The Algorithm

Code for process pi :

Initially V={vi } To execute $propose(v_i)$ round $k, 1 \leq k \leq f+1$ 1: send {v in V : p_i has not already sent v} to all 2: for all j, $0 \le j \le n-1$, $j \ne i$ do 3: receive S_j from p_j 4: $V := V U S_i$ decide(x) occurs as follows: 5: if $k = f+1$ then 6:decide min(V)

Termination and Integrity

Initially V={vi }

To execute propose(v_i)

- round k, $1 \le k \le f+1$
- 1: send {v in V : pi has not already sent v} to all
- 2: for all j, $0 \le j \le n-1$, $j \ne i$ do
- 3: receive S_j from p_j
- 4: $V := V U S_i$

decide(x) occurs as follows:

- 5: if $k = f+1$ then
- 6: decide min(V)

Termination

Every correct process

- \bullet reaches round $f + 1$
- Decides on min(V) --- which is well defined

- At most one value: – one decide, and min(V) is unique
- Only if it was proposed:
-
- To be decided upon, must be in V at round f+1
- if value = v_i , then it is proposed in round 1
- else, suppose received in round k. By induction: $- k = 1$
- by Uniform Integrity of underlying send and receive, it must have been sent in round 1 • by the protocol and because only crash
	- failures, it must have been proposed
- Induction Hypothesis: all values received up to round k = j have been proposed
- k = j+1
- sent in round j+1 (Uniform Integrity of send and synchronous model)
- must have been part of V of sender at end of round j
- by protocol, must have been received by sender by end of round j
- by induction hypothesis, must have been proposed

Validity

Initially V={vi }

- To execute $propose(v_i)$
- round $k, 1 \leq k \leq f+1$
- 1: send {v in V : pi has not already sent v} to all
- 2: for all $j, 0 \le j \le n-1, j \ne i$ do
- 3: receive S_j from p_j
- 4: $V := V U S_j$

decide(x) occurs as follows: 5: if $k = f+1$ then 6: decide min(V)

- Suppose every process proposes v^*
- Since only crash model, only v^* can be sent
- By Uniform Integrity of send and receive, only v^* can be received
- By protocol, $V = \{v^*\}$
- $min(V) = v^*$
- decide(v^*)

Agreement

Initially V={vi }

To execute $propose(v_i)$

- round k, $1 \leq k \leq f+1$ 1: send {v in V : pi has not already sent v} to all
- 2: for all $j, 0 \le j \le n-1, j \ne i$ do
- 3: receive S_j from p_j
- 4: $V:= V U S_i$
- decide(x) occurs as follows: 5: if $k = f+1$ then 6: decide min(V)

Lemma 1

For any $r \geq 1$, if a process p receives a value v in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that $p_0 = \mathsf{v}'\mathsf{s}$ proponent, $p_r = p$ and in each round $k, 1 \leq k \leq r$, p_{k-1} sends v and $\ p_{k}$ receives it. Furthermore, all processes in the sequence are distinct.

Proof

By induction on the length of the sequence

Agreement

Initially V={vi } To execute propose(vi) round $k, 1 \leq k \leq f+1$ 1: send {v in V : pi has not already sent v} to all 2: for all j, $0 \le j \le n-1$, $j \ne i$ do 3: receive S_j from p_j 4: $V:= V U S_j$ decide(x) occurs as follows: 5: if $k = f+1$ then 6: decide min(V)

Agreement

Initially V={vi }

To execute propose(vi) round $k, 1 \leq k \leq f+1$ 1: send {v in V : pi has not already sent v} to all 2: for all j, $0 \le j \le n-1$, $j \ne i$ do 3: receive S_j from p_j 4: $V:= V U S_j$ decide(x) occurs as follows: 5: if $k = f+1$ then 6: decide min(V)

Lemma 2:

In every execution, at the end of round $f + 1$. Vi = Vj for every correct processes pi and pj

Agreement follows from Lemma 2, since min is a deterministic function

Agreement

Proof:

Initially V={vi }

- To execute propose(vi)
- round $k, 1 \leq k \leq f+1$
- 1: send {v in V : pi has not already sent v} to all
- 2: for all $j, 0 \le j \le n-1$, $j \ne i$ do
- 3: receive S_j from p_j
- 4: $V:= V U S_j$

decide(x) occurs as follows: 5: if $k = f+1$ then

6: decide min(V)

Lemma 2:

In every execution, at the end of round f + 1, $\quad \bullet$ Consider processes p_0, \ldots, p_f Vi = Vj for every correct processes pi and pj

Agreement follows from Lemma 2, since min is a deterministic function

• Show that if a correct process has x in its

V at the end of round $f + 1$, then every correct process has x in its V at the end of round $f + 1$

• Let r be earliest round x is added to the V of a correct process. Let that process be p

• If $r \le f$, then p sends x in round $r + 1 \le f$

+ 1; every correct process receives x and adds x to its V in round $r + 1$

- What if $r = f + 1$?
- By Lemma 1, there exists a sequence $p_0, \ldots, p_{f+1} = p$ of distinct processes
-
- f + 1 processes; only f faulty

 \bullet one of p_0,\ldots,p_f is correct, and adds $\boldsymbol{\mathsf{x}}$ to its V before p does it in round r CONTRADICTION!

A Lower Bound

Theorem

There is no algorithm that solves the consensus problem in less than $f+1$ rounds in the presence of f crash failures, if $n \ge f+2$

\bullet

We consider a special case $\left(f\!=\!1\right)$ to study proof technique

Views

Let α be an execution. The view of process p_i in α , denoted by $\alpha|p_i$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and $\alpha_2.$ Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and $\alpha_2.$ Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and $\alpha_2.$ Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then dec(α_1) = dec(α_2)

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and $\alpha_2.$ Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then dec(α_1) = dec(α_2)

The transitive closure of $\alpha_1 \sim_{p_i} \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$. We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \ldots, \beta_{k+1}$ such that $\alpha_1 = \beta_1 \sim_{p_{i_1}} \beta_2 \sim_{p_{i_2}} \ldots, \sim_{p_{i_k}} \beta_{k+1} = \alpha_2$

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and $\alpha_2.$ Execution α_1 is similar to execution α_2 with respect to p_i , denoted $\alpha_1 \sim_{p_i} \alpha_2$ if $\alpha_1 | p_i = \alpha_2 | p_i$

Note If $\alpha_1 \sim_{p_i} \alpha_2$ then p_i decides the same value in both executions

Lemma If $\alpha_1 \sim_{p_i} \alpha_2$ and p_i is correct, then dec(α_1) = dec(α_2) The transitive closure of $\alpha_1 \sim_{p_i} \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$.

We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \ldots, \beta_{k+1}$ such that $\alpha_1 = \beta_1 \sim_{p_{i_1}} \beta_2 \sim_{p_{i_2}} \ldots, \sim_{p_{i_k}} \beta_{k+1} = \alpha_2$

Lemma If $\alpha_1 \approx \alpha_2$ then $dec(\alpha_1) = dec(\alpha_2)$

Single-Failure Case

There is no algorithm that solves the consensus problem in less than two rounds in the presence of one crash failure, if $\overline{n} \ge 3$

The Idea

By contradiction

- Consider a one-round execution in which each process proposes 0. What is the decision value?
- Consider another one-round execution in which each process proposes 1. What is the decision value?
- Show that there is a chain of similar executions that relate the two executions.

So what?

Adjacent α^i s are similar!

Starting from α^i , we build a set of executions α^i_j where $0\leq j\leq n{-}1$ as follows:

 α^i_j is obtained from α^i after removing the messages that $\,p_i\,$ sends to the j-th highest numbered processors (excluding itself)

Indistinguishability

p0 p_{i-1} 1 p_{i+1} $\overline{p_i}$ p_{n-1} 0 1 0 0 α^i α_{n-1}^i ≈

Terminating Reliable Broadcast

- Termination Every correct process eventually delivers some message Validity If the sender is correct and broadcasts a m essage m , then all correct processes \blacksquare eventually deliver m
- Agreement $\;$ If a correct process delivers a message m , then all correct processes eventually deliver m
- Integrity Every correct process delivers at most one message, and if it delivers $m \neq S$ F, then some process must have broadcast m

TRB for benign failures

Sender in round 1: 1: send m to all

Process p in round $k, 1 \le k \le f+1$ 1: if delivered m in round $k-1$ and $p \neq$ sender then

- send m to all
- 3: halt
- receive round k messages
- if received m then
- deliver(m)
- $if k = f+1$ then halt
- $8:$ else if $k = f+1$
	- deliver(SF)
- 10: halt

Terminates in $f + 1$ rounds

How can we do better?

find a protocol whose round complexity is proportional to t -the number of failures that actually occurred–rather than to f -the max number of failures that may occur

Early stopping: the idea

- **Suppose** processes can detect the set of processes that have failed by the end of round i
- Call that set $\mathit{faulty}(p,i)$
- If $|{\it faulty}(p,i)| < i$ there can be no active dangerous chains, and \overline{p} can safely deliver SF

Early Stopping: The Protocol

Let $|{\it faulty}(p,k)|$ be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \pm ? then halt
- 4: receive round k values from all
- 5: $| \mathit{faulty}(p,k)| := |\mathit{faulty}(p,k-1)| \cup \{q \mid p \text{ received no value from q in round } k\}$
- 6: if received value $v \neq ?$ then
- $7:$ value $= v$
- 8: deliver(value)
- 9: else if **k** = f+1 or $|{\it faulty}(p,k)| < k$ then
- 10: value := SF
- 11: deliver(value)
- 12: if $k = f+1$ then halt

Termination Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k 1: if $p =$ sender then value := m else value:= ? Process p in round $k, 1 \le k \le f+1$ 2: send value to all 3: if value \neq ? then halt receive round k values from all 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q | p\}$ received no value from q in round k} 6: if received value $v \neq ?$ then value := v deliver(value)

- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
-
- 11: deliver(value) 12: if k = f+1 then halt

Termination

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1...k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 4: receive round k values from all
- 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q | p\}$
- received no value from q in round k}
- 6: if received value $v \neq ?$ then
- 7: value := v 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
- 11: deliver(value) 12: if k = f+1 then halt

o If in any round a process receives a value, then it delivers the value in that round

o If a process has received only "?" for $f+1$ rounds, then it delivers SF in round $f+1$

Validity

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k 1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 4: receive round k values from all
- 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q | p\}$ received no value from q in round k }
- 6: if received value $v \neq ?$ then
- $value := v$
- 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
- 11: deliver(value)
- 12: $if k = f+1$ then halt

Validity

Let $|$ faulty(p,k) $|$ be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 4: receive round k values from all 5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p received no value from q in round k}
- 6: if received value $v \neq ?$ then
-
- 7: value := v 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- $10:$ value $=$ SF
- 11: deliver(value)
- 12: if $k = f+1$ then halt

If the sender is correct then it sends m to all in round 1

- By Validity of the underlying send and receive, every correct process will receive \overline{m} by the end of round 1
- By the protocol, every correct process will deliver \overline{m} by the end of round 1

Agreement - 1

Lemma 1:

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 4: receive round k values from all
5: $[fa_{ij}]$ [tallty(n,k)] := $[fa_{ij}]$ [ty(n,k, = 1)] $[faulty(p,k)] := [faulty(p,k - 1)] \cup [q | p]$
- received no value from q in round k} 6: if received value $v \neq ?$ then
- value := v
- deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
- 11: deliver(value)
- 12: if $k = f+1$ then halt

m \neq SF in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that p_0 = sender, $p_r = p$, and in each round k, $1 \le k \le r$, p_{k-1} sent m and p_k received it. Furthermore, all

processes in the sequence are distinct, unless r = 1 and $p_0 = p_1 = \mathsf{sender}$

For any $r \ge 1$, if a process p delivers

Lemma 2:

For any $r \ge 1$, if a process p sets value to SF in round r, then there exist some $j \le r$ and a sequence of distinct processes $q_j, q_{j+1}, \ldots, q_r = p$ such that q_j only receives "?" in

rounds 1 to j, $| \textit{faulty}(q_j, j) | < j$, and in each round k, $j + 1 \le k \le r$, q_{k-1} sends SF to q_k and q_k receives SF

Agreement - 2

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all 3: if value \neq ? then halt
- 4: receive round k values from all
- 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q | p\}$
-
- received no value from q in round k }
6: if received value v ≠ ? then
- $7.$ value $= v$
- 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
11: deliver(value
- deliver(value)
- 12: if $k = f+1$ then halt

Lemma 3:

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Agreement - 2

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
4: receive round k values from all
- 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q | p\}$
- received no value from q in round k}
- 6: if received value $v \neq ?$ then
7: value := v $value = v$
- 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
- 11: deliver(value)
- 12: if $k = f+1$ then halt

Lemma 3:

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Proof

By contradiction Suppose p sets value = m and q sets value = SF

By Lemmas 1 and 2 there exist p_0, \ldots, p_r

But then, $|{\it faulty}(q_j,j)|\geq j$

q_i, \ldots, q_r

with the appropriate characteristics Since q_j did not receive m from process p_{k-1} 1 ≤ k ≤ j in round k q_j must conclude that p_0, \ldots, p_{j-1} are all faulty processes

CONTRADICTION

Agreement - 3

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
4: receive round k values from all
-
- 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q | p\}$
- received no value from q in round k}
- 6: if received value $v \neq ?$ then
7. value = v $value = v$
-
- 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
11: deliver(value
- deliver(value)
- 12: if $k = f+1$ then halt

Agreement - 3

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 4: receive round k values from all
- 5: $|$ faulty(p,k)| := $|$ faulty(p,k 1)|U {q | p received no value from q in round k }
6: if received value v ≠ ? then
- $7.$ value $= v$
- 8: deliver(value)
-
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
10: value :- SE value := SF
- 11: deliver(value)
- 12: if $k = f+1$ then halt
-

Proof

If no correct process ever receives m, then every correct process delivers SF in round f + 1

Let r be the earliest round in which a correct process delivers value \neq SF

-
- By Lemma 3, no (correct) process can set value differently in round r
- \overline{n} In round \overline{r} + 1 \le f + 1, that correct process sends its value to all
- n Every correct process receives and delivers the value in round $r + 1 \le f + 1$
- By Lemma 1, there exists a sequence p_0 , ..., $p_{f+1} = p_r$ of distinct processes
- Consider processes p0, …, pf
- $f + 1$ processes; only f faulty \bullet one of p_0 , ..., p_f is correct-- let it be p_c \odot To send v in round c + 1, p_c must have
	- set its value to v and delivered v in round c < r

CONTRADICTION

Integrity

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? then halt
- 4: receive round k values from all
- 5: $|faulty(p,k)| := |faulty(p,k-1)| \cup \{q | p\}$
- received no value from q in round k }
6: if received value v ≠ ? then
- $7.$ value $= v$
- 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
11: deliver(value
- deliver(value)
- 12: if $k = f+1$ then halt

Integrity

Let |faulty(p,k)| be the set of processes that have failed to send a message to p in any round 1…k

1: if $p =$ sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
-
-
- 3: if value #? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k 1)|U {q | p
received no value from q in round k}
6: if received value v #? then
-
- 7: value := v 8: deliver(value)
- 9: else if $k = f+1$ or $|faulty(p,k)| < k$ then
- 10: value := SF
- 11: deliver(value)
- 12: if $k = f+1$ then halt
- At most one m
	- D Failures are benign, and a process executes at most one deliver event before halting
- \circ If m \neq SF, only if m was broadcast
	- D From Lemma 1 in the proof of Agreement