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Security modules and omission failures

Several manufacturers have recently started to equip their hardware with security modules. These
typically consist of smart cards or special microprocessors. Examples include the “Embedded Secu-
rity Subsystem” within the recent IBM Thinkpad or the IBM 4758 secure co-processor board [4].
In fact, a large body of computer and device manufacturers has founded the Trusted Computing
Group (TCG) [9] to promote this idea.

In short, the computer hosts, besides its regular processor that can potentially be controlled
by a malicious user, a trusted security module (Fig. 1). Because its hardware is tamper proof,
the software running within a security module is certified and security modules can communicate
through secure channels. However, communication goes through the untrusted hosts and dishonest
ones can drop messages exchanged between the underlying security modules. As a consequence,
the security modules form a distributed system of processes that can suffer from general omission
failures [7] (i.e., either send or receive omission failures).

In other words, the very existence of security modules transforms malicious behavior into omis-
sions. These omissions are not however random but can be committed by dishonest hosts at specific
points of the computation.

In the following, we illustrate the transformation and some of the underlying issues through the
problem of multi-party fair exchange. This problem is key to trading electronic items in systems of
mutually untrusted parties. Each party expects to trade an item for another one, and each item
has a description that is supposed to match this item. Each party hosts a security module and we
assume here a synchronous model of computation, i.e., communication between security modules
is synchronous and secure [3, 6], yet omissions can be committed.
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Fig. 1. Hosts and security modules.



Fair exchange and biased consensus

Definition 1 (Fair Exchange). An algorithm solves fair exchange (FE) if it satisfies the following
properties:

– (Timeliness) Every honest party eventually obtains the desired item or aborts the exchange.
– (Effectiveness) If no party misbehaves and all items match their descriptions then, upon termi-

nation, every party obtains the expected item.
– (Fairness) If any item does not match its description, or any honest party does not obtain its

expected item, then no party obtains (any useful information about) any other party’s item.

Interestingly, solving fair exchange at the level of untrusted hosts is, in a precise sense, equivalent
to solving the following variant of binary consensus [1] at the level of security modules, called
processes here, and assuming that these can fail by omissions (correct processes are those that do
not fail). We call this variant of binary consensus, biased consensus (BC), and we define it through
the following properties:

Definition 2 (Biased Consensus).

– (Termination) Every correct process eventually decides (0 or 1).
– (Non-Triviality) If no process is faulty or proposes 0, then no correct process decides 0.
– (Validity) No process decides 1 if some process proposes 0.
– (Biased Agreement) If any process decides 1, then no correct process decides 0.

Biased consensus (BC) is different from consensus in the sense that (a) 0 can be decided even if
all processes propose 1, and (b) some process might decide 0 whereas others might decide 1. In the
first sense (a), BC is closer to non-blocking atomic commit (NBAC) [8]: in the second sense (i.e.,
b), they are however different. Both NBAC and BC are instances of weak consensus [5].

We give in [1] an algorithm that solves BC (and hence leads to solve fair exchange) assuming
a synchronous system and a majority of correct processes. The algorithm is early stopping in the
sense that the number of communication rounds needed to decide and terminate the algorithm
depends on the number of actual failures. If there is no failure, two rounds are enough and this is
clearly optimal. 1

Massive attacks and probabilistic fairness

BC is not solvable if there is no correct majority of processes, i.e. if half or more processes can
fail. This result, which we establish in [1], implies that FE is not solvable without a majority of
honest parties either, even in a synchronous system with tamper proof modules. This motivates
the study of a weaker variant of FE that could tolerate an arbitrary number of dishonest parties.
We introduce the following problem, which we call gracefully degrading fair exchange, as a viable
alternative to FE.

Definition 3 (Gracefully Degrading Fair Exchange). An algorithm solves gracefully degrad-
ing fair exchange (GDFE) if it satisfies the following properties:

– The algorithm always satisfies the Timeliness and Effectiveness properties of fair exchange.
1 The proof is a simple variant of [5].
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– If a majority of parties are honest, then the algorithm also satisfies the Fairness property of fair
exchange.

– Otherwise (if there is no honest majority), the algorithm satisfies Fairness with a probability p
(0 < p < 1) such that the probability of unfairness (1− p) can be made arbitrarily low.

It is important to notice that the problem we introduce above trades fairness to cope with
massive attacks (the case where at least half are dishonest). One could wonder why, as in randomized
consensus [2], we have not chosen to trade termination instead. In fact, this would have led to exactly
the same problem: not terminating means not obtaining any item and precisely means unfairness
if some parties obtained their desired items. It is not however clear how effectiveness could be
weakened in a non-trivial way and yet tolerate an arbitrary number of dishonest parties.

Intuitively, GDFE ensures that dishonest parties can only violate fairness by accident. We give
a modular solution to GDFE in [1] which uses the early stopping BC algorithm discussed above
as an underlying building block. Basically, the security modules first exchange a random number
that indicates when (i.e., after how many communication rounds) BC is supposed to start and
perform the actual exchange of items. Until that point, the security modules go through a series
of fake communication rounds that the dishonest parties cannot distinguish from the actual BC
communication pattern. Any omission at this stage simply leads to aborting the exchange.2 The fact
that we make use of an early stopping BC algorithm diminishes the probability for the dishonest
parties to provoke omissions in such a way that they violate fairness in their favor. Unfairness of
our algorithm is inversely proportional to its complexity. More precisely, considering a bi-uniform
probability distribution [1], we show that the probability of violating fairness is in the order of
UGDFE ≈ 2/N , where N is the upper bound on the range from which the random number of
rounds is chosen from.

In fact, we can derive from [10] the fact that no GDFE algorithm, with maximal possible num-
ber of rounds N, can have a probability of unfairness that is less than 1/N . The presence of the
number 2 in our case might be intuitively explained by the very fact that we ensure deterministic
fairness with a majority of honest parties (whereas [10] does not). Hence, at least two rounds of
any GDFE algorithm are vulnerable. Proving that 2/N is optimal remains to be formally shown.

Applying our approach to non-synchronous systems as well as to other problems (i.e., besides
fair exchange) opens interesting research directions.
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