
The Algorithm

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1
1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do
3: receive Sj from pj

4: V:= V U Sj
decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

Code for process pi :

Termination and
Integrity

Termination
Every correct process
reaches round f + 1
Decides on min(V) --- which is well
defined

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj

4: V:= V U Sj

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

Integrity
At most one value:

 – one decide, and min(V) is unique

Only if it was proposed:

 – To be decided upon, must be in V at round f+1
 – if value = vi, then it is proposed in round 1

 – else, suppose received in round k. By induction:
 – k = 1:
 • by Uniform Integrity of underlying send
 and receive, it must have been sent in round 1
 • by the protocol and because only crash
 failures, it must have been proposed
 – Induction Hypothesis: all values received up to
 round k = j have been proposed
 – k = j+1
 • sent in round j+1 (Uniform Integrity of send
 and synchronous model)
 • must have been part of V of sender at end
 of round j
 • by protocol, must have been received by sender
 by end of round j
 • by induction hypothesis, must have been proposed

Validity

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj

4: V:= V U Sj

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

Validity

Suppose every process proposes

Since only crash model, only can
be sent

By Uniform Integrity of send and
receive, only can be received

By protocol, V={ }

min(V) =

decide()

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj

4: V:= V U Sj

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

v
∗

v
∗

v
∗

v
∗

v
∗

v
∗

Agreement

Lemma 1
For any r ! 1, if a process p
receives a value v in round r,
then there exists a sequence
of processes such
that = v’s proponent,
and in each round ,
,. sends v and receives
it. Furthermore, all processes
in the sequence are distinct.

Proof
By induction on the length of
the sequence

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj

4: V:= V U Sj

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

p0, p1, ... , pr

pr = p

k, 1 ≤ k ≤ r

pk−1 pk

p0

Agreement
Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj

4: V:= V U Sj

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

Agreement

Lemma 2:
In every execution, at the end of round f + 1,
Vi = Vj for every correct processes pi and pj

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj

4: V:= V U Sj

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

Agreement follows from Lemma 2, since
min is a deterministic function

Agreement

Lemma 2:
In every execution, at the end of round f + 1,
Vi = Vj for every correct processes pi and pj

Proof:
• Show that if a correct process has x in its
V at the end of round f + 1, then every
correct process has x in its V at the end of
round f + 1
• Let r be earliest round x is added to the V
of a correct process. Let that process be p
• If r " f, then p sends x in round r + 1 " f
+ 1; every correct process receives x and
adds x to its V in round r + 1
• What if r = f + 1?
• By Lemma 1, there exists a sequence
...... of distinct processes
• Consider processes
• f + 1 processes; only f faulty
• one of is correct, and adds x to
its V before p does it in round r
CONTRADICTION!

Initially V={vi}

To execute propose(vi)

round k, 1 ! k ! f+1

1: send {v in V : pi has not already sent v} to all

2: for all j, 0 ! j ! n-1, j " i do

3: receive Sj from pj

4: V:= V U Sj

decide(x) occurs as follows:

5: if k = f+1 then

6: decide min(V)

Agreement follows from Lemma 2, since
min is a deterministic function

p0, . . . , pf

p0, . . . , pf+1 = p

p0, . . . , pf

A Lower Bound

Theorem

There is no algorithm that solves the
consensus problem in less than
rounds in the presence of crash
failures, if

We consider a special case to
study proof technique

n ≥ f+2

f+1

f

(f =1)

Views
Let # be an execution. The view of process in
. , denoted by , is the subsequence of
computation and message receive events that
occur in together with the state of in the
initial configuration of

p1 p2 p3 p4

p1 p2 p3 p4

from p1 from p4

α|p3

α|pi

pipi

pi

α

α

Similarity
Definition Let and be
two executions of consensus
and let be a correct process
in both and . Execution
is similar to execution with
respect to , denoted

 if

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Similarity
Definition Let and be
two executions of consensus
and let be a correct process
in both and . Execution
is similar to execution with
respect to , denoted

 if

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Similarity
Definition Let and be
two executions of consensus
and let be a correct process
in both and . Execution
is similar to execution with
respect to , denoted

 if

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Lemma If and is
correct, then dec(#1) = dec(#2)

α1 ∼pi
α2 pi

Similarity
Definition Let and be
two executions of consensus
and let be a correct process
in both and . Execution
is similar to execution with
respect to , denoted

 if

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Lemma If and is
correct, then dec(#1) = dec(#2)

α1 ∼pi
α2 pi

The transitive closure of
is denoted .
We say that if there exist
executions such that

α1 ∼pi
α2

α1 ≈ α2

α1 ≈ α2

β1, β2, . . . , βk+1

α1 = β1 ∼pi1
β2 ∼pi2

. . . ,∼pik
βk+1 = α2

Similarity
Definition Let and be
two executions of consensus
and let be a correct process
in both and . Execution
is similar to execution with
respect to , denoted

 if

α1 α2

pi

α1 α2 α1

α2

pi α1 ∼pi
α2

α1|pi = α2|pi

Note If then
decides the same value in
both executions

α1 ∼pi
α2 pi

Lemma If and is
correct, then dec(#1) = dec(#2)

α1 ∼pi
α2 pi

The transitive closure of
is denoted .

We say that if there exist
executions such that

α1 ∼pi
α2

α1 ≈ α2

α1 ≈ α2

β1, β2, . . . , βk+1

α1 = β1 ∼pi1
β2 ∼pi2

. . . ,∼pik
βk+1 = α2

Lemma If then
dec(#1) = dec(#2)

α1 ≈ α2

Single-Failure Case

There is no algorithm that solves the
consensus problem in less than two rounds
in the presence of one crash failure, if ! 3n

The Idea
By contradiction

Consider a one-round execution in which each
process proposes 0. What is the decision value?

Consider another one-round execution in which
each process proposes 1. What is the decision
value?

Show that there is a chain of similar
executions that relate the two executions.

So what?

 s
Definition

 is the execution of the algorithm
in which

no failures occur

processes propose 1

α
i

p0, . . . , pi−1

1

α
n

1

1

1

1

p0

pi−1

pi+1

pi

pn−1

α
0

0

0

0

0

0

p0

pi−1

pi+1

pi

pn−1

α
i+1

p0

pi−1

pi+1

pi

pn−1

1

1

0

0

1

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

α
i

Adjacent s are similar!

Starting from , we build a set of executions
. where as follows:

 is obtained from after removing the
messages that sends to the j-th highest

numbered processors (excluding itself)

α
i

α
i

α
i
j 0 ≤ j ≤ n−1

α
i
j α

i

pi

The executions
p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

0

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

1

…

p0

pi−1

pi+1

pi

pn−1

1

0

0

0

1

α
i

n−1

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

0

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

2

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

βi

n−1
≈

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

n−2

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

n−3

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

0

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

α
i

n−1

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈

≈

βi

0

α
i+1

≈

Indistinguishability

p0

pi−1

pi+1

pi

pn−1

1

0
0

0

1

α
i

p0

pi−1

pi+1

pi

pn−1

1

1
0

0

1

≈ α
i+1

Terminating
Reliable Broadcast

Termination Every correct process eventually delivers
 some message

Validity If the sender is correct and broadcasts a
 message , then all correct processes
 eventually deliver

Agreement If a correct process delivers a message ,
 then all correct processes eventually
 deliver

Integrity Every correct process delivers at most one
 message, and if it delivers " SF, then
 some process must have broadcast

m

m

m

m

m

m

TRB for benign failures

Sender in round 1:

1: send m to all

Process p in round k, 1 ! k ! f+1

1: if delivered m in round k-1 and p " sender then

2: send m to all

3: halt

4: receive round k messages

5: if received m then

6: deliver(m)

7: if k = f+1 then halt

8: else if k = f+1

9: deliver(SF)

10: halt

Terminates in + 1 rounds

 How can we do better?
find a protocol whose
round complexity is
proportional to –the
number of failures that
actually occurred–rather
than to ..–the max
number of failures that
may occur

f

t

f

Early stopping:
the idea

Suppose processes can detect the set of
processes that have failed by the end of
round

Call that set

If there can be no active
dangerous chains, and can safely deliver SF

faulty(p, i)

|faulty(p, i)| < i

p

i

Early Stopping:
The Protocol

Let be the set of processes that have failed to send a message to
p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt

4: receive round k values from all

5: {q | p received no value from q in round k}

6: if received value v " ? then

7: value := v

8: deliver(value)

9: else if k = f+1 or then

10: value := SF

11: deliver(value)

12: if k = f+1 then halt

|faulty(p, k)| := |faulty(p, k − 1)|∪

|faulty(p, k)| < k

|faulty(p, k)|

Termination

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Termination

If in any round a process
receives a value, then it
delivers the value in that
round

If a process has received
only “?” for rounds,
then it delivers SF in
round

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

f+1

f+1

Validity

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Validity

If the sender is correct then it
sends to all in round 1

By Validity of the underlying
send and receive, every correct
process will receive by the
end of round 1

By the protocol, every correct
process will deliver by the
end of round 1

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

m

m

m

Agreement - 1
Lemma 1:

For any r ! 1, if a process p delivers
. $ SF in round r, then there exists a
sequence of processes
such that = sender, , and in
each round k, 1 " k " r, sent
and received it. Furthermore, all
processes in the sequence are distinct,
unless r = 1 and sender

Lemma 2:

For any r ! 1, if a process p sets
value to SF in round r, then there
exist some j " r and a sequence of
distinct processes

such that only receives “?” in

rounds 1 to j, , and in
each round k, j + 1 " k " r,
sends SF to and receives SF

p0, p1, . . . , pr

p0 pr = p

pk−1

pk

p0 = p1 =

m

m

qj , qj+1, . . . , qr = p

qj

qk qk

qk−1

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

|faulty(qj , j)| < j

Agreement - 2
Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Lemma 3:
It is impossible for p and q, not necessarily
correct or distinct, to set value in the same
round r to m and SF, respectively

Agreement - 2
Proof

By contradiction
Suppose p sets value = m and q sets
value = SF

By Lemmas 1 and 2 there exist

with the appropriate characteristics

Since did not receive m from
process 1 " k " j in round k

 must conclude that
are all faulty processes

But then,

CONTRADICTION

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Lemma 3:
It is impossible for p and q, not necessarily
correct or distinct, to set value in the same
round r to m and SF, respectively

p0, . . . , pr

qj , . . . , qr

|faulty(qj , j)| ≥ j

p0, . . . , pj−1

pk−1

qj

qj

Agreement - 3
Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Agreement - 3
Let r be the earliest round in which a correct
process delivers value $ SF

r " f

By Lemma 3, no (correct) process can set
value differently in round r
In round r + 1 " f + 1, that correct process
sends its value to all
Every correct process receives and delivers
the value in round r + 1 " f + 1

r = f + 1
By Lemma 1, there exists a sequence p0, …,

pf+1 = pr of distinct processes

Consider processes p0, …, pf

f + 1 processes; only f faulty
one of p0, …, pf is correct-- let it be pc

To send v in round c + 1, pc must have

set its value to v and delivered v in
round c < r

CONTRADICTION

Proof
If no correct process ever receives m, then every

correct process delivers SF in round f + 1

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Integrity
Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

Integrity
At most one m

Failures are benign, and
a process executes at
most one deliver event
before halting

If m $ SF, only if m
was broadcast

From Lemma 1 in the
proof of Agreement

Let |faulty(p,k)| be the set of processes that have
failed to send a message to p in any round 1…k

1: if p = sender then value := m else value:= ?

Process p in round k, 1 ! k ! f+1

2: send value to all
3: if value " ? then halt
4: receive round k values from all
5: |faulty(p,k)| := |faulty(p,k - 1)|U {q | p
 received no value from q in round k}
6: if received value v " ? then
7: value := v
8: deliver(value)
9: else if k = f+1 or |faulty(p,k)| < k then
10: value := SF
11: deliver(value)
12: if k = f+1 then halt

