
On designing incentives-compatible peer-to-peer systems

Tsuen-Wan “Johnny” Ngan Animesh Nandi Atul Singh Dan S. Wallach
Peter Druschel

Department of Computer Science, Rice University

1 Introduction

Peer-to-peer (p2p) systems allow participants to share
their computational, storage, and networking resources
to the benefit of every participant. This cooperative
sharing gives participants access to an abundance of re-
sources they could not afford individually. It also enables
organic scaling as the system evolves, while requiring no
dedicated infrastructure beyond network connectivity.

Most existing p2p system are designed to address issues
such as scalability, load-balancing and fault-tolerance,
but they assume that all participants in the system fol-
low the protocols and observe the system’s fair use poli-
cies. However, in a system with open or loosely con-
trolled membership, participants have a self-interest in
modifying their software if it allows them to consume
the network’s resources without contributing any of their
own.

P2p systems must be designed to take participant in-
centives and rationalities into consideration [4, 8, 11]
and provide appropriate mechanism to ensure partici-
pants are fairly sharing their resources. Ideally, we
would like to design a system where nodes, acting self-
ishly, behave collectively to maximize the common wel-
fare. When such a system has no centralized authority
with total knowledge of the system making decisions,
this becomes a distributed algorithmic mechanism de-
sign (DAMD) problem [4]. DAMD is a current area of
study which combines computer science with incentive-
compatible mechanism design in the economics litera-
ture. It provides a useful framework for considering p2p
systems and many researchers are currently studying this
approach [2, 3, 7, 11, 6].

In this paper, we sketch the design of two practical
incentives-based mechanisms to ensure fair sharing of
resources in p2p systems. One mechanism addresses
storage as the resource of interest, while the other con-
siders network bandwidth. The mechanisms are fully
decentralized and require no consensus or synchroniza-
tion among the participating nodes. Participants act au-
tonomously, yet the mechanisms dictate that fairly con-
tributing resources is in the best interest of each partici-
pant.

2 Fair sharing of storage

In this section, we sketch the design of an incentives-
based mechanism useful in p2p applications where stor-
age space (i.e., free disk space) is a limited commodity.
Our mechanism is based on the idea that nodes are re-
quired to maintain and publish accounting records, and
that other nodes can audit those records at any time. Of
course, nodes have no inherent reason to publish their
records accurately or to audit other nodes. Our mech-
anism creates natural incentives to perform these tasks
accurately.

We assume the existence of a public key infrastructure
and strong node identities; this can be achieved by having
a trusted authority issue nodeId certificates, as described
in Castro et al. [1]. The authority’s sole purpose is to
issue certificates that bind a nodeId to a public key; it is
not involved in other transactions.

Usage records: Every node maintains a usage record,
digitally signed, which is available for any other node to
read. The usage file has three sections:

� the advertised capacity of the storage this node is
contributing to the system;

� a local list of (nodeId, handle) pairs, containing the
identifiers and sizes of all objects that the node is
storing locally on behalf of other nodes; and

� a remote list of handles of all the objects the system
is storing on behalf of the node, with their sizes.

Together, the local and remote lists describe all the cred-
its and debits to a node’s account. A node is allowed to
store new objects into the network as long as its adver-
tised capacity minus the sum of its remote list times a
system-wide constant µ

� 1, is positive. Since the entries
in local/remote lists have to be matched, it is impossible
to create credits without making the usage record unbal-
anced. By increasing the advertised capacity, a node can
store more objects in the system, but it also has make
an equal amount of space available. By adding matched
pairs in the local list of one node and the remote list of
another, the credit is transferred from the latter node to
the former.

When a node A wishes to store an object F1 on another
node B, B can fetch A’s usage record to verify that A is

1



under quota. Then, two records are created: A adds F1
to its remote list and B adds � A � F1 � to its local list. Of
course, A might fabricate the contents of its usage record
to convince B to improperly accept its objects.

Incentives: We must provide incentives for A to tell the
truth. To game the system, A might normally attempt to
either inflate its advertised capacity or deflate the sum of
its remote list. If A were to increase its advertised capac-
ity beyond the amount of disk it actually has, this might
attract storage requests that A cannot honor, assuming
the p2p storage system is operating at or near capacity;
nodes have no incentive to provide any more storage to
the network than is required of them by the network [5].
A might compensate by creating fraudulent entries in its
local list, to claim the storage is being used. To prevent
fraudulent entries in either list, we define an auditing pro-
cedure that B, or any other node, may perform on A.

Normal audit: If B detects that F1 is missing from A’s
remote list, then B can feel free to delete the object1. Af-
ter all, A is no longer “paying” for it. Because an au-
dit could be gamed if A knew the identity of its auditor,
anonymous communication is required, and can be ac-
complished by contacting the audited node through a ran-
dom intermediate node, similar to Crowds [9]. So long as
every node that has a relationship with A is auditing it at
randomly chosen intervals, A cannot distinguish whether
it is being audited by B or any other node with objects in
its remote list. We refer to this process as a normal audit.

Random audit: Normal auditing, alone, does not pro-
vide a disincentive to inflation of the local list. For ev-
ery entry in A’s local list, there should exist an entry for
that file in another node’s remote list. To verify this,
all nodes in the p2p overlay perform random auditing.
With a lower frequency than the normal audits, each node
chooses a node at random from the p2p overlay. The au-
ditor fetches the usage record and verifies it against the
nodes mentioned in that record’s local list. Assuming all
nodes perform these random audits on a regular sched-
ule, every node will be audited, on a regular basis, with
high probability.

Recall that usage files are digitally signed by their node.
Once a cheating anchor has been discovered, its usage
file is effectively a signed confession of its misbehav-
ior! An auditor can present this confession to other in-
terested nodes, e.g., nodes that store objects on behalf of
the cheater, who can independently verify the cheater’s
guilt and delete his objects.

Our mechanism ensures that users have an incentive to
fairly contribute resources to the system, since they risk
having their objects deleted otherwise. Moreover, partic-
ipants have an incentive to perform auditing to keep the
system’s storage utilization at or below µ, thus maintain-

1In practice, B should give A a grace period as A might be facing a
transient failure.

ing the system’s performance.

Ensuring that data is stored: In any p2p storage sys-
tems, it is imperative to ensure that nodes are actually
storing the objects they claim to store. We ensure this
using a challenge mechanism. For each object a node
is storing, it periodically picks a node that stores related
objects (e.g., replicas or erasure coded fragments of the
same source object), and notifies all holders of related
objects that it is challenging that target. Then it ran-
domly selects an extent of the object and a random key,
and queries the target for a keyed hash of the extent.
The target may retrieve the object from the holders of
related objects, but any such request during a challenge
would cause the challenger to be notified, and thus able
to restart the challenge for another object.

3 Fair sharing of bandwidth

Next, we sketch a mechanism to enforce fair sharing of
bandwidth in p2p systems. Unlike storage, bandwidth is
a short-lived resource and there is no equivalent to pun-
ishing a cheater by deleting its stored objects. Punish-
ment must instead take the form of degrading a cheater’s
service. Unlike the previous mechanism, our fair-share
mechanism for bandwidth does not require a PKI or cer-
tified node identities.

Credit and debt: A node maintains two variables for
each node with which it has a relationship: the number of
objects (or bytes or some other globally-specified block
size) sent to the node and the number of objects received
from the node. The difference of these two numbers ex-
presses the debt or credit that a node has with its peer.
The total number of objects that a node has received from
a peer measures the confidence that a node has in its peer.

Pairwise trade: The debt and confidence values can
be used by good nodes to discriminate freeloaders from
other good nodes, allowing them to refuse service to
freeloaders. A simple policy is to set a debt threshold.
Requests from a node are honored unless the debt ex-
ceeds the threshold. This debt threshold is increased dy-
namically as a function of the confidence value, giving
more slack to peers that have performed well over time.

In general, a node has no incentive to serve an object to
a node with which it has no prior relationship. Imagine a
mature node (having lived in the system for a long time)
A that has credit with many nodes. However, if A wants
to read an object from a node Z, which does not happen
to owe A anything, how can A leverage the credit it al-
ready has to obtain the object? We solve this problem by
transitive trading.

Transitive trade: A transitive trade allows a node to
take advantage of its earned credit to obtain objects from
nodes which might otherwise refuse to serve it. It works
by identifying a debt-based path from itself to a node



that has the desired object. In a debt-based path, each
node in the path has credit with the next node, i.e., it
has a relationship with, and is below the debt threshold
of the next node. Locating such debt-based path can be
achieved efficiently in a structured overlay network like
Pastry [10], by looking up the desired object using debt
as the proximity metric.

Once a debt-based path is identified, the following sim-
ple protocol ensure a secure exchange of data and credit
along the trading chain. Assume that Z has an object that
A wishes to download. The object is broken into a num-
ber of fixed-size blocks. A routes a message through the
trading chain to Z requesting a specific block. Z trans-
mits the block directly over the underlying network to
A. A then transmits subsequent block requests along the
same trading chain. Intermediate nodes can incremen-
tally adjust their debt and credit variables when they for-
ward these requests. If any party in the trade refuses to
pass along the control traffic, then the data traffic will
stop as well; the party dropping the request will get at
most one “free” block.

Node bootstrapping: When a new node joins the sys-
tem, it has no debts and no credits. Unless other nodes
in the system behave altruistically, nobody will honor
requests from the new node. Granting an initial debt
threshold is a form of altruism in our mechanism, where
nodes honor a few object requests from nodes with which
they have no prior relationship. Moreover, it is assumed
that new nodes contribute some content or are asked to
store content on behalf of others. Requests for these ob-
jects then allows the new node to establish credit with
other nodes. Once two peers have established a relation-
ship, one can show that setting a debt threshold propor-
tional to the square root of the confidence value limits the
damage freeloaders can do while minimizing denied re-
quests among well-behaved peers who experience a tem-
porary asymmetry in their request patterns.

Relationship throttling: In a large system with many
nodes, a freeloader could exploit altruism in the system
by continuously forming new relationships, abandoning
them as soon as they have reached the debt limit. Thus,
it is necessary to limit the rate at which nodes can estab-
lish new relationships. Observe that mature nodes with
sufficient credit can easily find debt-based paths to any
other node. As such, they have no incentive to establish
new relationships and they generally refuse them. On
the other hand, new nodes want to acquire credit to re-
deem later; they have an incentive to establish new rela-
tionships, even at the risk of being exploited. This nar-
rows the potential target for freeloaders to newly joining
nodes.

Simulations show that as a result of our mechanism,
freeloaders quickly experience significantly lower qual-
ity of service (in terms of the number of tries and the

length of time it takes them to obtain a desired object)
than well-behaved nodes. While we cannot completely
eliminate freeloading by patient nodes, the mechanism
creates a strong incentive for nodes to contribute re-
sources in order to receive acceptable service.

4 Discussion

We have sketched two mechanism that provide nodes in
a p2p system with natural incentives to share their stor-
age and bandwidth resources. The mechanisms are quite
general and can be applied to many p2p storage or con-
tent distribution system in which storage or bandwidth
are contented resources. Our mechanisms are simple and
require no distributed consensus or synchronization. The
storage mechanism incurs no additional operations in the
critical path of a p2p storage system; simulations show
that the background traffic required for auditing is mod-
est. The principal cost of the bandwidth mechanism is
in discovering debt-based paths. Simulations show that
a structured overlay network can discover such path at a
small additional cost during the object lookup. A full ex-
perimental evaluation of our mechanisms is in progress.
We conclude that incentives-based mechanisms are an
interesting and effective means of enforcing policies in
large-scale, decentralized systems.

References
[1] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-

lach. Security for structured peer-to-peer overlay networks. In
Proc. OSDI’02, Boston, MA, Dec. 2002.

[2] B. Cohen. Incentives build robustness in BitTorrent. In Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[3] L. P. Cox and B. D. Noble. Samsara: Honor among thieves in
peer-to-peer storage. In Proc. SOSP’03, Bolton Landing, NY,
Oct. 2003.

[4] J. Feigenbaum and S. Shenker. Distributed algorithmic mecha-
nism design: Recent results and future directions. In Proc. 6th
Int’l Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, Atlanta, GA, Sept. 2002.

[5] A. C. Fuqua, T.-W. J. Ngan, and D. S. Wallach. Economic behav-
ior of peer-to-peer storage networks. In Workshop on Economics
of Peer-to-Peer Systems, Berkeley, CA, June 2003.

[6] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. In-
centives for sharing in peer-to-peer networks. In Proc. 3rd ACM
Conf. on Electronic Commerce, Tampa, FL, Oct. 2001.

[7] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair
sharing of peer-to-peer resources. In Proc. IPTPS’03, Berkeley,
CA, Feb. 2003.

[8] C. Papadimitriou. Algorithms, games, and the internet. In Proc.
33rd ACM STOC, pages 1–5, Hersonissos, Crete, Greece, July
2001.

[9] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web trans-
actions. ACM Transactions on Information and System Security,
1(1):66–92, 1998.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
address and routing for large-scale peer-to-peer systems. In Proc.
IFIP/ACM Int’l Conf. on Distributed Systems Platforms, pages
329–350, Heidelberg, Germany, Nov. 2001.

[11] J. Shneidman and D. Parkes. Rationality and self-interest in peer
to peer networks. In Proc. IPTPS’03, Berkeley, CA, Feb. 2003.


