
The Cost of Recovery in
Message Logging Protocols

Sriram Rao, Lorenzo Alvisi, and Harrick M. Vin

AbstractÐPast research in message logging has focused on studying the relative overhead imposed by pessimistic, optimistic, and

causal protocols during failure-free executions. In this paper, we give the first experimental evaluation of the performance of these

protocols during recovery. Our results suggest that applications face a complex trade-off when choosing a message logging protocol

for fault tolerance. On the one hand, optimistic protocols can provide fast failure-free execution and good performance during recovery,

but are complex to implement and can create orphan processes. On the other hand, orphan-free protocols either risk being slow during

recovery, e.g., sender-based pessimistic and causal protocols, or incur a substantial overhead during failure-free execution, e.g.,

receiver-based pessimistic protocols. To address this trade-off, we propose hybrid logging protocols, a new class of orphan-free

protocols. We show that hybrid protocols perform within two percent of causal logging during failure-free execution and within two

percent of receiver-based logging during recovery.

Index TermsÐDistributed computing, fault tolerance, log-based rollback recovery, pessimistic protocols, optimistic protocols, causal

protocols, hybrid protocols.

æ

1 INTRODUCTION

MESSAGE-LOGGING protocols, for example, [2], [3], [6], [8],
[11], [12], [19], [20], are popular techniques for

building systems that can tolerate process crash failures.
These protocols are built on the assumption that the state of
a process is determined by its initial state and by the
sequence of messages it delivers. In principle, a crashed
process can be recovered by 1) restoring the process to its
initial state and 2) rolling it forward by replaying to it
messages in the same order in which they were delivered
before the crash. In practice, message logging protocols
limit the extent of roll-forward by having each process
periodically save its local state in a checkpoint. The delivery
order of each message is recorded in a tuple, called the
message's determinant, which the delivering process logs on
stable storage. If the determinants of all the messages
delivered by a crashed process are available during
recovery, then the process can be restored to a state
consistent with the state of all operational processes. Two
states sp and sq of processes p and q are consistent if all
messages from q that p has delivered during its execution
up to state sp were sent by q during its execution up to state
sq and vice versa. An orphan process is an operational
process whose state is inconsistent with the recovered state
of a crashed process. All message-logging protocols
guarantee that upon recovery no process is an orphan, but
differ in the way they enforce this consistency condition:

. Pessimistic protocols [3], [11] require that a process,
before sending a message, synchronously log on
stable storage the determinants and the content of all

messages delivered so far. Thus, pessimistic
protocols never create orphan processes.

. Optimistic protocols [6], [12], [19], allow processes to
communicate even if the determinants they depend
upon are not yet logged on stable storage. These
protocols only require that determinants reach stable
storage eventually. However, if any of the determi-
nants are lost when a process crashes, then orphans
may be created. To reach a consistent global state,
these processes must be identified and rolled back.

. Causal protocols [2], [8], combine some of the
positive aspects of pessimistic and optimistic
protocols: They never create orphans, yet they do
not write determinants to stable storage synchro-
nously. In causal protocols, determinants are logged
in volatile memory. To prevent orphans, processes
piggyback their volatile log of determinants on every
message they send.1 This guarantees that if the state
of an operational process p causally depends [13] on
the delivery of a message m, then p has a copy of m's
determinant in its volatile memory. This property is
sufficient to restore a crashed process in a state
consistent with the state of all operational processes.

Although several studies have measured the overhead
imposed by each of these approaches during failure-free
executions, [9], [10], their merits during recovery have been
argued mostly qualitatively so far. For instance, there is
consensus that pessimistic protocols are well-suited for
supporting fast recovery since they guarantee that all
determinants can be readily retrieved from stable storage.

The opinions about optimistic protocols are less unan-
imous. On the one hand, these protocols seem unlikely
candidates for fast recovery because, to restore the system

160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

. The authors are with the Department of Computer Sciences, University of
Texas at Austin, Austin, Texas 78712-1188.
E-mails: {sriram, lorenzo, vin}@cs.utexas.edu.

Manuscript accepted 6 Aug. 1999.
For information on obtaining reprints of this article, please send e-mail to:
TKDE@computer.org, and reference IEEECS Log Number 110381.

1. If there exists an upper bound f on the number of concurrent crashes
and processes fail independently, then a determinant logged by f � 1
processes does not need to be piggybacked further.

1041-4347/00/$10.00 ß 2000 IEEE

to a consistent state, they require identifying, rolling back,
and then rolling forward all orphan processes. On the other
hand, recent optimistic protocols employ techniques for
quickly identifying orphans and can roll forward orphans
concurrently, thereby reducing recovery time. Although the
literature contains careful analyses of the cost of recovery
for different optimistic protocols in terms of the number of
messages and the rounds of communication needed to
identify and roll back orphan processes (for example, [6],
[10], [19]), in general no experimental evaluations of their
performance during recovery are offered.

The performance of causal protocols during recovery has
also been debated. Proponents of these protocols have
observed that causal protocols, like pessimistic protocols,
never create orphans and therefore never roll back correct
processes. However, with causal protocols, a process can
start its recovery only after collecting the necessary
determinants from the volatile logs of the operational
processes. It has been qualitatively argued [6] that optimis-
tic protocols that start recovery without waiting for data
from other processes may have a shorter recovery time than
causal protocols.

Finally, little is known about the effect of changes in f ,
the number of concurrent process failures, on the recovery
costs of pessimistic, optimistic, and causal protocols.

In the past, the absence of a careful experimental study of
the performance of these protocols during recovery could
be justified by arguing that, after all, it was not needed.
Distributed applications requiring both fault tolerance and
high availability were few and highly sophisticated, and
their users could typically afford to invest the resources
necessary to mask failures through explicit replication in
space [17] instead of recovering from failures through
replication in time. As distributed computing becomes
commonplace and many more applications are faced with
the current costs of high availability, there is a fresh need
for recovery-based techniques that combine high perfor-
mance during failure-free executions with fast recovery.

This paper presents the first experimental study of the
recovery performance of pessimistic, optimistic, and causal
protocols. In the first part of the paper, we study existing
protocols by choosing a representative for each style of
message logging. For all protocols, we quantify the
contribution to the total recovery time of three basic
componentsÐcheckpoint restore, log retrieval and roll-
forward; for optimistic protocols, we also measure the time
required to roll back orphan processes. We then compare
the relative performance of the three different styles of
message logging as a function of the number of concurrent
failures, the number of processes in the system, and the
time t since the latest checkpoint at which a failure is
induced. This study makes two main contributions.

1. It shows that roll-forward time dominates the total
recovery time, that roll-forward during recovery can
be much faster than normal execution, and that there
is a limit to how fast roll-forward can proceed. Given
an application and a value for t, it proposes a simple
way to compute a lower bound for the roll-forward
time, and it identifies the characteristics of a message

logging protocol that allow it to approach this lower
bound during recovery.

2. It shows that, contrary to our initial intuition,
sender-based pessimistic and causal protocols out-
perform optimistic protocols only when f � 1. For
f > 1, optimistic protocols, although they incur
rollbacks, can outperform sender-based pessimistic
and causal protocols that are less efficient in
supporting fast log retrieval and do not allow fast
roll-forward.

Our results suggest that applications face a complex
trade off when choosing a message logging protocol for
fault tolerance. On the one hand, optimistic protocols can
provide fast failure-free execution and good performance
during recovery, but are complex to implement and can
create orphan processes. On the other hand, orphan-free
protocols either risk to be slow during recoveryÐe.g.,
sender-based pessimistic and causal protocolsÐor incur a
substantial overhead during failure-free executionÐe.g.,
receiver-based pessimistic protocols. To address this trade
off, in the second part of the paper we propose hybrid
logging protocols, a new class of orphan-free protocols. We
repeat our experiments for hybrid protocols and show that
they perform within two percent of causal logging during
failure-free execution and within two percent of receiver-
based logging during recovery.

The rest of the paper is organized as follows. In Section 2,
we discuss our implementation of message logging proto-
cols and checkpointing. We describe the application
programs used in this study, our experimental methodol-
ogy, and the metrics for our evaluation in Sections 3.1 to 3.4.
Section 3.5 presents an experimental analysis of the
recovery costs of the pessimistic, optimistic, and causal
logging protocols. Section 4 expands this analysis to study
the implications on recovery time of running applications
on clusters of nondedicated workstations. Section 5 intro-
duces and evaluates hybrid logging protocols. Finally,
Section 6 offers some concluding remarks.

2 IMPLEMENTATION

We measure the cost of recovery in message logging
protocols using Egida, an object-oriented toolkit for
synthesizing rollback recovery protocols [16]. Egida sup-
ports a library of objects that implement a set of
functionalities that are at the core of all log-based rollback
recovery protocols; different rollback recovery protocols can
be implemented by composing objects from this library.
Egida is integrated with the MPICH implementation of the
Message Passing Interface (MPI) standard [18]. This enables
existing MPI applications to take advantage of Egida
without any modifications. Using Egida, we implemented
a suite of protocols that contain representatives for each of
the three styles of message logging:

Pessimistic Logging. We have implemented two pessi-
mistic protocols. The first protocol is receiver-based: A
process, before sending a message, logs to stable storage
both the determinants and the contents of the messages
delivered so far. The second protocol is instead sender-based
[11]: The receiver logs synchronously to stable storage only

RAO ET AL.: THE COST OF RECOVERY IN MESSAGE LOGGING PROTOCOLS 161

the determinant of every message it delivers, while the
contents of the message are stored in a volatile send log kept
by the message's sender.2 This protocol is similar to the one
described in [20].

In both of these protocols, the first step of recovering a
process p consists of restoring it to its latest checkpoint.
Then, in the receiver-based protocol, the messages logged
on stable storage are replayed to p in the appropriate order.
In the sender-based protocol, instead, p broadcasts a
message asking all senders to retransmit the messages that
were originally sent to p. These messages are matched by p
with the corresponding determinants logged on stable
storage and then replayed in the appropriate order.

Optimistic Logging. Among the numerous optimistic
protocols that have been proposed in the literature, we have
implemented the protocol described in [6]. This protocol, in
addition to tolerating an arbitrary number of failures and
preventing the uncontrolled cascading of rollbacks known
as the domino effect [19], implements a singularly efficient
method for detecting orphans processes. In this protocol,
causal dependencies are tracked using vector clocks [14].
On a message send, the sender piggybacks its vector clock
on the message; on a message deliver, the receiver updates
its vector clock by computing a component-wise maximum
with the piggybacked vector clock. The determinants and
the content of the messages delivered are kept in volatile
memory logs at the receiver and periodically flushed to
stable storage. Since, in a crash, these logs in volatile
memory are lost, orphans may be created. To detect
orphans, a recovering process sends a failure announce-
ment message containing the vector clock of the latest state
to which the process can recover. On receiving this
message, each operational process compares its vector clock
with the one contained in the message to determine
whether or not it has become an orphan. An orphan
process first synchronously flushes its logs to stable storage.
Then, it rolls back to a checkpoint consistent with the
recovered state of the failed process and uses its logs to roll-
forward to the latest possible consistent state.

In our implementation, we employ two techniques to
improve the performance of optimistic protocols. First, we
modify the pseudocode presented in [6] so that the
recovering process sends the failure announcements before
replaying any message from the log, rather than after all
messages in the log have been replayed. This optimization
allows the roll-forward of recovering processes to proceed
in parallel with the identification, roll-back, and eventual
roll-forward of orphan processes. This optimization dra-
matically improves the performance of the protocol during
recovery (see Section 3). Second, we fork a child process
periodically, every 10 seconds, to flush asynchronously to
stable storage the contents of the volatile logs. While the
child flushes the logs, the parent process continues to
compute, virtually undisturbed.

Causal Logging. We have implemented the �det family-
based message-logging protocol [1]. This protocol is based
on the following observation: In a system where processes

fail independently and no more than f processes fail
concurrently, one can ensure the availability of determi-
nants during recovery by replicating them in the volatile
memory of f � 1 processes. In our implementation, this is
accomplished by piggybacking determinants on existing
application messages until they are logged by at least f � 1
processes [2], [8]. Recovery of a failed process proceeds in
two phases. In the first phase, the process obtains from the
logs of the remaining processes its determinants and the
content of messages it delivered before crashing. This is
because, in causal protocols, message contents are logged
only in the volatile memory of the sender. In the second
phase, the collected data is replayed, restoring the process
to its precrash state. To handle multiple concurrent failures,
we implemented a protocol that recovers crashed processes
without blocking operational processes [7]. In this protocol,
the recovering processes elect a leader that collects
determinants and messages on behalf of all recovering
processes. The leader then forwards the pertinent data to
each recovering process.

Egida supports interprocess communication using a
modified version of the p4 library [4]. Our version of p4
handles socket errors that occur whenever processes fail
and allows a recovering process to establish socket
connections with the surviving processes. Finally, the
checkpointing module in Egida periodically saves on stable
storage the state of each process, which includes heap,
stack, and data segments, plus the mapping of implicit
variables such as program counters and machine registers
to their specific values.

3 EXPERIMENTAL EVALUATION

3.1 Applications

We use five long-running compute-intensive applica-
tionsÐbt, cg, lu, sp, and mgÐfrom the NPB2.3 benchmark
suite developed by NASA's Numerical Aerodynamic
Simulation program [5]. These benchmarks are derived
from computational fluid dynamics codes; the character-
istics of these benchmarks and their communication
patterns are shown in Table 1 and Fig. 1, respectively.

3.2 Experimental Setting

We conducted our experiments on a collection of 300 MHz
Pentium-II workstations running Solaris 2.7 and connected
by a lightly loaded 100 Mb/s Ethernet. Each workstation
has 512MB of memory and a 4GB local disk. For each of the
benchmark distributed applications, we collect our mea-
sures with each workstation hosting one of the application's
processes.

We assume that processes can fail by crashing, but that
the hardware is reliable. Given this failure model, we
implement stable storage using the local disk of each
workstation. We discuss the impact of this assumption on
our experimental results in Section 3.5.4.

3.3 Metrics

For pessimistic and causal protocols, the recovery time
(denoted by Trec) for a process consists of: 1) Tchk, the time to
restore the state of the failed process from its latest

162 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

2. Some sender-based pessimistic protocols keep both determinants and
message contents at the sender [11], [12]. We have not implemented these
protocols because they can only tolerate at most two concurrent failures.

checkpoint, 2) Tacq, the time to retrieve determinants and
messages logged during failure-free execution, and 3)
Trollfwd, the time to roll-forward the execution of the process
to its precrashed state. For optimistic protocols, on the other
hand, in addition to Tchk and Tacq, the recovery time Trec
consists of: 1) Treplay, the time to replay messages to the
recovering process from the acquired logs and 2) Trollbck, the
time required to roll back orphans. Note that Tacq is protocol
dependent: For pessimistic and optimistic protocols, it is the
time to read logs from the file server, while, for causal
protocols, it is the time to collect messages and determi-
nants from the logs of the remaining processes. In the case
of multiple failures, the values of Tchk, Tacq, Trollfwd, Treplay,
and Trollbck are shown for the process which takes the
longest to recover.

3.4 Experimental Methodology

For all protocols, Trec is determined by the value of three
parameters.

1. The number of concurrent failures, f . For optimistic
protocols, multiple failures may cause a process to
rollback multiple times. For sender-based
pessimistic and causal protocols, multiple failures
may complicate the task of retrieving messages and
determinants from other processes.

2. The number of processes, n. For causal and sender-
based optimistic protocols, n may affect Tacq because

it may change the set of processes from which a
recovering process collects its logs. For optimistic
protocols, n may affect Trollbck because it may change
the number of orphans.

3. The time t, within the execution interval defined by
two successive checkpoints, at which a failure is
induced. For all protocols, this parameter affects the
amount of lost computation that has to be recovered
and the size of the logs that have to be acquired by
the recovering process.

To compare fairly the recovery performance of

the four logging protocols for a given application, t

should be the same for all protocols. Furthermore, to

compare our results easily across applications, it is

convenient to use the same t for all applications. To

meet both constraints, we compute the checkpoint

interval with respect to an execution in which the

applications run with no fault-tolerance. For all

applications, checkpoints are taken six minutes

apart. Once a t is chosen within this interval, we

use the iterative nature of the applications to

compute the number of iterations i necessary to

run each application, with no underlying fault-

tolerance protocol, for t seconds; because the time

to complete an iteration is application-dependent, in

general, the value of i will change for different

applications. Our experiments are conducted by

RAO ET AL.: THE COST OF RECOVERY IN MESSAGE LOGGING PROTOCOLS 163

TABLE 1
Characteristics of the Benchmarks Used in the Experiments

Fig. 1. Communication patterns for our benchmark applications.

running each application for its precomputed num-
ber of iterations with each of the four logging
protocols. We note that, because the overhead of
the four protocols varies significantly during failure-
free executions, using the same value of t across
protocols means that faults are induced at different
wall clock times for the different protocols (see
Table 3).

For optimistic protocols, Trec depends also on the
frequency with which volatile logs are flushed to stable
storage. In all our experiments, volatile logs are flushed
asynchronously to stable storage every 10 seconds.

For each protocol, we repeat the experiments until the
variance for Tchk, Tacq, Trollfwd, Treplay, Trollbck, and Trec is
within one percent of their average values.

3.5 Experimental Results

Before we proceed to analyze the effects on Trec of changing
the values of f , t, and n, we present a few observations
about the behavior of logging protocols that are

independent of the specific values of these parameters.

We illustrate these observations with the help of Table 2,

which shows the result of our experiments when 1 � f � 3,

n � 4, and t is chosen halfway between successive

checkpoints.

. The time to roll forwardÐTrollfwd for the pessimistic
and causal protocols and �Treplay � Trollbck� for the
optimistic protocolÐdominates the total recovery
time Trec. In most cases, roll forward contributes
more than 90 percent of Trec and it never contributes
less than 80 percent.

. The sender-based pessimistic and causal protocols
collect message contents (and, in the case of causal,
determinants) from operational processes and pay
the cost of transferring this data over the network.
For the receiver-based pessimistic and optimistic
protocols, logs are organized sequentially on stable
storage; read-ahead, supported by conventional file

164 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

TABLE 2
Trec as a Function of f, where 1 � f < 4; n � 4 and t � 3 min.

systems, makes sequential retrieval of the logs
efficient.

The result of these effects becomes clear when

considering the case of cg for f � 1 in Table 2. Using

a 100 Mbps Ethernet, with a peak throughput of

about 25 Mbps, it takes about 20 seconds to transfer

to the recovering process the 65 MB of data it needs

during recovery. In contrast, retrieving the same

information from local disk requires about five

seconds. Even when the difference is not so

dramatic, sender-based pessimistic and causal pro-

tocols have significantly longer Tacq than receiver-

based pessimistic and optimistic protocols. Table 2

shows also that for causal and sender-based pessi-

mistic protocols Tacq changes with f : we discuss

these effects in Section 3.5.1.
. Executing the same sequence of instructions can take

significantly less time during roll forward than
during normal execution. For instance, consider the
performance of cg when f � 1. Table 2 and Table 3
show that for this application roll-forward for the
causal protocol takes about 17 percent less time than
in normal execution, while, for the receiver-based
pessimistic protocol, there is a factor of two speedup.

There are two elements that contribute to a short

roll-forward time. First, depending on where they

are logged during failure-free execution, it may not

be necessary to log messages and determinants

again during recovery. Second, if messages and

determinants are available from the logs, then it is

possible to execute send and receive instructions

without incurring the synchronization overhead

experienced during the failure-free executions.
. From the previous observation, it follows that, for a

given application, there is a lower bound to the time
necessary to roll forward. This lower bound is given
by the time taken to execute an application assuming
that: 1) The application incurs no overhead for fault
tolerance and 2) the send and receive operations
complete instantaneously. We refer to this lower
bound as the basic computation time for an applica-
tion. Table 4 shows the basic computation time for
the three benchmark applications, computed as the
difference between the time t at which the failure is
induced3 and the communication time, i.e., the amount
of time spent by the application in performing send
and receive operations. This explains why, for
applications such as bt and lu that spend little time
communicating and exchange small amounts of
data, there is little difference in the recovery
performance of pessimistic, optimistic, and causal
protocols.

The receiver-based pessimistic protocol comes

the closest to implementing assumptions 1) and 2).

In this protocol, both the contents of all messages

replayed by a recovering process and their

corresponding determinants are logged on stable

storage and are available during recovery. Hence,

send and receive operations incur no blocking

RAO ET AL.: THE COST OF RECOVERY IN MESSAGE LOGGING PROTOCOLS 165

TABLE 3
ªWall Clockº Time at which a Failure Is Induced for Each Benchmark Application

Because of the different fault-tolerance overhead that they impose, the same value of t translates to different wall clock times for the different
protocols.

TABLE 4
The Values of t, Communication Time and Basic Computation Time for the Benchmark Applications

3. Recall from the discussion in Section 3.4 that t refers to an execution
with no fault-tolerance overhead.

during roll-forward and, as Table 5 shows, roll-
forward imposes no fault-tolerance overhead.

The receiver-based optimistic protocols also pro-
vides a good approximation of 1) and 2). However,
in this protocol, any speedup applies only to the
portion of the log retrieved from stable storage,
which, in general, contains only a prefix of the
sequence of the messages and determinants deliv-
ered prior to failure: As a result, �Treplay � Trollbck� for
optimistic protocols is larger than Trollfwd for
receiver-based pessimistic protocols. In our imple-
mentation, a process asynchronously flushes to
stable storage every 10 seconds all messages and
determinants held in its volatile log: This puts an
upper bound on the extent of roll forward that these
protocols cannot run ªat full speed.º However, as
Table 2 shows, Trollbck is always higher that 10
seconds. The cause is the overhead incurred while
rolling back orphan processes.

Orphans can be detected only after a recovering

process acquires its logs from stable storage. Hence,

the rollback and the subsequent roll-forward of an
orphan start Tchk � Tacq from the replay phase of the

recovering process. In our applications, this trans-

lates in turn to an equivalent delay that a recovering
process incurs after having replayed its logs, while it

waits for the orphans to finish the replay of their

logs. This delay occurs only if the recovering process
waits to receive a message that is to be sent by an

orphan process that has not completed the replay of
its logÐa scenario that occurs in all the applications

used in this study. Since the time required for

replaying messages from the logs is nearly the same
for a recovering process and an orphan the value of

Trollbck is approximately equal to 10� Tchk � Tacq.
The sender-based pessimistic and causal

protocols do not perform as well. In these protocols,
determinants are available during recovery, but

messages maintained in the volatile logs of faulty
processes are lost and must be regenerated and once

again logged. This has two consequences. First,

reconstructing the logs involves performing mem-
ory-to-memory copies; in our experimental setting,

this involves an overhead of about 100�s per 1 KB

data in addition to the cost of memory allocation.

Table 5 shows that, for cg, where the size volatile log
of sent messages is about 65 MB, the overhead of
reconstructing the log is about 7 seconds for both the
causal and sender-based pessimistic protocols. Sec-
ond, when f > 1, some of the messages needed by a
recovering process may not be immediately avail-
able for replay. In this case, the blocking incurred by
send and receive operations during failure-free
executions can occur again during recovery. We
discuss this effect in greater detail in Section 3.5.1.

. In optimistic protocols, overlapping the roll-forward
of recovering processes with the identification, roll-
back and roll-forward of orphans significantly
reduces the cost of recovery.

For instance, Table 2 shows that, in the case of cg,
the value of Trec for f � 1 for the optimized protocol
is approximately 160 seconds, compared with the
value of 288:6 seconds we obtained by running the
protocol without the optimization. Similar results
hold for the other applications.

. Since the size of the process state saved in
checkpoints is independent of the message-logging
protocols, for a given application Tchk is virtually
constant across all protocols, as we expected.

3.5.1 Changing the Number of Concurrent Failures

Receiver-based pessimistic. The performance of this pro-
tocol does not depend on the value of f because each
recovering process can retrieve from stable storage all the
data necessary to complete roll-forward in the minimum
time possible.

Optimistic. The performance of the optimistic protocol is
virtually unaffected by a variation in f . In our implementa-
tion, all messages but those received by a faulty process in
the last 10 seconds are available at the beginning of the roll-
forward phase. Although unavailable messages are regen-

erated and replayed at the slower speed of normal
execution, the messages available on stable storage can be
processed quickly, while, in parallel, orphans are first rolled
back and then rolled forward.

As a result, when f � 1, the optimistic protocol performs
only slightly worse than causal and pessimistic protocols,
both sender and receiver based. When f > 1, however, the
optimistic protocol can perform substantially better than

166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

TABLE 5
Overhead Imposed by Protocols during the Roll-Forward Phase of Recovery

both the sender-based pessimistic and the causal protocols

(see Fig. 2). This result surprised us: Before starting this

study, we believed that pessimistic and causal protocols,

which never force rollbacks, would always recover faster

than optimistic protocols.
Causal and sender-based pessimistic. Changing the

number f of concurrent failures significantly affects the

degree to which these protocols approximate the conditions
under which roll-forward time is minimized.

. When f � 1, all the determinants and messages that
the faulty process needs to replay are available at the
beginning of the roll-forward phase. Hence, during
roll-forward, there is no blocking on send and
receive operations. Trollfwd should therefore exceed
the basic computation time only because of the
overhead of refilling the volatile send log of the
faulty process. A comparison of the values reported
in Table 2 and Table 5 shows that our experimental
results support this interpretation.

. When f > 1, the determinants of all messages are
still available at the beginning of the roll-forward
phase. However, this does not hold for to the
contents of these messages. In particular, all mes-
sages originally sent by any of the concurrently
failed processes are temporarily lost. As a result, a
recovering process will stop rolling forward when-
ever it encounters one of these missing messages,
waiting for the sender to recover to the point at
which the message is regenerated and resent. We
call this effect stop-and-go. Whenever stop-and-go
occurs, the roll-forward phase slows down to the
speed of normal execution. Fig. 2 shows that, as f

increases and more messages are temporarily lost,
stop-and-go has an increasingly adverse effect on
Trec for cg. A similar effect holds also for the other
applications, but it is less significant because bt and
lu have a much smaller communication time than cg
(see Table 2 and Table 4).

. In causal protocols, Tacq increases significantly when
there are multiple concurrent failures, as the over-
head of the algorithm [7] used for acquiring
messages and determinants becomes higher when
f > 1. There are two elements of the algorithm that
contribute to this behavior. First, the recovering
processes need to elect a recovery leader. Second, the
recovery information is first gathered by the recov-
ery leader, which then forwards it to each recovering
process. We expect that, with a different recovery
protocol that allows each process to collect its
recovery information independently [15], the values
of Tacq in the causal and sender-based pessimistic
protocols would be similar.

3.5.2 Changing the Time of Failure

Fig. 3a shows the effect of varying t on Trec for lu. We make
two observations. First, as t increases, so do both Tacq and,
more significantly, Trollfwd and �Treplay � Trollbck�. This is not
surprising because, for higher values of t, more messages
and determinants need to be acquired and processed.
Second, since Trollbck depends only on the frequency at
which the logs are flushed to stable storage, its value does
not change with t. Consequently, the contribution of Trollbck
to Trec is proportionally reduced.

3.5.3 Changing the Number of Processes

We assess the effect on Trec of varying n for lu, an

application in which each process communicates with

every other process. We expected to observe that increasing

n would increase Tacq for causal and sender-based pessi-

mistic protocols, as well as Trollbck for optimistic protocols.

Fig. 3b indicates that these effects, although present, are

insignificant.
We assess the effect on Trec of varying n for lu. For the

causal and sender-based pessimistic protocols, we expected

to observe that increasing n would increase Tacq. Fig. 3b

indicates that this effect is present, but small. For the

optimistic protocol, increasing n can increase the number of

processes that have to rollback whenever there is a failure.

Because orphans roll back and roll forward concurrently,

however, this has practically no effect on Trec.

3.5.4 Changing the Failure Model

If we weaken the failure model to include hardware
failures, then local disks are no longer valid implementa-
tions of stable storage. Stable storage can instead be
implemented on a highly available, remote file system,
such as NFS. To understand how the new implementation
of stable storage affects recovery time, we restart the
crashed process on a different machine and measure Trec.
Comparing the results of our new experiments, shown in
Table 6, with the measures reported in Table 2, we see that

RAO ET AL.: THE COST OF RECOVERY IN MESSAGE LOGGING PROTOCOLS 167

Fig. 2. Trec as a function of f, where 1 � f � 3, for cg, n � 4. For each

value of f, we show four bars: receiver-based pessimistis (R), sender-

based pessimistic (S), optimistic (O), and causal (C). For legend see

Fig. 3.

the new implementation of stable storage has two effects on

the overall recovery time:

1. For all protocols, restoring a checkpoint involves
transferring data from a remote file server. The time
required to complete this transfer depends both on
the size of the checkpoint file and on the load on the
file server. The latter, in turn, depends on the value
of f : As multiple recovering processes try to retrieve
their checkpoints and logs from the file server
concurrently, their requests end up being sequentia-
lized at the network interface of the file server,
adding to the retrieval time.

2. The cost of acquiring the logs from stable storage
increases for all but causal protocols. In receiver-
based pessimistic and optimistic protocols, a reco-
vering process must now retrieve, from a remote
server, messages and determinants that used to be
available on its local disk, with performance im-
plications similar to those discussed above for
checkpoints. Note that sender-based pessimistic
protocols are less affected because the new failure
model requires changing only the location where
determinants are stored; messages are stored, as
before, in the volatile memory of the sender.

4 RECOVERY PERFORMANCE IN THE PRESENCE OF

LOAD IMBALANCE ACROSS WORKSTATIONS

Our benchmark applications partition the overall computa-

tional task into several roughly equally sized iterations.

Each application process executes one such iteration and

exchanges messages with other processes to share inter-

mediate results and to synchronize its execution with them.

In Section 3, we reported the results obtained executing the

application processes on a unloaded homogeneous cluster

of workstations. In such an environment, the execution of

the processes tends to proceed in lock-step; the receive and

send operations performed by communicating processes

are roughly synchronized. Hence, even though the pro-

cesses executing the benchmark applications exchange a

large number of messages, they incur a relatively small

blocking overhead (see Table 1 and Table 4).

In reality, however, application processes may execute

on workstations with different and varying workloads. In

these environments, processes may take different amounts

of time to execute each iteration of the application. The

resulting asynchrony in process execution may increase the

overheads due to blocking. To study this effect, we

developed the following two-step methodology. First, for

each of the benchmark applications, we use the trace

obtained by executing the application on the a unloaded

homogeneous cluster of workstations to derive a new

execution trace. Using this new trace, we define a synthetic

application that simulates the behavior of the original

application on a cluster of workstations with a varying and

uneven load. Second, we measure the cost of recovery of all

protocols for the synthetic application. The first step

involves the following tasks:

168 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

Fig. 3 (a) Effect on the cost of recovery for lu �n � 4; f � 1� of inducing failure after approximately a fourth (L), half (M), and three-fourth (H) of the

interval between successive checkpoints. (b) Cost of recovery for lu with four and eight processes, f � 1; and t � 3 min.

1. For each application process, we measure: 1) the
time at which each loop iteration begins, 2) the times
at which the process sends or receives messages
during that loop iteration, and 3) the time at which
the loop iteration completes. From this application
trace, we determine the mean � and the standard
deviation � for the time spent executing each loop
iteration.

2. We model the time to execute a loop iteration on
workstations with a varying and uneven workload
as an exponential random variable with mean �. Using
this exponential distribution, we derive a sequence
of loop iteration times in the range ��ÿ �; �� C � ��,
where C is a constant. Restricting the range of loop
execution times eliminates from consideration the
extreme cases of the exponential distribution.

3. We use the resulting sequence of loop iteration times
to scale appropriately the time offsetsÐwith respect
to the beginning of each loop iterationÐat which the
process executes sends and receives.

This method does not alter the frequency of commu-
nication or the amount of information exchanged between
application processes; it simply introduces some variation
in the time required to execute each loop iteration.

Table 7 shows the execution time t, the communication
time, and the basic computation time for each of the
synthetic applications. Before inducing a failure, we run a
synthetic application for the same number of iteration,
shown in Table 3, as its original counterpart. Since, on
average, the time to complete an iteration is larger for the
synthetic applications, the values of t in Table 7, are higher
than the corresponding values in Table 4.

Table 7 also illustrates that, when loop iteration times are
selected from the range ��ÿ �; 2��, the communication
times for the synthetic bt and lu applications are about an
order of magnitude larger than the corresponding values
for the original applications, whereas the computation times
are only about 50 percent larger (see Table 4). For the
synthetic cg application, on the other hand, the percentage
increase in both the communication and computation time
are roughly the same. These results indicate that, when

RAO ET AL.: THE COST OF RECOVERY IN MESSAGE LOGGING PROTOCOLS 169

TABLE 6
Trec as a function of f, where 1 � f < 4; n � 4 and t � 3 min., with Stable Storage Implemented Using the Disk of an NFS Server

different processes execute loop iterations of unequal

length, the blocking incurred executing receive and send

operations increases substantially.
This increase does not affect Trollfwd for the receiver-

based pessimistic protocol. In this protocol, messages and

determinants are available from stable storage. As a result,

for a given application for this protocol, Trollfwd is virtually

identical to the application's basic computation time. A

similar argument also applies to the optimistic protocol.

Since the volatile logs are flushed asynchronously to stable

storage every 10 seconds, any increased blocking during

failure-free execution can affect at most the last 10 seconds

of roll forward: The influence on Trollfwd is therefore only

marginal. For the sender-based pessimistic and causal

protocols, on the other hand, we have seen in Section 3.5.1

that, for f > 1, less messages are available at the beginning

of the roll-forward phase. This causes what we called the

stop-and-go effect: Roll forward proceeds at the speed of

failure-free execution and Trollfwd departs from the basic

computation time.

The higher blocking experienced by synthetic applica-
tions can magnify the stop-and-go effect: While, for the
original bt and lu applications, Trollfwd increased by about
five percent (see Table 2) from f � 1 to f � 3, Table 8 shows
that for their synthetic counterparts the difference grows to
about 30 percent. Similar results also hold for the sender-
based pessimistic protocol.

5 HYBRID PROTOCOLS

Our study suggests that applications face a complex trade-
off when choosing a message logging protocol for fault
tolerance. Optimistic protocols can combine fast failure-free
execution with good performance during recovery, but at
the cost of renouncing fault containment and of facing a
complex implementation task. Orphan-free protocols, how-
ever, either risk being relatively slow during recovery, like
sender-based pessimistic and causal protocols, or incur a
substantial overhead during failure-free execution, like
receiver-based pessimistic protocols (see Table 9).

To address this trade-off, we introduce a new class of
hybrid protocols. The objective of hybrid protocols is to
maintain the failure-free performance of sender-based

170 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

TABLE 8
Recovery Performance of Causal Protocol

for Synthetic Applications �1 � f < 4 and n � 4�

TABLE 9
Failure-Free Overhead Imposed by the Various Logging Protocols

TABLE 7
The Values of t, Communication Time and

Basic Computation Time for the Synthetic Applications

protocols while approaching the performance of receiver-
based protocols during recovery. In hybrid protocols,
messages are logged both at the sender and at the receiver.
The sender synchronously logs messages in its volatile
memory; the receiver asynchronously logs messages to
stable storage. Since logging on stable storage is asynchro-
nous, performance during failure-free executions is
virtually identical to that of sender-based protocols. How-
ever, recovery is much faster. The log on stable storage
contains a prefix of the messages that are to be replayed
during recovery; while this prefix is replayed, the stop-and-
go effect cannot occur. Any missing message is either
available in the volatile memory of other operational
processes or it has to be regenerated during recovery if
the sender has failed. In either case, no correct process ever
becomes an orphan and the recovering process can roll
forward using the messages on stable storage while in
parallel acquires the missing messages.

We have implemented and evaluated hybrid versions of
sender-based pessimistic and causal protocols. Table 10
shows that hybrid logging dramatically reduces the
recovery cost of the sender-based pessimistic and causal
protocols, which are now within two percent of the
receiver-based protocol, even when f > 1 (see Table 2 and
Table 10). At the same time, Table 11 shows that when
hybrid logging is used in place of sender-based logging, the
failure-free execution time increases by at most two percent.

In practice, hybrid causal protocols are more desirable
because causal logging imposes significantly less overhead
during failure-free executions than sender-based pessimis-
tic protocols (see Table 9).

6 CONCLUDING REMARKS

As distributed computing becomes commonplace and
many more applications are faced with the current costs
of high availability, there is a fresh need for recovery-
based techniques that combine high performance during
failure-free executions with fast recovery. Message logging
protocols have been proposed as a promising technique
for achieving fault-tolerance with little overhead. The
relative overhead that these protocols impose during
failure-free executions is well-understood. This is not the
case, however, for their performance during recovery,
which has so far been argued mostly qualitatively.

In this paper, we presented the first experimental
evaluation of the performance of message logging protocols
during recovery. We discovered that roll-forward time
dominates the total recovery time for all the protocols and
that roll-forward can proceed much faster than normal
execution. We derived a lower bound for the roll-forward
time and identified the characteristics that allow a message
logging protocol to approach this lower bound during
recovery. We showed that receiver-based pessimistic

RAO ET AL.: THE COST OF RECOVERY IN MESSAGE LOGGING PROTOCOLS 171

TABLE 10
Trec in Hybrid Protocols as a Function of f, where 1 � f < 4, n � 4, and t � 3 min.

TABLE 11
Increase in the Failure-free Overhead Imposed by Hybrid Protocols when Compared to Their Traditional Counterparts

protocol always achieves this lower bound and, hence, has
the best recovery performance. We also reported that if a
single failure is to be tolerated, pessimistic and causal
protocols perform best, because they avoid roll-backs of
correct processes. For multiple failures, however, the
dominant factor in determining performance becomes where
the recovery information is logged (i.e., at the sender, at the
receiver, or replicated at a subset of the processes in the
system) rather than when this information is logged (i.e., if
logging is synchronous or asynchronous).

The above results identify two design principles. First, it
is a bad idea to rely on other processes to provide the
messages that have to be redelivered during recovery.
Protocols that do not operate according to this principle,
such as sender-based pessimistic and causal protocols,
incur significantly higher roll-forward costs. Second, it is a
good idea to design optimistic protocols so that orphan
processes can be identified, rolled back, and rolled forward
in parallel with the roll-forward of the recovering processes.
This principle is not surprising. However, it is largely
ignored by current optimistic protocols, which instead
concentrate on minimizing performance metrics that can be
quantified analytically, such as the number of rounds
needed to detect orphans. Although these metrics are
interesting, they focus on aspects of the recovery protocol
that affect Trec only marginally.

Finally, our analysis suggests that applications face a
trade-off when choosing a message logging protocol for
fault tolerance. Optimistic protocols can combine fast
failure-free execution with good performance during
recovery, but at the cost of renouncing fault containment
and of facing a complex implementation task. Orphan-free
protocols, however, either risk to be slow during recovery,
sender based pessimistic and causal protocols, or incur a
substantial overhead during failure-free execution, receiver-
based pessimistic protocols. We proposed a new class of
orphan-free protocols, referred to as hybrid protocols, that
break this trade-off. We showed that hybrid protocols
perform within two percent of causal logging during
failure-free execution and within two percent of receiver-
based logging during recovery.

ACKNOWLEDGMENTS

We would like to thank Mukesh Singhal for his encourage-
ment. This research was supported in part by the U.S.
National Science Foudation (CAREER Award Nos. CCR-
9733842 and CCR-9624757 and Research Infrastructure
Grant CDA-9624082), DARPA/SPAWAR (Grant No.
N66001-98-8911), IBM, and Intel.

REFERENCES

[1] L. Alvisi and K. Marzullo, ªTradeoffs in Implementing Optimal
Message Logging Protocols,º Proc. Fifth ACM Symp. Principles of
Distributed Computing, pp. 58-67, June 1996.

[2] L. Alvisi and K. Marzullo, ªMessage Logging: Pessimistic,
Optimistic, Causal, and Optimal,º IEEE Trans. Software Eng.,
vol. 24, no. 2, pp. 149-159, Feb. 1998.

[3] A. Borg, J. Baumbach, and S. Glazer, ªA Message System
Supporting Fault Tolerance,º Proc. Symp. ACM SIGOPS Operating
Systems Principles, pp. 90-99, Oct. 1983.

[4] R. Butler and E. Lusk, ªMonitors, Message, and Clusters: The p4
Parallel Programming System,º Parallel Computing, vol. 20, pp. 547-
564, Apr. 1994.

[5] ªNAS Parallel Benchmarks,ºNASA Ames Research Center,
http://science.nas.nasa.gov/Software/NPB/, 1997.

[6] O.P. Damani and V.K. Garg, ªHow to Recover Efficiently and
Asynchronously when Optimism Fails,º Proc. 16th Int'l Conf.
Distributed Computing Systems, pp. 108-115, 1996.

[7] E.N. Elnozahy, ªOn the Relevance of Communication Costs of
Rollback-Recovery Protocols,º Proc. 14th Ann. ACM Symp.
Principles of Distributed Computing, pp. 74-79, Aug. 1995.

[8] E.N. Elnozahy and W. Zwaenepoel, ªManetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback and
Fast Output Commit,º IEEE Trans. Computers, vol. 41, no. 5,
pp. 526-531, May 1992.

[9] E.N. Elnozahy and W. Zwaenepoel, ªOn the Use and
Implementation of Message Logging, Digest of Papers: 24th Ann.
Int'l Symp. Fault-Tolerant Computing, June 1994.

[10] D.B. Johnson, ªDistributed System Fault Tolerance Using Message
Logging and Checkpointing,º PhD thesis, report no. COMPTR89-
101, Rice Univ., Dec. 1989.

[11] D.B. Johnson and W. Zwaenepoel, ªSender-Based Message
Logging,º Digest of Papers: 17th Ann. Int'l Symp. Fault-Tolerant
Computing, June 1987.

[12] T.Y. Juang and S. Venkatesan, ªCrash Recovery with Little
Overhead,º Proc. 11th Int'l Conf. Distributed Computing Systems,
pp. 454-461, June 1987.

[13] L. Lamport, ªTime, Clocks, and the Ordering of Events in a
Distributed System,º Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[14] F. Mattern, ªVirtual Time and Global States of Distributed
Systems,º Parallel and Distributed Algorithms, M. Cosnard et. al.,
eds., Elsevir Science Publishers B.V., 1989.

[15] J.R. Mitchell and V.K. Garg, ªA Non-Blocking Recovery Algo-
rithm for Causal Message Logging,º Proc. 17th Symp. Reliable
Distributed Systems, West Lafayette, Ind., pp. 3-9, Oct. 1998.

[16] S. Rao, L. Alvisi, and H.M. Vin, ªEgida: An Extensible Toolkit for
Low-Overhead Fault-Tolerance,º Proc. IEEE Fault-Tolerant Com-
puting Symp. FTCS-29, Madison, Wis., pp. 48-55, June 1999.

[17] F.B. Schneider, ªImplementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial, Computing Surveys, vol. 22,
no. 3, pp. 299-319, Sep. 1990.

[18] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
ªScientific and Engineering Computation Series,º MPI: The
Complete Reference, Cambridge, Mass.: MIT Press, 1996.

[19] R.B. Strom and S. Yemeni, ªOptimistic Recovery in Distributed
Systems,º Proc. ACM Trans. Computer Systems, vol. 3, no. 3, pp. 204-
226, Apr. 1985.

[20] R.E. Strom, D.F. Bacon, and S.A. Yemini, ªVolatile Logging in n-
Fault-Tolerant Distributed Systems,º Proc. Third Ann. Int'l Symp.
Fault-Tolerant Computing, pp. 44-49, 1988.

Sriram Rao received his PhD in computer
science from the University of Texas at Austin
in 1999. He also received his MS and BS (with
high honors) from the University of Texas at
Austin in 1994 and 1992, respectively. He was a
recipient of the Microelectronics and Computer
Development (MCD) fellowship awarded by the
University of Texas, Department of Computer
Sciences. His research interests include fault
tolerance, distributed systems, and multimedia

systems. He is currently employed by Inktomi Corporation.

172 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

Lorenzo Alvisi received his PhD in computer
science from Cornell University in 1996. He had
previously received an MS in computer science
from Cornell, and a Laurea in Physics from the
University of Bologna, Italy. He is currently an
assistant professor and faculty fellow in the
Department of Computer Sciences at the Uni-
versity of Texas at Austin, where he co-founded
the Laboratory for Experimental Software Sys-
tems (UT LESS). He has received several

awards, including the U.S. National Science Foundation CAREER
award. Dr. Alvisi's research interests include distributed systems and
fault tolerance.

Harrick M. Vin received his PhD in computer
science from the University of California at San
Diego in 1993. He is currently an associate
professor and a faculty fellow of computer
sciences, and the director of the Distributed
Multimedia Computing Laboratory at the Uni-
versity of Texas at Austin. His research interests
are in the areas of multimedia systems, inte-
grated services networks, fault tolerance, and
distributed systems. He has coauthored more

than 75 papers in leading journals and conferences. He has been a
recipient of several awards, including the U.S. National Science
Foundation CAREER award, IBM Faculty Development Award, AT&T
Foundation Award, IBM Doctoral Fellowship, NCR Innovation Award,
and the San Diego Supercomputer Center Creative Computing Award.

RAO ET AL.: THE COST OF RECOVERY IN MESSAGE LOGGING PROTOCOLS 173

