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Survivability of a distributed system is the system’s ability to function as expected despite adverse
events such as component failures and malicious attacks. By definition, survivability demands reliability and
security—two subjects that have been studied in isolation for a long time. On the one hand, the study on
reliability fosters research on fault tolerant distributed systems, which centers around the notion of replication
and consensus. Various system models have been proposed to capture different types of failures and timing
assumptions. On the other hand, security requirements such as confidentiality, integrity, and authenticity
have yielded cryptographic building blocks such as encryption/decryption schemes, one-way hash functions,
and digital signatures.

A misconception naturally arises that a simple integration of fault tolerance mechanisms (such as repli-
cated state machines [13, 15, 4] and Byzantine quorum systems [14]) and cryptography leads to a survivable
distributed system. This is unfortunately not true. System models in fault tolerance traditionally rely on the
probability distribution of random faults. Malicious attacks, by exploiting worse-case scenarios, often render
such statistical analysis inappropriate, thereby debasing the foundation of existing fault tolerance solutions.
Replication, a key element for fault tolerance, dictates a distributed architecture that requires protocols for
multiple parties. Although such problems have been studied in cryptography as secure multiparty computa-
tion [7], the proposed schemes are not nearly as practical and accessible as those for encryption/decryption
and digital signatures. Furthermore, survivability raises new types of concerns (such as denial-of-service at-
tacks) that are beyond the current means of fault tolerance and cryptography. This position paper outlines
some new challenges posed by survivability, as well as opportunities and new research directions.

1 Revisiting the model and the assumptions

System models are widely used for system designers to make simplifying assumptions about a system in order
to focus on the most important aspects of the system, while ignore the unimportant ones. Such simplification
is a powerful tool to manage complexity, but the resulting system models are often tightly coupled with a
particular environment and objective. It is therefore crucial to revisit the system models and re-assess the
assumptions when we attempt to reuse protocols in a different setting with different objectives.

Threshold failure model. Consider a system implemented by n replicas and call each replica a server.
The widely used threshold failure model stipulates that the number of faulty servers does not exceed a
threshold ¢. As pointed out previously [11], this model is flawed when we consider compromises due to
malicious attacks, mainly because of correlations among server compromises. There are two main approaches
to tackling this problem. One is to capture the correlations in a more general adversary model that specifies
which subsets of servers might all be compromised, and retrofit the existing protocols for the general adversary
model [10]. To come up with an appropriate adversary model, one could partition the servers along a set
of attributes. For example, all servers running on the same hardware/software platform constitutes a set in
the adversary model because one vulnerability in the platform takes down all these servers; so do all servers
under the same administrative domains or within the same subnet.

An orthogonal approach aims at reducing or even eliminating correlations among the servers. Developing
multiple implementations for diversity is often prohibitively expensive and has known limits [12]. A more



promising method is to inject diversity through randomization [5]. It is yet to be shown how effective this
method is in terms of eliminating common vulnerabilities; the impact of this approach on system performance
and system reliability is largely unknown.

Recovery and adaptation. Another simplifying assumption made in fault tolerance is to ignore the
recovery issue. This is justifiable because usually recovery simply involves detecting, isolating, and replacing
faulty components. But the importance of recovery to reliability cannot be overstated: the purpose of fault
tolerance is to offer a window of opportunity for recovery of faulty components. Analysis has shown that
the recovery interval is a key factor in system reliability [19].

For survivability, which has to defend against malicious attacks, recovery becomes more challenging.
First, compromise of components is hard to detect, so recovery only after detection of compromise might
not suffice. Instead, recovery must be done periodically, in a proactive fashion. The lifetime of a system can
then be partitioned into generations that are separated by periodic executions of recovery.

Furthermore, recovery of a compromised component goes beyond simply replacing the compromised com-
ponents and restoring their states. Any secrets stored on a compromised component might have been exposed
to the adversary and therefore must be made obsolete. In cases where the secrets are keys used for secure
communication, the refreshing of secrets might involve re-establishing authenticated secure communication
links [3] or refreshing secret shares of a key without changing the key [9].

Finally, if a component is compromised due to an adversary exploiting a vulnerability in that component,
the same vulnerability remains after the recovery, opening the door for repeated compromises. Ideally, the
component should evolve to be more resilient to attacks from one generation to another. Manually applying
patches during recovery is a step towards this ideal, but only to a very limited extent—the long duration
of the process to discover vulnerabilities and develop appropriate patches provides ample opportunities for
attackers to prevail.

An alternative design is to embrace temporal diversity, defined to be the diversity among different gen-
erations of the same component. Temporal diversity makes it unlikely for different generations of the same
component to have the same vulnerability. The work on proactive obfuscation at Cornell is looking at this
new emerging research direction.

2 Bridging the gap between cryptography and systems

Confidentiality requirements for survivable systems fall on the shoulders of cryptography. The multi-party
nature of survivable systems (due to replication) creates practical applications for relatively less-known
cryptographic branches such as secret sharing [17, 2], zero-knowledge proofs [8], and secure multi-party
computation.

Despite the emergence of systems that successfully incorporated such cryptographic primitives (see [16] for
a list of such systems), obstacles remain. Most secure multi-party cryptographic protocols are too expensive
to be practical. To make matters worse, composing those cryptographic primitives could be tricky. One
well-known example is the parallel or concurrent composeability of zero-knowledge proofs [6]. This is in
contrast to the widely used cryptographic building blocks for encryption and digital signatures, which can
be relatively easily composed and integrated to a larger and more complicated protocols.

A more fundamental problem lies in the gap between theoretical definitions for security in cryptography
and the practical security requirements from real systems. There are often cases where tremendous complex-
ity is added to the protocol in order to achieve provable security, but it is not clear whether the increased
complexity translates into security improvements in practice. How to capture security requirements in real
systems while still allowing efficient and provably secure solutions continues to be a challenge. The random
oracle model [1] is a step in that direction.



3 The power of alliance

In order to gain topological diversity, a survivable system is often distributed over the network and spans
multiple administrative domains. The underlying communication network thus becomes both the target
of denial-of-service (DoS) attacks and the means to launch such attacks. This poses a new dimension of
challenges to survivable systems that is beyond the capability of traditional fault tolerance and cryptography.

The essence of DoS attacks is the over-consumption of system resources by attackers that leaves no
resources available for legitimate users. The effectiveness of defense mechanisms such as rate limiting and
filtering is limited, especially against distributed DoS attacks, because it becomes almost impossible to
distinguish legitimate users from attackers.

A naive over-provisioning of resources to deal with DoS attacks is not cost-effective, but can be made
so through an alliance formed by a set of systems to defend against DoS attacks. Members promise to
contribute resources to help other members when they are under a DoS attacks. The power of alliance
hinges on the fact that an alliance jointly has sufficient resources to satisfy the normal loads on its members
and to withstand DoS attacks against a small number of its members. An example of this approach was
proposed in [20].

For an alliance to be effective against DoS attacks, the alliance must constantly re-allocate resources
based on the loads on its members. This is relatively straightforward when members trust each other, and
the services provided by members can promptly donate resources and utilize the newly available resources.
The problem becomes much harder if the alliance crosses trust boundaries. One interesting future research
direction is to study how the prospect of joining an alliance impacts the design of a member.

4 Deception and dynamic defense

“All warfare is based on deception.” — Sun Tze

When we move from reliability to survivability and from tolerating faults to combating malicious attacks,
the landscape has changed fundamentally: we are now at war with malicious attackers. As a result, our
mindset should change accordingly.

The current dismal state of computer/network security can be partly attributed to the fact that we, as
defenders, have not embraced the fundamental principles in the art of war: deception. For example, without
deception, an attacker can easily search for vulnerabilities using trial-and-error, because known vulnerabilities
are either patched or exploitable. A simple application of deception would make much harder the adversary’s
task of identifying existing vulnerabilities without being detected: instead of patching vulnerabilities, traps
are being placed and will be triggered when those vulnerabilities are exploited. Those traps could be used to
deter the attackers, track the behavior of attackers, and raise specific alarms that enable fast countermeasures.
The idea of using deception to observe how attackers work is essential to projects such as Honeypots [18].
However, most of such tools are for research only and are isolated from the actual systems.

The success of deception hinges on dynamic defense because adversaries learn and adapt quickly. Any
static defense is bound to fail over time because defending against every possible vulnerability is impossible
for any non-trivial systems—one vulnerability is all it takes for an adversary to succeed. It is worth pointing
out that both temporal diversity and the power of alliance manifest the philosophy of dynamic defense.

Incorporating dynamic defense poses new challenges to systems. The dynamism introduced to a sys-
tem could render certain optimizations infeasible and require new techniques for testing such a constantly-
changing system. A system must also balance dynamism in its defense mechanisms with predictability in its
services to the users. For mission critical systems, trading off other system properties such as performance
for improved survivability is certainly the right choice.

“Those who are able to adapt and change in accord with the enemy and achieve victory are called
divine.” — Sun Tze
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