: (VC(e_i^{c_i})[i] \geq VC(e_j^{c_j})[i])$

VC properties: weak gap detection

Weak gap detection

Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t

VC properties: strong gap detection

• Weak gap detection Given e_i of p_i and e_j of p_j , if $VC(e_i)[k] < VC(e_j)[k]$ for some $k \neq j$, then there exists e_k s.t $\neg(e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$

• Strong gap detection Given e_i of p_i and e_j of p_j , if $VC(e_i)[i] < VC(e_j)[i]$ then there exists e'_i s.t.

$$(e_i \to e'_i) \land (e'_i \to e_j)$$

VCs for Causal Delivery

- Each process increments the local component of its VC only for events that are notified to the monitor
- Each message notifying event e is timestamped with VC(e)
- The monitor keeps all notification messages in a set M

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

• There is no earlier message in M $\forall m \in M : \neg(m \rightarrow m_i)$

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

 $oldsymbol{\circ}$ There is no earlier message in M $orall m \in M:
eg(m o m_j)$

 ${\rm \ress}$ There is no earlier message from p_j $TS(m_j)[j]=1+{\rm no.}$ of $p_j{\rm messages}$ delivered by p_0

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

 $oldsymbol{\circ}$ There is no earlier message in M $orall m \in M:
eg(m o m_j)$

• There is no earlier message from p_j $TS(m_j)[j] = 1 + \text{no. of } p_j \text{messages delivered by } p_0$

• There is no earlier message m''_k from $p_k, k \neq j$ see next slide...

Checking for m_k''

 ${\it o}$ Let m'_k be the last message p_0 delivered from p_k

 ${f o}$ By strong gap detection, m_k'' exists only if $TS(m_k')[k] < TS(m_j)[k]$

Hence, deliver m_j as soon as
 $\forall k: TS(m'_k)[k] \geq TS(m_j)[k]$

The protocol

- ${oldsymbol{o}}\ p_0$ maintains an array $D[1,\ldots,n]$ of counters
- $D[i] = TS(m_i)[i]$ where m_i is the last message delivered from p_i

DR3: Deliver m from p_j as soon as both of the following conditions are satisfied:

- 1. D[j] = TS(m)[j] 1
- **2.** $D[k] \ge TS(m)[k], \forall k \neq j$