
Rollback-Recovery

Uncoordinated Checkpointing

• Easy to understand

• No synchronization overhead

• Flexible
– can choose when to checkpoint

• To recover from a crash:
– go back to last checkpoint

– restart

!

!

p

How (not)to take a checkpoint

• Block execution, save entire process state
to stable storage

– very high overhead during failure-free
execution

– lots of unnecessary data saved on stable
storage

How to take a checkpoint

• Take checkpoints incrementally

– save only pages modified since last checkpoint

– use “dirty” bit to determine which pages to save

• Save only “interesting” parts of address space

– use application hints or compiler help to avoid saving
useless data (e.g. dead variables)

• Do not block application execution during recovery

– copy-on-write

m2

m4

p2

p1

p3

m1 m3

m5

m6
m7

m8

The Domino Effect

m2

m4

p2

p1

p3

m1 m3

m5

m6
m7

m8

The Domino Effect

m2

m4

p2

p1

p3

m1 m3

m5

m6
m7

m8

The Domino Effect

m2

m4

p2

p1

p3

m1 m3

m5

m6
m7

The Domino Effect

m2

m4

p2

p1

p3

m1 m3

m5

m6

The Domino Effect

m2

m4

p2

p1

p3

m1 m3

m5

The Domino Effect

m2

m4

p2

p1

p3

m1 m3

The Domino Effect

m2

p2

p1

p3

m1 m3

The Domino Effect

m2

p2

p1

p3

m1

The Domino Effect

p2

p1

p3

m1

The Domino Effect

p2

p1

p3

The Domino Effect How to Avoid the Domino Effect
Coordinated Checkpointing

No independence
Synchronization Overhead
Easy Garbage Collection

Communication Induced Checkpointing : detect dangerous
communication patterns and checkpoint appropriately

Less synchronization
Less independence
Complex

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

The Output Commit Problem

m7

p2

m1

m2

m3
p1

p3

m4

m5 m6

External
Environment

Coordinated checkpoint for
every output commit

High overhead if frequent I/O
with external environment

Distributed Checkpointing
at a Glance

+ Consistent states
+ Autonomy
+ Scalability
- None is true

Communication-
induced

Coordinated

+ Consistent states
+ Good performance
+ Garbage Collection
- Scalability

Independent

+ Simplicity
+ Autonomy
+ Scalability
- Domino effect

Message Logging

Can avoid domino effect

Works with coordinated checkpoint

Works with uncoordinated checkpoint

Can reduce cost of output commit

More difficult to implement

How Message Logging Works
Recovery Unit

Application

Log

To tolerate crash failures:

• periodically checkpoint application
state;

• log on stable storage determinants
of non-deterministic events
executed after checkpointed state.

• for message delivery events:
#m = (m.dest, m.rsn, m.source, m.ssn)

 Recovery:
• restore latest checkpointed state;
• replay non-deterministic events according to determinants

Never creates orphans

may incur blocking

straightforward recovery

Pessimistic Logging

p1

m1

m2

p2

p3

m3

p2 logs synchronously

to stable storage the
determinants of m1 and

m2 before sending m3.

m partially logged

Sender Based Logging

Message log is maintained in volatile storage at the sender.

A message m is logged in two steps:

 i) before sending m, the sender logs its content: m is partially logged

 ii) the receiver tells the sender the receive sequence number of m,
and the sender adds this information to its log: m is fully logged .

(m.data, m.ssn) (ACK, m.rsn)

(Johnson and Zwaenepoel, FTCS 87)

(m.ssn, m.rsn)

m fully logged

q knows m is fully logged

q

p

q blocks?

Optimistic Logging
• p2 sends m3 without first

logging determinants.
• If p2 fails before logging the

determinants of m1 and m2, p3

becomes an orphan.

p1

m1

m2

p2

p3

m3

 Eliminates orphans during recovery
non-blocking during failure-free executions
rollback of correct processes
complex recovery

Causal Logging
No blocking in failure-free executions

No orphans

No additional messages

Tolerates multiple concurrent failures

Keeps determinant in volatile memory

Localized output commit

Preliminary Definitions
Given a message m sent from m.source to m.dest,

Depend(m):

Log(m): set of processes with a copy of the
determinant of m in their volatile memory

p orphan of a set C of crashed processes:
(p !∈ C) ∧ ∃m : (Log(m) ⊆ C ∧ p ∈ Depend(m))

{
p ∈ P

∣∣∣∣ ∨(p = m.dest) and p delivered m

∨(∃ep : (deliverm.dest(m) → ep))

}

The “No-Orphans”
Consistency Condition

No orphans after crash C if:

 No orphans after any C if:

 The Consistency Condition

∀m : (Depend(m) ⊆ Log(m))

∀m : (¬stable(m) ⇒ (Depend(m) ⊆ Log(m)))

∀m : (Log(m) ⊆ C) ⇒ (Depend(m) ⊆ C)

Optimistic and Pessimistic

 Optimistic weakens it to:

 Pessimistic strengthens it to:

No orphans after crash C if:

 No orphans after any crash if:

∀m : (Log(m) ⊆ C) ⇒ (Depend(m) ⊆ C)

∀m : (¬stable(m) ⇒ (Depend(m) ⊆ Log(m)))

∀m : (Log(m) ⊆ C) ⇒ !(Depend(m) ⊆ C)

∀m : (¬stable(m) ⇒ |Depend(m)| ≤ 1)

Causal Message Logging

 Causal strengthens it to:

 No orphans after any crash of size at most f if:
∀m : (¬stable(m) ⇒ (Depend(m) ⊆ Log(m)))

∀m :

(
¬stable(m) ⇒

(
∧(Depend(m) ⊆ Log(m))
∧!(Depend(m) = Log(m))

))

An Example

p1

m1

m2

p2

p3

m3<#m1,#m2>

m4

m5<#m3>

 Causal Logging:

If f = 1, stable(m) "|Log(m)| # 2

∀m : (¬stable(m) ⇒ (Depend(m) ⊆ Log(m)))

Recovery for f = 1
1 parents of p

Messages
previously sent
to p by its
parents

what is the next message from each parent?
 p

who is my next parent?

SSN order

RSN order
Determinants of
messages
delivered by p

children of p

2 3 4

5 6 2 8

Determinants of
messages
delivered by
parents

