
Fault-Tolerant Forwarding in the Face of Malicious Routers
Alper Tugay Mızrak, Keith Marzullo, Stefan Savage

University of California, San Diego
{amizrak, marzullo, savage}@cs.ucsd.edu

We are interested in a simple, yet increasingly important network security problem: how to detect the existence of
compromised routers in a network and then remove them from the routing fabric.

The root of this problem arises from the key role that routers play in modern packet switched data networks. To a
first approximation, networks can be modeled as a series of point-to-point links connecting pairs of routers to form
a directed graph. Since few endpoints are directly connected, data must be forwarded - hop-by-hop - from router to
router towards its destination. If a router is compromised, then it stands to reason that an attacker may drop, delay,
reorder, corrupt, modify or divert any of the packets passing through. Such a capability can then be used to deny
service to legitimate hosts, to implement ongoing network surveillance or to provide an efficient man-in-the-middle
functionality for attacking end systems.

Such attacks are not mere theoretical curiosities, but they are actively employed in practice. Attackers have repeat-
edly demonstrated their ability to compromise routers, through combinations of social engineering and exploitation of
weak passwords and latent software vulnerabilities [1, 7, 9]. One network operator recently documented over 5,000
compromised routers as well as an underground market for trading access to them [15].

Once a router is compromised an attacker need not modify the router’s code base to exploit its capabilities. Current
standard command-line interfaces from vendors such as Cisco and Juniper are sufficiently powerful to drop and delay
packets, send copies of packets to a third party, or “divert” packets through a third party and back. In fact, several
widely published documents provide a standard cookbook for transparently “tunneling” packets from a compromised
router through an arbitrary third-party host and back again - effectively amplifying the attacker’s abilities, including
arbitrary packet sniffing, injection or modification [6, 14]. Such attacks can be extremely difficult to detect manually,
and it can be even harder to isolate which particular router or group of routers has been compromised.

The problem of detecting and removing compromised routers can be thought of as an instance of anomalous
behavior-based intrusion detection. That is, a compromised router can be identified by correct routers when it de-
viates from exhibiting expected behavior. This problem can be broken into three subproblems:

Traffic validation: Traffic information is the basis of detecting anomalous behavior: given traffic entering a part of
the network, and an expected behavior of the routers in the network, anomalous behavior is detected when the
monitored traffic leaving that part of the network differs significantly from what is expected. Implementing
such validation involves tradeoffs between the overhead of monitoring, communication and accuracy.

Distributed detection: Any detection of a compromised router requires synchronizing the collection of traffic infor-
mation and distributing the results. There are tradeoffs between the overhead of synchronization and informa-
tion distribution with the precision of the detection.

Response: Once a router or set of routers are suspected of being faulty, some countermeasure needs to be taken. A
suspected router can be complexly isolated or only removed from paths whose traffic it is modifying.

There are two threats posed by a compromised router: the attacker may attack by means of the routing protocol
(for example, by sending false advertisements) or by having the router violate the routing decisions it should make
based on its routing tables. The first kind of attack is often called an attack on the control plane, and the second is
called an attack on the data plane. The first problem has received the lion’s share of attention, perhaps due its potential
for catastrophic effects. By contrast, the problem we are considering — subverting the forwarding process — has
received comparatively little attention. This is surprising since, in many ways this kind of attack presents a wider set
of opportunities to the attacker - not only denial-of-service, but also packet sniffing, modification and insertion - and
is both trivial to implement (a few lines type into a command shell) and difficult to detect.

1



Related Work
The earliest work on fault-tolerant forwarding was done by Radia Perlman [11]. Several researchers have sub-
sequently proposed lighter-weight protocols for actively probing the forwarding path to test for consistency with
advertised routes. Subramanian et al’s Listen protocol [13] does this by comparing TCP Data and Acknowledgment
packets to provide evidence that a path is part of end-to-end connectivity, while Padmanabhan and Simon’s Secure
Trace route [10] achieves a similar goal using signed probe packets targeting intermediate routers. Both approaches
only test for gross connectivity and cannot reveal whether packets have been diverted, modified, created, reordered or
selectively dropped.

A very recent paper [3] presents a secure routing given the existance of a path of non-faulty routers between the
source and the destination. The protocol is based on source routing, link by link message authentication, destination
acknowledgment and timeouts. Later on, they found a vulnerability: A faulty router can make a correct router detect
some other correct router as faulty. Their protocol can be fixed [2], but still it has a high overhead to be deployable in
modern networks.

The approach most similar to our own is the WATCHERS protocol, which detects disruptive routers based on a
distributed network monitoring approach [5, 4, 8] and a traffic invariant called conservation of flow. However, the
WATCHERS protocol had many limitations in both its traffic validation mechanism and in its control protocol, many
of which were documented by Hughes et al. [8].

Traffic Validation
A compromised router can make arbitrary alterations to the forwarding behavior of that router, but given the distributed
nature of packet forwarding it is not possible in general for an adversary to perfectly conceal such behavior. As long
as the packets traverse some uncompromised router, there is enough data redundancy to detect the alteration. Hence,
implementing a traffic validation mechanism is an engineering problem.

The most precise way to validate traffic is store, at each router, a complete copy of the packets sent and the time at
which each was forwarded. However, the storage requirements to buffer these packets and the bandwidth consumed
by resending them make this approach impractical. In practice, designing a traffic validation function is a tradeoff be-
tween accuracy and overhead. In addition, real networks occasionally lose packets due to congestion, reorder packets
due to internal multiplexing, and corrupt packets due to interface errors. Traffic validation needs to accommodate this
abnormal but non-malicious behavior. That is, one must address an inherent tradeoff between an acceptable number
of false positives and false negatives.

We have explored and implemented a variety of traffic validation mechanisms, including those based on approx-
imate flow conservation, on comparisons between incremental hashes of packet content, and on set reconciliation
protocols. While detailed descriptions and empirical comparisons of these approaches are outside the scope of this
position paper, we have experience with several mechanisms that are hard to defeat, have few false positives and have
acceptable implementation and state overheads.

Distributed Detection
The detection of a compromised router requires synchronizing the collection of traffic information and distributing the
results for detection purposes. Since routers collect the information upon which traffic validation is based, there will
be some uncertainty in determining which router is faulty. For example, suppose router r1 collects traffic information
about packets that traverse r1, then a neighboring router r2, and then a third router r3. Based on the information r3
has about the traffic it has seen and the traffic information r1 has provided, r3 can determine that packets has been
dropped. But, r3 can’t determine whether r1 is lying about what it claims to have forwarded to r2 or whether r2 has
dropped the packets. Hence, there is an inherent lack of precision in determining which routers are compromised.

We have specified the problem of distributing traffic information and determining which routers are faulty. We cast
the problem as a failure detector with accuracy and completeness properties. This failure detector reports suspicions
as path segments, which are sequences of adjacent routers. More specifically, a failure detector reports a path segment
π if it suspects a router in π is forwarding traffic along π in a faulty manner. A failure detector also has a precision,
which is the maximum length of a path segment it suspects.

2



In terms of our specification, WATCHERS is accurate and has a precision of 1, but it is not complete. We have
also developed two new failure detectors, both of which are accurate and complete. The two detectors differ in their
precision: one has a precision of 2, and the other has a precision of k +2 where k is the maximum number of adjacent
failure detectors that can be compromised. The less precise failure detector is significantly less expensive than the
more precise one in terms of the amount of traffic information that needs to be maintained and in the amount of
synchronization required among the routers collecting traffic information.

Response
Once a path segment π is detected as containing compromised routers, some countermeasure is needed to isolate the
path from the routing fabric. An obvious countermeasure is to report the π to the administrator of the affected routers.
In the meantime, the routers can update the forwarding tables to avoid π.

One question is how aggressive the countermeasure should be. If π is detected, then there is at least one router r
in π that is compromised. An aggressive countermeasure would be to remove all of the routers in π from the routing
fabric, on the theory that one should avoid using a router that has been compromised. Doing so, however, could have a
serious impact on network performance. A less aggressive countermeasure would be to only remove the path segment
π from the routing fabric. In doing so, r may still be routing packets, but not along π. Then, if r continues to behave
in a faulty manner, then path segments containing r will continue to be suspected and removed which could lead to r
becoming completely isolated.

Current Status
In this paper we have identified several tradeoffs in the design of fault-tolerant forwarding. We are exploring some of
these tradeoffs through simulation and analysis based on synthetic and on actual topologies [12]. We are currently
working on an implementation of the ideas described above. We are targeting a link-state protocol and are attempting
to make as small of a change to the protocol and link update messages as possible. We are using the less precise
failure detector because of its significantly lower overheard.

References

[1] Xuhui Ao. DIMACS Report: Workshop on Large Scale Internet Attacks, November 2003.
[2] Ioannis Avramopoulos, Hisashi Kobayashi, Randolph Wang, and Arvind Krishnamurthy. Amendment to: Highly secure and efficient

routing, February 2004. Amendment.
[3] Ioannis Avramopoulos, Hisashi Kobayashi, Randolph Wang, and Arvind Krishnamurthy. Highly secure and efficient routing. In Pro-

ceedings of INFOCOM 2004 Conference, March 2004.
[4] Kirk A. Bradley, Steven Cheung, Nick Puketza, Biswanath Mukherjee, and Ronald A. Olsson. Detecting disruptive routers: A distributed

network monitoring approach. In Proceedings of the IEEE Symposium on Security and Privacy, pages 115–124, May 1998.
[5] Steven Cheung and Karl Levitt. Protecting routing infrastructures from denial of service using cooperative intrusion detection. In New

Security Paradigms Workshop, 1997.
[6] Gauis. Things to do in Ciscoland when you’re dead, January 2000. www.phrack.org.
[7] Kevin J. Houle, George M. Weaver, Neil Long, and Rob Thomas. Trends in denial of service attack technology. CERT Coordination

Center Technical Report, October 2001.
[8] John R. Hughes, Tuomas Aura, and Matt Bishop. Using conservation of flow as a security mechanism in network protocols. In IEEE

Symposium on Security and Privacy, pages 132–131, 2000.
[9] Craig Labovitz, Abha Ahuja, and Michael Bailey. Shining light on dark address space, November 2001. Arbor Networks Tech. Rep.

[10] Venkata N. Padmanabhan and Daniel R. Simon. Secure traceroute to detect faulty or malicious routing. SIGCOMM Computer Commu-
nications Review, 33(1):77–82, 2003.

[11] Radia Perlman. Network Layer Protocols with Byzantine Robustness. PhD thesis, MIT LCS TR-429, October 1988.
[12] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies with Rocketfuel. In Proceedings of the 2002 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communications, pages 133–145. ACM Press, 2002.
[13] Lakshminarayanan Subramanian, Volker Roth, Ion Stoica, Scott Shenker, and Randy Katz. Listen and Whisper: Security Mechanisms

for BGP, NANOG 30, February 2004. http://www.merit.edu/ nanog/mtg-0402/subramanian.html.
[14] David Taylor. Using a compromised router to capture network traffic, July 2002. Unpublished Technical Report.
[15] Rob Thomas. ISP Security BOF, NANOG 28, June 2003. http://www.nanog.org/mtg-0306/pdf/thomas.pdf.

3


