
PBFT:
A Byzantine Renaissance

Practical Byzantine Fault-Tolerance (CL99, CL00)
first to be safe in asynchronous systems
live under weak synchrony assumptions -Byzantine Paxos!
fast! PBFT uses MACs instead of public key cryptography
uses proactive recovery to tolerate more failures over
system lifetime: now need no more than failures in a
“window”

BASE (RCL 01)
uses abstraction to reduce correlated faults

f

Curtis Dunham <cdunham@cs.utexas.edu>

The Setup

Asynchronous system
Unreliable channels

System Model

Always safe
Live during periods of
synchrony

System Goals

Public/Private key pairs
MACs
Collision-resistant hashes
Unbreakable

Crypto

Service

Byzantine clients
Up to Byzantine servers
 total servers

f

N >3f

The General Idea

Primary-backup + quorum system
executions are sequences of views!! ! !
clients send signed commands ! ! ! ! ! ! !
to primary of current view
primary assigns sequence ! ! ! ! ! !
!number to client’s command
primary writes sequence ! ! ! ! ! !
!number to the register !! ! ! ! !
!implemented by the quorum system ! ! !
!defined by all the servers ! ! ! ! ! !
!(primary included)

c

Primary

What could possibly
go wrong?

The Primary could be faulty!
could ignore commands; assign same sequence number to different requests; skip
sequence numbers; etc

Backups monitor primary’s behavior and trigger view changes to
replace faulty primary

Backups could be faulty!
could incorrectly store commands forwarded by a correct primary

use dissemination Byzantine quorum systems [MR98]

Faulty replicas could incorrectly respond to the client!

What could possibly
go wrong?

The Primary could be faulty!
could ignore commands; assign same sequence number to different requests; skip
sequence numbers; etc

Backups monitor primary’s behavior and trigger view changes to
replace faulty primary

Backups could be faulty!
could incorrectly store commands forwarded by a correct primary

use dissemination Byzantine quorum systems [MR98]

Faulty replicas could incorrectly respond to the client!
Client waits for matching replies before accepting responsef+1

What could possibly
go wrong?

The Primary could be faulty!
could ignore commands; assign same sequence number to different requests; skip
sequence numbers; etc

Backups monitor primary’s behavior and trigger view changes to
replace faulty primary

Backups could be faulty!
could incorrectly store commands forwarded by a correct primary

use dissemination Byzantine quorum systems [MR98]

Faulty replicas could incorrectly respond to the client!
Client waits for matching replies before accepting response

Carla Bruni could start singing!

f+1

Me, or your lying eyes?

Algorithm steps are justified by certificates

Sets (quorums) of signed messages from distinct
replicas proving that a property of interest holds

With quorums of size at least
Any two quorums intersect in at least one correct
replica
Always one quorum contains only non-faulty
replicas

2f+1

PBFT: The site map
Normal operation

How the protocol works in the absence of failures -
hopefully, the common case

View changes
How to depose a faulty primary and elect a new one

Garbage collection
How to reclaim the storage used to keep certificates

Recovery
How to make a faulty replica behave correctly again

Normal Operation

Three phases:
Pre-prepare ! assigns sequence number to request
Prepare ! ensures fault-tolerant consistent
! ! ordering of requests within views
Commit ! ensures fault-tolerant consistent
! ! ordering of requests across views

Each replica maintains the following state:
Service state
A message log with all messages sent or received
An integer representing ’s current view

i

i

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >,o,t,c
σc

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >
σc

,o,t,c

state machine operation

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >
σc

,o,t,c

timestamp

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >
client id

,o,t,c
σc

Client issues request

Backup 1

Backup 2

Backup 3

Primary

<REQUEST >,o,t,c

client signature

σc

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
,v,n,d m

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

View

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

Sequence number

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
,v,n,d m

client’s request

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

digest of m

PRE-PREPARE is well formed
 is in view
 has not accepted another PRE-PREPARE
for with a different
 is between two water-marks and
(to prevent sequence number exhaustion)

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m

Correct backup
! accepts
PRE-PREPARE if:

i

i v

i

v, n d

n L H

,v,n,d

Pre-prepare

Backup 1

Backup 2

Backup 3

Primary

Primary multicasts <<PRE-PREPARE > , >σp
m,v,n,d

Each accepted PRE-PREPARE message is stored in the
accepting replica’s message log (including the Primary’s)

Prepare

Backup 1

Backup 2

Backup 3

Primary

Backup multicasts <PREPARE >

Pre-prepare phase

i σi
,v,n,d,i

Correct replica
accepts PREPARE if:

i
PREPARE is well formed
 is in view
 is between two water-marks and
i v

n L H

Prepare

Backup 1

Backup 2

Backup 3

Primary

Backup multicasts <PREPARE >

Pre-prepare phase

i σi
,v,n,d,i

Replicas that send PREPARE accept seq.# for in view
Each accepted PREPARE message is stored in the accepting
replica’s message log

n m v

Prepare Certificate
P-certificates ensure total order within views

Prepare Certificate
P-certificates ensure total order within views

Replica produces P-certificate iff its log holds:
The request
A PRE-PREPARE for in view with sequence number
 PREPARE from different backups that match the pre-
prepare

(m,v,n)

m

m v n

2f

Prepare Certificate
P-certificates ensure total order within views

Replica produces P-certificate iff its log holds:
The request
A PRE-PREPARE for in view with sequence number
 PREPARE from different backups that match the pre-
prepare

A P-certificate means that a quorum agrees with
assigning sequence number to in view

NO two non-faulty replicas with !P-certificate
! and P-certificate

(m1,v,n)
(m2,v,n)

(m,v,n)

m

m v n

2f

(m,v,n)
n m v

P-certificates
are not enough

A P-certificate proves that a majority of
correct replicas has agreed on a sequence
number for a client’s request

Yet that order could be modified by a new
leader elected in a view change

Commit

Backup 1

Backup 2

Backup 3

Primary

After collecting a P-certificate,
replica multicasts <COMMIT >

Prepare phasePre-prepare phase Commit phase

,v,n,d,ii
σi

Commit Certificate
C-certificates ensure total order across views

can’t miss P-certificate during a view change

A replica has a C-certificate if:
it had a P-certificate
log contains matching COMMIT
from different replicas (including itself)

Replica executes a request after it gets C-
certificate for it, and has cleared all requests
with smaller sequence numbers

2f+1

(m,v,n)

(m,v,n)

Reply

Backup 1

Backup 2

Backup 3

Primary

After executing request,
replica replies with

Prepare phasePre-prepare phase Commit phase Reply phase

<REPLY > ,v,t,c,i,r
σi

i

Aux armes les backups!
A disgruntled backup mutinies:

stops accepting messages (but for VIEW-CHANGE
& NEW-VIEW)
multicasts <VIEW-CHANGE >
 contains all P-Certificates known to replica

A backup joins mutiny after seeing
distinct VIEW-CHANGE messages

Mutiny succeeds if new primary collects a
new-view certificate , indicating support
from distinct replicas (including itself)

,v+1,P
σi

2f+1

V

P i

f+1

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate

v+1

v+1

V

V

mod Np̂

h

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate

v+1

v+1

V

V

mod Np̂

h

h

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate
two sets and :

If there is a P-certificate for in ,
! ! ! ! ! <PRE-PREPARE >
Otherwise, if but no P-certificate:
! ! ! <PRE-PREPARE >

v+1

v+1

V

V

n ≤ h

mod N

n,m V

O = O∪ ,v+1,n,m

p̂

σp̂

O N

h

N = N ∪ ,v+1,n,null
σp̂

n ≤ h

On to view :
the new primary

The “primary elect” (replica)
extracts from the new-view certificate :

the highest sequence number of any message
for which contains a P-certificate
two sets and :

If there is a P-certificate for in ,
! ! ! ! ! <PRE-PREPARE >
Otherwise, if but no P-certificate:
! ! ! <PRE-PREPARE >

 multicasts <NEW-VIEW >

v+1

v+1

V

V

n ≤ h

mod N

n,m V

O = O∪ ,v+1,n,m

p̂

σp̂

O N

h

N = N ∪ ,v+1,n,null
σp̂

p̂ ,v+1,V,O,N
σp̂

n ≤ h

On to view :
the backup

 Backup accepts NEW-VIEW message for if
it is signed properly
it contains in a valid VIEW-CHANGE messages for
it can verify locally that is correct (repeating
the primary’s computation)

Adds all entries in to its log (so did !)

Multicasts a PREPARE for each message in

Adds all PREPARE to log and enters new view

V v+1

v+1

O

O

v+1

O

p̂

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >

i k

,n,d,i

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >

i k

,n,d,i

last executed request
reflected in state

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >

i k

,n,d,i

state’s digest

Garbage Collection

For safety, a correct replica keeps in log
messages about request o until it

o has been executed by a majority of correct
replicas, and
this fact can proven during a view change

Truncate log with Stable Certificate
Each replica periodically (after processing
requests) checkpoints state and multicasts
<CHECKPOINT >
 CHECKPOINT messages are a proof of the
checkpoint’s correctness

i k

2f+1

,n,d,i

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

sequence number of
last stable checkpoint

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

last stable checkpoint

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >,v+1,n,s,C,P,i
σi

stable certificate for s

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >
σi

,v+1,n,s,C,P,i

P certificates for requests
with sequence number > n

View change, revisited

A disgruntled backup multicasts

<VIEW-CHANGE >

 multicasts

<NEW-VIEW >

,v+1,n,s,C,P,i
σi

p̂

,v + 1,n,V,O,N σp̂

sequence number of
last stable checkpoint

Citius, Altius, Fortius:
Towards deployable BFT

Reducing the costs of BFT replication

Addressing confidentiality

Reducing complexity

Reducing the costs of
BFT replication

Who cares? Machines are cheap...

Replicas should fail independently in software,
not just hardware

How many independently failing
implementations of non-trivial services do
actually exist?

Back the old conundrum

. . .

A: voter
and client
share fate!

Not so fast...

V

Not so fast...

V

Not so fast...

V

(

No confidentiality!

Rethinking
State Machine Replication
Not Agreement + Order

but rather Agreement on Order + Execution

Rethinking
State Machine Replication
Not Agreement + Order

but rather Agreement on Order + Execution

Benefits:

3f+1 state machine replicas
2f+1

Rethinking
State Machine Replication
Not Agreement + Order

but rather Agreement on Order + Execution

Benefits:

3f+1 state machine replicas

Replication hurts confidentiality

2f+1

helps

Separation reduces
replication costs

Not all nodes are created equal!
Nodes in E: expensive

(different across applications and within same application)
Nodes in A: cheap

(simple and reusable across applications)

A E

V Execution
ClusterAgreement

Cluster 2f+1
3g+1

Separation enables
confidentiality

Three design principles:
E

A

Separation enables
confidentiality

Three design principles:

1. Use redundant filters for
fault tolerance

2. Restrict communication

3. Eliminate nondeterminism

E

A
h+1

PF h+1

Privacy Firewall guarantees
A EPF

=
V

Correct
node

 Output-set confidentiality
! Output sequence through correct cut is a legal
! sequence of outputs produced by a correct node
! accessed trough an asynchronous, unreliable link

correct cut

asynchronous
and unreliable Zyzzyva

Why then another
BFT protocol?

Complex decision tree hampers BFT adoption

High
contention?

Low
latency?

Replicas
" 5f+1?

NoYes

Yes No

Yes No

PBFT

PBFT

Q/UHQ

“Simplify, simplify”
H.D. Thoreau

High
contention?

Low
latency?

Replicas
" 5f+1?

NoYes

Yes No

Yes No

PBFT

PBFT

Q/UHQ

“Simplify, simplify”
H.D. Thoreau

One protocol that matches or tops its competitors in

✓ latency ✓throughput ✓cost of replication

BFT?

Yes

Zyzzyva

Replica coordination

All correct replicas execute the same
sequence of commands

For each received command , correct replicas:

Agree on ’s position in the sequence

Execute in the agreed upon order

Replies to the client

c

c

c

How it is done now

Command

 Agreement

Voter

 Execution

How Zyzzyva does it

Command

Voter

 Execution Agreement

Stability

RSM Safety

Correct clients only
process replies to
stable commands

 RSM Liveness

All commands issued by
correct clients eventually
become stable and elicit a
reply

A command is stable at a replica once its
position in the sequence cannot change

Enforcing safety

RSM safety requires:

Correct clients only process replies to stable
commands

...but RSM implementations enforce instead:

Correct replicas only execute and reply to
commands that are stable

Service performs an output commit with each
reply

Speculative BFT:
“Trust, but Verify”

Insight: output commit at the client,! ! !
! ! not at the service!

Replicas execute and reply to a command
without knowing whether it is stable

trust order provided by primary

no explicit replica agreement!

Correct client, before processing reply, verifies
that it corresponds to stable command

if not, client takes action to ensure liveness

Verifying stability
Necessary condition for stability in Zyzzyva:
A command can become stable only if a majority of
correct replicas agree on its position in the sequence

Client can process a response for iff:
a majority of correct replicas agrees on ’s position
the set of replies is incompatible, for all possible
future executions, with a majority of correct
replicas agreeing on a different command holding
! ’s current position

c

c

c

c

Command History

 = a hash of the sequence of the first
commands executed by replica

On receipt of a command from the primary,
replica appends to its command history

Replica reply for includes:
the application-level response
the corresponding command history

Hi,k k

i

c

c

c

Case 1: Unanimity

Client processes response if all replies match:

Voter

c

〈c, k〉

〈c, k〉

〈c, k〉

〈r1, H1,k〉

〈r2, H2,k〉

〈r3, H3,k〉

〈r4, H4,k〉

r1 = . . . = r4∧H1,k = . . . = H4,k

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

c

c c

c

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

c

c c

x

Safe?

✓ A majority of correct replicas agrees on ’s
position (all do!)

If primary fails

New primary determines ’s position by
asking replicas for their

✓ It is impossible for a majority of correct
replicas to agree on a different command for
! ’s position

c

c

n−f H

c

Case 2: A majority of
correct replicas agree

At least replies match

Voter

c

〈c, k〉

〈c, k〉

〈c, k〉

〈r1, H1,k〉

〈r2, H2,k〉

〈r3, H3,k〉

2f+1

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines k-th command by
asking replicas for their

c

n−f H

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c c

x

k

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

x

x

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

c

c c

x

k

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines -th command by
asking replicas for their

c

n−f H

x

x

x

k

x

Safe?

✓ A majority of correct replicas agrees on ’s
position

If primary fails

New primary determines k-th command by
asking replicas for their

๏ Not safe!

c

n−f H

Case 2: A majority of
correct replicas agree

Client sends to all a commit certificate
containing matching histories

Voter

c

〈c, k〉

2f+1

〈ri, Hi,k〉

CC ≡ 〈H1,k, . . . , H4,k〉

Case 2: A majority of
correct replicas agree

Client processes response if it receives
at least acks

Voter

c

〈c, k〉

〈r1, H1,k〉

2f+1

CC
acks

Safe?
Certificate proves that a majority of correct
replicas agreed on ’s position

If primary fails

New primary determines k-th command by
contacting replicas

This set contains at least one correct
replica with a copy of the certificate

✓ Incompatible with a majority backing a
different command for that position

n−f

c

Stability and
command histories

Stability depends on matching command histories

Stability is prefix-closed:

If a command with sequence number is
stable, then so is every command with
sequence number

n

n
′
< n

Case 3: None of the above

Fewer than replies match

Clients retransmits to all replicas-hinting
primary may be faulty

Voter

c

〈c, k〉

〈c, k〉

〈c, k〉

〈r1, H1,k〉

〈r2, H2,k〉

2f+1

c

Zyzzyva recap

Output commit at the client, not the service

Replicas execute requests without explicit
agreement

Client verifies if response corresponds to
stable command

At most 2 phases within a view to make
command stable

The Case of the
Missing Phase

Client processes response if it receives at least!!
! matching replies after commit phase

Command

Voter

Pre-prepare Prepare Commit

f+1

The Case of the
Missing Phase

Unanimity

Command

Voter

Pre-prepare

The Case of the
Missing Phase

Majority

Command

Voter

Pre-prepare Prepare

Majority

The Case of the
Missing Phase

Command

Voter

Pre-prepare Prepare Commit

Where did the third phase go?

Why was it there to begin with?

BFT

View-Change:
replacing the primary

In PBFT, a replica that suspects primary is faulty
goes unilaterally on strike

Stops processing messages in the view
Third “Commit” phase needed for liveness

View-Change:
replacing the primary

In PBFT, a replica that suspects primary is faulty
goes unilaterally on strike

Stops processing messages in the view
Third “Commit” phase needed for liveness

In Zyzzyva, the replica goes on “Technion strike”
Broadcasts “I hate the primary” and keeps on working
Stops when sees enough hate mail to ensure all
correct replica will stop as well

Extra phase is moved to the uncommon case

Faulty clients
can’t affect safety

Faulty clients cannot create inconsistent
commit certificates

Clients cannot fabricate command
histories, as they are signed by replicas

It is impossible to generate a valid commit
certificate that conflicts with the order of
any stable request

Stability is prefix closed!

“Olly Olly Oxen Free!”
or, faulty clients can’t affect liveness

“Olly Olly Oxen Free!”
or, faulty clients can’t affect liveness

Faulty client omits to send CC for

Replicas commit histories are unaffected!

Later correct client who establishes is
stable “frees” as well

Stability is prefix closed

c

c

c
′
> c

Optimizations

Checkpoint protocol to garbage collect histories

Optimizations include:

Replacing digital signatures with MAC

Replicating application state at only
replicas

Batching

Zyzzyva5

2f+1

Batching Batching

Only one history digest for all requests in
the batch-amortizes crypto operations

Throughput

Best
case

PBFT 62K

QU 24K

HQ 15K

Zyzzyva 80K

Throughput

Best
case

Faulty
Client

Client
Flood

Faulty
Primary

Faulty
Replica

PBFT 62K 0 crash 1k 250

QU 24K 0 crash NA 19K

HQ 15K NA 4.5K NA crash

Zyzzyva 80K 0 crash crash 0

BFT: From Z To A

Zyzzyva

BFT: From Z To A

Aardvark
Making Byzantine

Fault Tolerant Systems
Tolerate Byzantine Faults

Paved with
good intentions

No BFT protocol should rely on synchrony for safety

FLP: No consensus protocol can be both safe and live in an
asynchronous system

All one can guarantee is eventual progress

Paved with
good intentions

No BFT protocol should rely on synchrony for safety

FLP: No consensus protocol can be both safe and live in an
asynchronous system

All one can guarantee is eventual progress

“Handle normal and worst case separately as a rule,
because the requirements for the two are quite different:
 the normal case must be fast;
 the worst case must make some progress”
-- Butler Lampson, “Hints for Computer System Design”

Maximize performance when

the network is synchronous

all clients and servers behave correctly

While remaining

safe if at most servers fail

eventually live

The road more traveled

f

The Byzantine Empire
(565 AD)

Synchronous,
no failures

Synchronous,
with faults!

Asynchronous

The Byzantine Empire
(circa 2009 AD)

Synchronous,
with or without

failures

Asynchronous

Misguided

Dangerous

Futile

Maximize performance when

the network is synchronous

all clients and servers behave correctly

While remaining

safe if at most servers fail

eventually live

Recasting the problem

f

Recasting the problem

Misguided

it encourages systems that fail to deliver BFT

Dangerous

Futile

Recasting the problem

Misguided

it encourages systems that fail to deliver BFT

Dangerous

it encourages fragile optimizations

Futile

Recasting the problem

Misguided

it encourages systems that fail to deliver BFT

Dangerous

it encourages fragile optimizations

Futile

it yields diminishing return on common case

