
The Part-Time Parliament

Parliament determines
laws by passing sequence
of numbered decrees
Legislators can leave and
enter the chamber at
arbitrary times
No centralized record of
approved decrees–instead,
each legislator carries a
ledger

Government 101

No two ledgers contain contradictory
information

If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

any decree proposed by a legislator would
eventually be passed
any passed decree would appear on the
ledger of every legislator

Supplies
Each legislator receives

ledger

pen with indelible ink

scratch paper

hourglass

lots of
messengers

Back to the future

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not
corrupted

The Game: Consensus

SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen

A process never learns that a value has been
chosen unless it has been

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it

The Players

Proposers

Acceptors

Learners

Choosing a value

Have a single acceptor

Choosing a value

Have a single acceptor
majority

of

Using a majority set guarantees
that at most one value is chosen

Accepting a value

Suppose only one proposer proposes a single
value

assume no failures

that value should be accepted!

Accepting a value

Suppose only one proposer proposes a single
value

assume no failures

that value should be accepted!

P1: Acceptors must accept
 first received proposal

Accepting a value

Choosing a value requires a majority of
acceptors to accept that value

What if we have multiple proposers, each
proposing a different value?

Acceptors must accept multiple proposals (each
identified by pair (n, value))

P1: Acceptors must accept
 first received proposal

?

Guaranteeing
uniqueness

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is chosen
has value v

How do we implement P2?

What about: If a proposal with value v is
chosen, then every higher-numbered proposal
accepted by any acceptor has value v

It satisfies P1 and P2, but it not implementable
in an asynchronous system!

Another take on P2

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

Another take on P2

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

If a proposal with value v is chosen, then
every higher-numbered proposal issued by any
proposer has value v

Implementing P2

If a proposal with value v is chosen, then
every higher-numbered proposal issued by
any proposer has value v

How would we enforce this? Use as inspiration
a possible proof!

Assume some (m, v) has been chosen by a set C of acceptors
Assume, by induction, that all proposal issued with numbers in the range
m..n-1 proposed v
Then, any acceptor that accepts a proposal with number m..n-1 has value
v
The proposal with number n has value v if the following invariant holds:
Let S be a majority set. of acceptors When a proposer issues a value v
with number n, either (a) no member of S has accepted a value with
number less than

Implementing P2

Achieved by enforcing the following invariant

For any v and n, if a proposal with value v and pid n is
issued, then there is a majority-set S of acceptors such
that one of the following holds:

no acceptor in S has accepted any proposal
numbered less than n

v is the value of the highest-numbered proposal
among all proposal numbered less than n accepted
by the acceptors in S

If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

 The proposer’s protocol

1. A proposer chooses a new n and sends <prepare,n> to
each member of some set of acceptors, asking it to
respond with:

a. A promise never again to accept a proposal numbered less
than n, and

b. The accepted proposal with highest number less than n if
any.

2. If proposer receives a response from a majority of
acceptors, then it can issue <accept(n,v)> where v is the
value of the highest numbered proposal among the
responses, or is any value selected by the proposer if
responders returned no proposals

 The acceptor’s protocol

1. Can ignore any request without violating safety

2. Can always respond to prepare messages

3. Can respond to <accept(n,v)> iff it has not
promised not to–i.e. it has not responded to
<prepare,n’> with n’ > n

Acceptor must remember
highest numbered proposal ever accepted
highest numbered prepare request to which it
responded

Learning chosen values

Once a value is chosen, it is forwarded to the
learners. Many strategies are possible:

i. Each acceptor informs each learner

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between

Liveness

Progress is not guaranteed:

n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e

All proposers are equal,
but some more so than others

Elect a distinguished proposer

Can’t be done reliably in asynchronous systems,
so…

real time

randomization

Arbitrary failures with
message authentication

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Process can send
conflicting messages
to different receivers

Messages are signed
with unforgeable
signatures

Valid messages

A valid message m has the following form:

in round 1:
 . (is signed by the sender)

in round r > 1, if received by p from q:
 where

 = sender;
 are distinct from each other and from p
message has not been tampered with
p1, . . . , pr

p1 pr = q

< m : s >

<m : p1 : p2 : . . . : pr >

m

AFMA: The Idea

A correct process p discard all non-valid messages
it receives
If a message is valid,

it “extracts” the value from the message
it relays the message, with its own signature
appended

At round f + 1:
if it extracted exactly one message, p delivers it
otherwise, delivers SF

AFMA: The Protocol
sender s in round 0:
1: extract m
sender in round 1:
2: send < m:s > to all
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message < m:p1: … :pk-1> in round k - 1 and

 p ≠ sender then
4: send < m:p1: … :pk-1:p> to all

5: receive round k messages from all processes
6: for each valid round k message < m:p1: … :pk-1:pk> received by p

7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly one m then
11: deliver(m)
12: else deliver(SF)
13: halt

Termination

In round , every
correct process delivers
either or SF and then
halts

sender s in round 0:
1: extract m
sender in round 1:
2: send < m:s > to all
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message <m:p1: … :pk-1>

in round k - 1 and p ≠ sender then
4: send <m:p1: … :pk-1:p> to all
5: receive round k messages from all processes
6: for each valid round k message < m:p1: … :pk-1:pk>

received by p
7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly

one m then
11: deliver(m)
12: else deliver(SF)
13: halt

m

f+1

Agreement

Lemma If a correct process extracts
m, then every correct process eventually
extracts m

Proof
Let r be the earliest round in which some correct
process extracts m. Let that process be p.
• if p is the sender, then in round 1 p sends a valid
message to all. All correct processes extract message in
round 1
• otherwise, p has received in round r a message

< m:p1:p2: … :pr >

• Claim: p1, p2, …, pr are all faulty

– true for p1 = s

– Suppose pj, 1 ≤ j ≤ r, were correct

• pj signed and relayed message in round j

• pj extracted message in round j - 1

CONTRADICTION
• If r ≤ f, p will send a valid message

< m:p1:p2: … :pr:p >

in round r + 1 ≤ f + 1 and every correct process
will extract it in round r + 1 ≤ f + 1

• If r = f + 1, by Claim above, p1, p2, …, pf+1 faulty

– At most f faulty processes
– CONTRADICTiON

sender s in round 0:
1: extract m
sender in round 1:
2: send < m:s > to all
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message <m:p1: … :pk-1>

in round k - 1 and p ≠ sender then
4: send <m:p1: … :pk-1:p> to all
5: receive round k messages from all processes
6: for each valid round k message < m:p1: … :pk-1:pk>

received by p
7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly

one m then
11: deliver(m)
12: else deliver(SF)
13: halt

Validity

From Agreement and the
observation that the
sender, if correct,
delivers its own message.

sender s in round 0:
1: extract m
sender in round 1:
2: send < m:s > to all
Process p in round k, 1 ≤ k ≤ f+1
3: if p extracted m from a valid message <m:p1: … :pk-1>

in round k - 1 and p ≠ sender then
4: send <m:p1: … :pk-1:p> to all
5: receive round k messages from all processes
6: for each valid round k message < m:p1: … :pk-1:pk>

received by p
7: if p has not previously extracted m then
8: extract m
9: if k = f+1 then
10: if in the entire execution p has extracted exactly

one m then
11: deliver(m)
12: else deliver(SF)
13: halt

TRB for
arbitrary failures

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

Fail-stop

Srikanth, T.K., Toueg S.
Simulating Authenticated
Broadcasts to Derive Simple
Fault-Tolerant Algorithms
Distributed Computing 2 (2),
80-94

AF: The Idea

Identify the essential properties of message
authentication that made AFMA work

Implement these properties without using
message authentication

AF: The Approach

Introduce two primitives
broadcast(p,m,i) (executed by p in round i)
accept(p,m,i) (executed by q in round j ≥ i)

Give axiomatic definitions of broadcast and accept
Derive an algorithm that solves TRB for AF using
these primitives
Show an implementation of these primitives that
does not use message authentication

Properties of
broadcast and accept

Correctness If a correct process executes
broadcast(p,m,i) in round , then all correct
processes will execute accept(p,m,i) in round

Unforgeability If a correct process q executes
accept(p,m,i) in round j ≥ i, and is correct, then
did in fact execute broadcast(p,m,i) in round

Relay If a correct process q executes
accept(p,m,i) in round j ≥ i, then all correct
processes will execute accept(p,m,i) by round j + 1

p

p

i

i

p

i

AF: The Protocol - 1
sender s in round 0:
0: extract m

sender s in round 1:
1: broadcast (s,m,1)
Process p in round k, 1 ≤ k ≤ f + 1
2: if p extracted m in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k in rounds 1 through k

(where (i) qi distinct from each other and from p, (ii) one qi is s, and
(iii) 1 ≤ ji ≤ k) and p has not previously extracted m then

6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly one m then
9: deliver(m)
10: else deliver(SF)
11: halt

Termination

In round , every
correct process delivers
either or SF and then
halts

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k in

rounds 1 through k
(where (i) qi distinct from each other and from
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k)

 and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly

one m then
9: deliver(m)
10: else deliver(SF)
11: halt

f+1

m

Agreement - 1
Proof

Let r be the earliest round in which some correct
process extracts m. Let that process be p.

if r = 0, then p = s and p will execute broadcast(s,m,1)
in round 1. By CORRECTNESS, all correct processes
will execute accept (s,m,1) in round 1 and extract m

if r > 0, the sender is faulty. Since p has extracted
m in round r, p has accepted at least r triples with
properties (i), (ii), and (iii) by round r

r ≤ f By RELAY, all correct processes will have
accepted those r triples by round r + 1
p will execute broadcast(p,m,r + 1) in round r + 1
By CORRECTNESS, any correct process other than
p, q1, q2,…,qr will have accepted r + 1 triples
(qk,m,jk), 1 ≤ jk ≤ r + 1, by round r + 1

q1, q2,…,qr,p are all distinct

every correct process other than q1, q2,…,qr,p will
extract m
p has already extracted m; what about q1, q2,…,qr?

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k in

rounds 1 through k
(where (i) qi distinct from each other and from
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k)

 and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly

one m then
9: deliver(m)
10: else deliver(SF)
11: halt

Lemma
If a correct process extracts m, then

every correct process eventually extracts m

Agreement - 2

 Claim: are all faulty

Suppose were correct

p has accepted in round

By UNFORGEABILITY, executed
broadcast in round

 extracted m in round

CONTRADICTION

Case 2: r = f + 1
Since there are at most f faulty processes,
some process in is correct

By UNFORGEABILITY, executed
broadcast in round

 has extracted m in round

CONTRADICTION

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k in

rounds 1 through k
(where (i) qi distinct from each other and from
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k)

 and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly

one m then
9: deliver(m)
10: else deliver(SF)
11: halt

ql q1, q2, . . . , qf+1

(ql,m, jl) jl ≤ r

ql jl−1 < f + 1

jk−1 < rqk

jk

ql

(qk,m, jk)

qk

qk

(qk,m, jk) jk ≤ r

q1, q2, . . . , qr

Validity

A correct sender executes broadcast
in round 1

By CORRECTNESS, all correct processes
execute accept in round 1 and
extract

In order to extract a different message
. , a process must execute accept
in some round

By UNFORGEABILITY, and because s is
correct, no correct process can extract
.

All correct processes will deliver

sender s in round 0:
0: extract m
sender s in round 1:
1: broadcast (s,m,1)

Process p in round k, 1 ≤ k ≤ f+1
2: if p extracted m in round k - 1 and p ≠ sender then
4: broadcast (p,m,k)
5: if p has executed at least k accept(qi,m,ji) 1 ≤ i ≤ k in

rounds 1 through k
(where (i) qi distinct from each other and from
p, (ii) one qi is s, and (iii) 1 ≤ ji ≤ k)

 and p has not previously extracted m then
6: extract m
7: if k = f+1 then
8: if in the entire execution p has extracted exactly

one m then
9: deliver(m)
10: else deliver(SF)
11: halt m

m
′ != m

i ≤ f + 1

(s,m, 1)
m

(s,m′
, 1)

(s,m, 1)

m
′

