Same problem, different approach

- Monitor process does not query explicitly
- Instead, it passively collects information and uses it to build an observation. (reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

> p_1 e_1^1

 \bar{p}_0

 e_1^2

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order

Observations: a few observations

An observation puts no constraint on the order in which the monitor receives notifications

To obtain a run, messages must be delivered to the monitor in FIFO order What about consistent runs?

Causal delivery

FIFO delivery guarantees:

 $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal delivery

FIFO delivery guarantees:

Causal delivery generalizes FIFO: $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$ $send_i(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal delivery

FIFO delivery guarantees:

 $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal delivery generalizes FIFO:

 $send_i(m) \rightarrow send_k(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

Causal Delivery in Synchronous Systems

We use the upper bound Δ on message delivery time

DR1: At time t, p_0 delivers all received messages with timestamp up to $t-\Delta$ in increasing timestamp order

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

Causal Delivery with Lamport Clocks

DR1.1: Deliver all received messages in increasing (logical clock) timestamp order.

 $p_0 \stackrel{\hspace{2mm}1}{\longrightarrow} \begin{array}{c} \bullet \end{array}$ Should p_0 deliver?

Problem: Lamport Clocks don 't provide gap detection

Given two events e and e^\prime and their clock values $LC(e)$ and $LC(e')$ —where $LC(e) < LC(e')$ determine whether some event $e^{\prime\prime}$ exists s.t. $LC(e) < LC(e'') < LC(e')$

Stability

DR2: Deliver all received stable messages in increasing (logical clock) timestamp order.

A message m received by \bar{p} is stable at \bar{p} if \bar{p} will never receive a future message m' s.t. $TS(m') < TS(m)$

Implementing Stability

Real-time clocks \Box wait for Δ time units

Implementing Stability

- Real-time clocks
	- wait for Δ time units
- Lamport clocks
	- wait on each channel for m s.t. $TS(m) > LC(e)$
- Design better clocks!

Clocks and STRONG Clocks

Lamport clocks implement the clock condition: $e \rightarrow e' \Rightarrow LC(e) < LC(e')$

We want new clocks that implement the strong clock condition:

 $e \rightarrow e' \equiv SC(e) < SC(e')$

Causal Histories

• The causal history of an event e in (H, \rightarrow) is the set $\theta(e) = \{e' \in H \mid e' \to e\} \cup \{e\}$

Causal Histories

 \bullet The causal history of an event e in (H, \rightarrow) is the set $\theta(e) = \{e' \in H \mid e' \to e\} \cup \{e\}$

Causal Histories

How to build $\theta(e)$

Each process p_i :

- initializes $\theta: \theta := \emptyset$
- e_i^k if e_i^k is an internal or send event, then $\overline{}$ $\theta(e) := \{e_i^k\} \cup \theta(e_i^{k-1})$ Γ
- if e_i^k is a receive event for message m , then $\theta(e) := \{e_i^k\} \cup \theta(e_i^{k-1}) \cup \theta(send(m))$

Pruning causal histories

Prune segments of history that are known to all processes (Peterson, Bucholz and Schlichting)

 \bullet Use a more clever way to encode $\theta(e)$

Vector Clocks

- Consider $\theta_i(e)$, the projection of $\theta(e)$ on p_i
- $\theta_i(e)$ is a prefix of h^i : $\theta_i(e) = h_i^{k_i}$ it can be encoded using k_i
- $\theta(e) = \theta_1(e) \cup \theta_2(e) \cup \ldots \cup \theta_n(e)$ can be encoded using k_1,k_2,\ldots,k_n

Represent θ using an *n*-vector VC such that $VC(e)[i] = k \Leftrightarrow \theta_i(e) = h_i^{k_i}$

VC properties: event ordering

Given two vectors V and V' , less than is defined as: $V < V' \equiv (V \neq V') \wedge (\forall k : 1 \leq k \leq n : V[k] \leq V'[k])$

- Strong Clock Condition: $e \rightarrow e' \equiv VC(e) \le VC(e')$
- Simple Strong Clock Condition: Given e_i of p_i and e_j of p_j , where $i\neq j$ $e_i \rightarrow e_j \equiv VC(e_i)[i] \le VC(e_j)[i]$

© Concurrency Given e_i of p_i and e_j of p_j , where $i\neq j$ $e_i || e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \wedge (VC(e_j)[j] > VC(e_i)[j])$

VC properties: consistency

Pairwise inconsistency

Events e_i of p_i and e_j of p_j $(i\neq j)$ are pairwise inconsistent (i.e. can 't be on the frontier of the same consistent cut) if and only if $(VC(e_i)[i] < VC(e_j)[i]) \vee (VC(e_j)[j] < VC(e_i)[j])$

Consistent Cut

A cut defined by (c_1,\ldots,c_n) is consistent if and only if

 $\forall i, j : 1 \leq i \leq n, 1 \leq j \leq n : (VC(e_i^{c_i})[i]) \geq VC(e_j^{c_j})[i])$

VC properties: weak gap detection

Weak gap detection

Given e_i of p_i and e_j of p_j , if $\overline{VC}(e_i)[k] < \overline{VC}(e_j)[k]$ for some $k \neq j$, then there exists $\overset{.}{e_k}$ s.t

VC properties: strong gap detection

Weak gap detection Given e_i of p_i and e_j of p_j , if $\overline{VC}(e_i)[k] < \overline{VC}(e_j)[k]$ for some $k \neq j$, then there exists $\overset{.}{e_k}$ s.t $\neg(e_k \rightarrow e_i) \land (e_k \rightarrow e_i)$

Strong gap detection Given e_i of p_i and e_j of p_j , if $\mathit{VC}(e_i)[i] < \mathit{VC}(e_j)[i]$ then there exists e'_i s.t.

$$
(e_i \to e_i') \land (e_i' \to e_j)
$$

VCs for Causal Delivery

- Each process increments the local component of its $\bar{V}C$ only for events that are notified to the monitor
- Each message notifying event \overline{e} is timestamped with $VC(e)$
- The monitor keeps all notification messages in a set M

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

There is no earlier message in \overline{M}

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

There is no earlier message in \overline{M}

There is no earlier message from p_j $TS(m_i)[j] = 1 + \text{no. of } p_j$ messages delivered by p_0

Stability

Suppose p_0 has received m_j from p_j . When is it safe for p_0 to deliver m_j ?

There is no earlier message in \overline{M}

There is no earlier message from p_j $TS(m_i)[j] = 1 + \text{no. of } p_j$ messages delivered by p_0

There is no earlier message $m_k^{\prime\prime}$ from p_k , $k\neq j$ see next slide...

Checking for $m_k^{\prime\prime}$

Let m'_k be the last message $\bar p_0$ delivered from $\bar p_k$

By strong gap detection, $m_k^{\prime\prime}$ exists only if $TS(m'_{k})[k] < TS(m_{j})[k]$

Hence, deliver m_j as soon as $\overline{}$ $\forall k : TS(m'_k)[k] \geq TS(m_j)[k]$

The protocol

- p_0 maintains an array $D[1,\ldots,n]$ of counters
- $D[i] = TS(m_i)[i]$ where m_i is the last message delivered from p_i

DR3: Deliver m from \overline{p}_j as soon as both of the following conditions are satisfied:

- 1. $D[j] = TS(m)[j] 1$
- 2. $D[k] \geq TS(m)[k], \forall k \neq j$