
Same problem,  
different approach

Monitor process does not query explicitly

Instead, it passively collects information and 
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the 
distributed computation based on  the order in 
which the receiver is notified of the events.

Observations: a few 
observations

An observation puts no constraint on the order 
in which the monitor receives notifications
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Observations: a few 
observations

An observation puts no constraint on the order 
in which the monitor receives notifications

To obtain a run, messages must be delivered to 
the monitor in FIFO order
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Observations: a few 
observations

An observation puts no constraint on the order 
in which the monitor receives notifications

To obtain a run, messages must be delivered to 
the monitor in FIFO order
What about consistent runs?

p1

e
1

1
e
2

1

p0

Causal delivery

FIFO delivery guarantees:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)



Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO:

sendi(m) → sendi(m
′) ⇒ deliverj(m) → deliverj(m

′)

sendi(m) → sendk(m′) ⇒ deliverj(m) → deliverj(m
′)

p1

p2

p3

m
send event

receive event

deliver event

m
′

1



Causal delivery

FIFO delivery guarantees:
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Causal Delivery
in Synchronous Systems

We use the upper bound    on message delivery time∆

Causal Delivery
in Synchronous Systems

We use the upper bound    on message delivery time

DR1: At time  ,   delivers all received messages with 
timestamp up to        in increasing timestamp order

∆

t − ∆

t p0

Causal Delivery
with Lamport Clocks

DR1.1: Deliver all received messages in 
increasing (logical clock) timestamp order.



Causal Delivery
with Lamport Clocks

DR1.1: Deliver all received messages in 
increasing (logical clock) timestamp order.

1
p0

Causal Delivery
with Lamport Clocks

DR1.1: Deliver all received messages in 
increasing (logical clock) timestamp order.

1
p0

4

Should    deliver?p0

Causal Delivery
with Lamport Clocks

DR1.1: Deliver all received messages in 
increasing (logical clock) timestamp order.

Problem: Lamport Clocks don’t provide gap detection
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Given two events   and    and their clock
values        and         — where
determine whether some event   exists s.t.

e e
′

LC(e) LC(e′) LC(e) < LC(e′)

LC(e) < LC(e′′) < LC(e′)

e
′′

Stability

DR2: Deliver all received stable messages in 
increasing (logical clock) timestamp order.

A message    received by   is stable at   if   
will never receive a future message    s.t.

m

m
′

pp p

TS(m′) < TS(m)



Implementing Stability

Real-time clocks
wait for   time units∆

Implementing Stability

Real-time clocks

wait for   time units

Lamport clocks

wait on each channel for    s.t.

Design better clocks!

∆

m TS(m) > LC(e)

Clocks and STRONG Clocks

Lamport clocks implement the clock condition:

We want new clocks that implement the 
strong clock condition:

e → e
′
⇒ LC(e) < LC(e′)

e → e
′
≡ SC(e) < SC(e′)

Causal Histories

The causal history of an event   in         is the sete (H,→)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}
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e → e
′
≡ θ(e) ⊂ θ(e′)

θ(e) = {e′ ∈ H | e
′ → e} ∪ {e}

How to build   

Each process   :

initializes

if    is an internal or send event, then 

if    is a receive event for message   , then    

θ(e)

θ : θ := ∅

θ(e) := {ek
i } ∪ θ(ek−1

i
)

θ(e) := {ek
i } ∪ θ(ek−1

i
) ∪ θ(send(m))
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Pruning causal histories

Prune segments of history that are known to  
all processes (Peterson, Bucholz and 
Schlichting)

Use a more clever way to encode θ(e)



Vector Clocks

Consider      , the projection of      on   

      is a prefix of   :             – it can be 
encoded using 

                                   can be 
encoded using 

θi(e) θ(e) pi

θi(e) h
i

θi(e) = h
ki

i

ki

θ(e) = θ1(e) ∪ θ2(e) ∪ . . . ∪ θn(e)

k1, k2, . . . , kn

Represent   using an  -vector     such thatθ n V C

V C(e)[i] = k ⇔ θi(e) = h
ki

i

Update rules

pi

pi

ei

m

ei

Message    is 
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1
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= no. of events executed by    that happen before    of  
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VC properties:
event ordering

Given two vectors   and  , less than is defined as:

Strong Clock Condition:

Simple Strong Clock Condition: 
   Given    of   and   of   , where   

Concurrency
   Given    of   and   of   , where   

V V
′

V < V
′ ≡ (V "= V

′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V
′[k])

ei → ej ≡ V C(ei)[i] ≤ V C(ej)[i]

e → e
′ ≡ V C(e) ≤ V C(e′)

ei ‖ ej ≡ (V C(ei)[i] > V C(ej)[i]) ∧ (V C(ej)[j] > V C(ei)[j])

ei pi pjej i != j

ei pi pjej i != j

VC properties: 
consistency

Pairwise inconsistency
Events   of   and   of           are pairwise 
inconsistent (i.e. can’t be on the frontier of 
the same consistent cut) if and only if

Consistent Cut
A cut defined by             is consistent if and 
only if

∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ n : (VC(eci

i )[i] ≥ VC(e
cj

j )[i])

(VC(ei)[i] < VC(ej)[i]) ∨ (VC(ej)[j] < VC(ei)[j])

(i != j)

(c1, . . . , cn)

ei pi pjej



VC properties:
weak gap detection

Weak gap detection
Given   of    and   of   , if                     
for some       , then there exists    s.t
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k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

ei pi pjej

VC properties:
weak gap detection

Weak gap detection
Given   of    and   of   , if                     
for some       , then there exists    s.t

VC(ei)[k] < VC(ej)[k]
k != j ek

¬(ek → ei) ∧ (ek → ej)

[2,2,2]

[2,0,1]
pi

pj

pk

[0,0,2]

[2,1,1]

[0,0,1]

[1,0,1]

ei pi pjej

VC properties:
strong gap detection
Weak gap detection

Given   of    and   of   , if                     
for some       , then there exists    s.t

Strong gap detection
Given   of    and   of   , if                     
then there exists   s.t.

VC(ei)[k] < VC(ej)[k]
k != j ek

VC(ei)[i] < VC(ej)[i]ei pi pjej

ei pi pjej

e
′

i

¬(ek → ei) ∧ (ek → ej)

(ei → e
′

i) ∧ (e′i → ej)

VCs for Causal Delivery

Each process increments the local component 
of its     only for events that are notified to 
the monitor

Each message notifying event   is timestamped 
with 

The monitor keeps all notification messages in 
a set  M

e

VC

VC(e)



Stability
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When is it safe for    to deliver    ?
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Stability

Suppose    has received    from   .
When is it safe for    to deliver    ?

There is no earlier message in 

There is no earlier message from 

There is no earlier message    from   , 

p0 pjmj

p0 mj

m
′′

k

pj

pk k != j

M

TS(mj)[j] = 1+ no. of   messages delivered by pj p0

see next slide...

∀m ∈ M : ¬(m → mj)

Checking for     .     

Let     be the last message    delivered from

By strong gap detection,     exists only if

Hence, deliver    as soon as  

m
′

k p0 pk

m
′′

k

m
′′

k

TS(m′

k)[k] < TS(mj)[k]

∀k : TS(m′

k)[k] ≥ TS(mj)[k]

mj



The protocol

   maintains an array             of counters

                   where    is the last 
message delivered from 

DR3: Deliver   from    as soon as both of the 
following conditions are satisfied:

1.

2.

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k #= j

m pj


