The Algorithm

Code for process pi :

Initially $V=\{v_i\}$ To execute propose(v_i) round k, $1 \le k \le f+1$ 1: send {v in V : p_i has not already sent v} to all 2: for all j, $0 \le j \le n-1$, $j \ne i$ do 3: receive Sj from pj 4: V:= V U Sj decide(x) occurs as follows: 5: if k = f+1 then 6: decide min(V)

Termination and Integrity

Initially V={v_i}

To execute propose(vi)

- round k, 1 ≤ k ≤ f+1
- 1: send {v in V : pi has not already sent v} to all
- 2: for all j, $0 \le j \le n-1$, $j \ne i$ do
- 3: receive Si from pi
- +: V:= V U S_i

decide(x) occurs as follows:

- 5: if k = f+1 then
- 6: decide min(V)

Termination

- Every correct process
- Decides on min(V) --- which is well defined

Integrity

- <u>At most one value:</u> - one decide, and min(V) is unique
- Only if it was proposed:
- To be decided upon, must be in V at round f+1
- if value = v_i, then it is proposed in round 1
- else, suppose received in round k. By induction:
 k = 1:
- by Uniform Integrity of underlying send and receive, it must have been sent in round 1
- by the protocol and because only crash failures, it must have been proposed
- Induction Hypothesis: all values received up to round k = j have been proposed
- k = j+1
- sent in round j+1 (Uniform Integrity of send and synchronous model)
 must have been part of V of sender at end
- must have been part of v of sender at end of round j
- by protocol, must have been received by sender by end of round j
- by induction hypothesis, must have been proposed

Validity

Initially V={v_i}

- To execute propose(vi)
- round k, $1 \le k \le f+1$
- 1: send {v in V : p_i has not already sent v} to all
- 2: for all j, $0 \le j \le n-1$, $j \ne i$ do
- J. Teceive J Hom P
- 4: V:= V U S_j

decide(x) occurs as follows: 5: if k = f+1 then 6: decide min(V)

- $\ensuremath{{\ensuremath{\mathcal{G}}}}$ Since only crash model, only v^* can be sent
- ${\scriptstyle \oslash}$ By Uniform Integrity of send and receive, only v^{*} can be received
- \odot By protocol, V={ v^* }
- $omega min(V) = v^*$
- o decide(v^*)

Agreement

Initially V={v_i}

To execute propose(vi) round k, $1 \le k \le f+1$

- 1: send {v in V : pi has not already sent v} to all
- 2: for all j, $0 \le j \le n-1$, $j \ne i$ do
- V:= V U Si
- decide(x) occurs as follows: 5: if k = f+1 then 6: decide min(V)

Lemma 1

For any $r \ge 1$, if a process p receives a value v in round r, then there exists a sequence of processes p_0, p_1, \dots, p_r such that p_0 = v's proponent, $p_r = p$ and in each round $k, 1 \leq k \leq r$, p_{k-1} sends v and p_k receives it. Furthermore, all processes in the sequence are distinct.

Proof

By induction on the length of the sequence

Agreement

Initially V={v_i}

То	execute propose(vi)	
	round k, 1 ≤ k ≤ f+1	
l:	send {v in V : p; has not already sent v} to a	
2:	for all j, 0 ≤ j ≤ n-1, j ≠ i do	
3:	receive Sj from pj	
4:	V:= V U Sj	
decide(x) occurs as follows:		
5: if k = f+1 then		
1.		

Agreement

Initially V={v_i}

To execute propose(vi) round k, 1 ≤ k ≤ f+1 2: for all j, $0 \le j \le n-1$, $j \ne i$ do V:= V U Si

decide(x) occurs as follows: 5: if k = f+1 then 6: decide min(V)

Lemma 2:

In every execution, at the end of round f + 1, $V_i = V_i$ for every correct processes p_i and p_i

Agreement follows from Lemma 2, since min is a deterministic function

Agreement

Proof:

Initially V={v_i}

- To execute propose(vi)
- round k, $1 \le k \le f+1$
- 2: for all j, $0 \le j \le n-1$, $j \ne i$ do
- V:= V U Si

decide(x) occurs as follows: 5: if k = f+1 then

6: decide min(V)

Lemma 2:

In every execution, at the end of round f + 1, \bullet Consider processes p_0, \ldots, p_f $V_i = V_i$ for every correct processes p_i and p_i

Agreement follows from Lemma 2, since min is a deterministic function

• Show that if a correct process has x in its V at the end of round f + 1, then every

correct process has x in its V at the end of round f + 1• Let r be earliest round x is added to the V

of a correct process. Let that process be p

• If $r \leq f$, then p sends x in round $r + 1 \leq f$ + 1; every correct process receives x and adds x to its V in round r + 1

- What if r = f + 1?
- By Lemma 1, there exists a sequence $p_0, \ldots, p_{f+1} = p$ of distinct processes
- f + 1 processes; only f faulty

• one of p_0, \ldots, p_f is correct, and adds x to its V before p does it in round r

A Lower Bound

Theorem

There is no algorithm that solves the consensus problem in less than f+1 rounds in the presence of f crash failures, if $n \ge f+2$

0

We consider a special case $(f\!=\!1)$ to study proof technique

Views

Let α be an execution. The view of process p_i in α , denoted by $\alpha | p_i$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 . Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 . Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 . Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then dec(α_1) = dec(α_2)

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 . Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then dec(α_1) = dec(α_2)

The transitive closure of $\alpha_1 \sim_{p_i} \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$. We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \dots, \beta_{k+1}$ such that $\alpha_1 = \beta_1 \sim_{p_i} \beta_2 \sim_{p_{i_2}} \dots, \sim_{p_{i_k}} \beta_{k+1} = \alpha_2$

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2 . Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then dec(α_1) = dec(α_2)

The transitive closure of $\alpha_1 \sim_{p_i} \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$.

We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \dots, \beta_{k+1}$ such that $\alpha_1 = \beta_1 \sim_{p_{i_1}} \beta_2 \sim_{p_{i_2}} \dots, \sim_{p_{i_k}} \beta_{k+1} = \alpha_2$

Lemma If $\alpha_1 \approx \alpha_2$ then dec(α_1) = dec(α_2)

Single-Failure Case

There is no algorithm that solves the consensus problem in less than two rounds in the presence of one crash failure, if $n \ge 3$

The Idea

By contradiction

- Consider a one-round execution in which each process proposes 0. What is the decision value?
- Consider another one-round execution in which each process proposes 1. What is the decision value?
- Show that there is a chain of similar executions that relate the two executions.

So what?

Adjacent α^i s are similar!

Starting from α^i , we build a set of executions α^i_j where $0 \le j \le n-1$ as follows:

 α_j^i is obtained from α^i after removing the messages that p_i sends to the j-th highest numbered processors (excluding itself)

Indistinguishability

Terminating Reliable Broadcast

Termination	Every correct process eventually delivers some message
Validity	If the sender is correct and broadcasts a message m , then all correct processes eventually deliver m
Agreement	If a correct process delivers a message m , then all correct processes eventually deliver m
Integrity	Every correct process delivers at most one

message, and if it delivers $m \neq$ SF, then some process must have broadcast m

TRB for benign failures

Terminates in f + 1 rounds

How can we do better? find a protocol whose round complexity is proportional to t - the number of failures that actually occurred-rather than to f - the max number of failures that may occur

Early stopping: the idea

- Suppose processes can detect the set of processes that have failed by the end of round i
- \odot Call that set faulty(p, i)
- If |faulty(p,i)| < i there can be no active dangerous chains, and p can safely deliver SF

Early Stopping: The Protocol

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value ≠ ? then halt
- 4: receive round k values from all
- 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q \mid p \text{ received no value from } q \text{ in round } k\}$
- 6: if received value $v \neq ?$ then
- 7: value := v
- 8: deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF
- 11: deliver(value)
- 12: if k = f+1 then halt

Termination

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value ≠ ? then halt
- 4: receive round k values from all
- 5: $|faulty(p,k)| := |faulty(p,k 1)|U \{q | p$ received no value from q in round k}
- 6: if received value $v \neq ?$ then
- value := v deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF
- deliver(value)
- 12: if k = f+1 then halt

Termination

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 4: receive round k values from all
- 5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p received no value from q in round k}
- 6: if received value $v \neq ?$ then value := v
- deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF deliver(value)
- if k = f+1 then halt

receives a value, then it delivers the value in that round

only "?" for f+1 rounds, then it delivers SF in round f+1

Validity

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value ≠ ? then halt
- 4: receive round k values from all
- |faulty(p,k)| := |faulty(p,k 1)|U {q | p received no value from g in round k}
- 6: if received value $v \neq ?$ then

value := v 8:

- deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- value := SF deliver(value)
- 12: if k = f+1 then halt

Validity

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p received no value from q in round k} 6: if received value $v \neq ?$ then
 - value := v
- deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF
- deliver(value)
- 12: if k = f+1 then halt

If the sender is correct then it sends m to all in round 1

- By Validity of the underlying send and receive, every correct process will receive m by the end of round 1
- By the protocol, every correct process will deliver m by the end of round 1

Agreement - 1

Lemma 1

For any $r \ge 1$, if a process p delivers $m \neq$ SF in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that p_0 = sender, $p_r = p$, and in each round k, $1 \le k \le r$, p_{k-1} sent m and p_k received it. Furthermore, all processes in the sequence are distinct, unless r = 1 and $p_0 = p_1 =$ sender

Lemma 2:

For any $r \ge 1$, if a process p sets value to SF in round r, then there exist some $j \leq r$ and a sequence of distinct processes $q_j, q_{j+1}, \ldots, q_r = p$ such that q_j only receives "?" in

rounds 1 to j, $|faulty(q_j, j)| < j$, and in each round k, $j + 1 \le k \le r$, q_{k-1} sends SF to q_k and q_k receives SF

Agreement - 2

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k 1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all 3: if value ≠ ? then halt 4: receive round k values from all
- 5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p
- received no value from q in round k} 6: if received value v ≠ ? then
- value := v
- deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- value := SF 10:
- deliver(value)
- if k = f+1 then halt

Lemma 3:

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value ≠ ? then halt
- receive round k values from all 5: $|faulty(p,k)| := |faulty(p,k - 1)|U \{q | p$
- received no value from q in round k}
- 6: if received value $v \neq ?$ then value := v
- deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF
- deliver(value)
- 12: if k = f+1 then halt

Agreement - 2

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k 1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 4: receive round k values from all
- 5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p received no value from q in round k}
- 6: if received value $v \neq ?$ then value := v
- deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF
- 11: deliver(value)
- 12: if k = f+1 then halt

Lemma 3:

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Proof

By contradiction Suppose p sets value = m and q sets value = SF

By Lemmas 1 and 2 there exist

with the appropriate characteristics Since q_i did not receive m from process p_{k-1} $1 \le k \le j$ in round k q_j must conclude that p_0, \ldots, p_{j-1} are all faulty processes But then, $|faulty(q_i, j)| \ge j$

CONTRADICTION

Agreement - 3

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k 1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value ≠ ? then halt
- receive round k values from all
- |faulty(p,k)| := |faulty(p,k 1)|U {q | p
- received no value from q in round k}
- 6: if received value $v \neq ?$ then value := v
- 8: deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF
- deliver(value) 12: if k = f+1 then halt

Agreement - 3

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all
- 3: if value ≠ ? then halt
- 4: receive round k values from all
- 5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p received no value from q in round k}
- 6: if received value $v \neq ?$ then
- value := v
- 8: deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF 11: deliver(value)
- 12: if k = f+1 then halt

Proof

If no correct process ever receives m, then every correct process delivers SF in round f + 1

Let r be the earliest round in which a correct process delivers value ≠ SF

- - 🗉 By Lemma 3, no (correct) process can set value differently in round r
 - □ In round $r + 1 \le f + 1$, that correct process sends its value to all
 - **Every correct process receives and delivers** the value in round $r + 1 \leq f + 1$

 - □ By Lemma 1, there exists a sequence p₀, ..., $p_{f+1} = p_r$ of distinct processes
 - □ Consider processes p₀, ..., p_f

round c < r

- one of p₀, ..., p_f is correct-- let it be p_c
- To send v in round c + 1, p_c must have set its value to v and delivered v in

Integrity

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k 1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

2: send value to all

- 3: if value ≠ ? then halt
- 4: receive round k values from all
- 5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p
- received no value from q in round k}
- 6: if received value v ≠ ? then value := v
- deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- value := SF deliver(value) 10:
- 12: if k = f+1 then halt

Integrity

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k 1: if p = sender then value := m else value:= ?

Process p in round k, $1 \le k \le f+1$

- 2: send value to all

- seria value ≠ ? then halt
 if value ≠ ? then halt
 receive round k values from all
 [faulty(p,k)] := |faulty(p,k 1)|U {q | p received no value from q in round k}
- 6: if received value $v \neq ?$ then
- 7: value := v 8: deliver(value)
- 9: else if k = f+1 or |faulty(p,k)| < k then
- 10: value := SF
- 11: deliver(value)
- 12: if k = f+1 then halt

- At most one m
 - 🗅 Failures are benign, and a process executes at most one deliver event before halting
- only if m
 ≠ SF, only if m was broadcast
 - □ From Lemma 1 in the proof of Agreement