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Abstract

Methods for `1-type regularization have been
widely used in Gaussian graphical model se-
lection tasks to encourage sparse structures.
However, often we would like to include more
structural information than mere sparsity.
In this work, we focus on learning so-called
“scale-free” models, a common feature that
appears in many real-work networks. We
replace the `1 regularization with a power
law regularization and optimize the objec-
tive function by a sequence of iteratively
reweighted `1 regularization problems, where
the regularization coefficients of nodes with
high degree are reduced, encouraging the ap-
pearance of hubs with high degree. Our
method can be easily adapted to improve any
existing `1-based methods, such as graphi-
cal lasso, neighborhood selection, and JSRM
when the underlying networks are believed
to be scale free or have dominating hubs. We
demonstrate in simulation that our method
significantly outperforms the a baseline `1
method at learning scale-free networks and
hub networks, and also illustrate its behavior
on gene expression data.

1 Introduction

A scale-free network is a network whose degree distri-
bution follows a power law. Scale-free networks have
been empirically observed in a wide variety of systems,
including protein and gene networks, publication cita-
tion networks, and many social networks; for exam-
ples, see Barabási and Albert (2002) and references
therein. It has been shown that scale free networks can
be generated by preferential attachment mechanisms,
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in which new nodes prefer to connect to nodes with
high degree (Barabási and Albert, 1999). Perhaps the
most notable characteristic of a scale-free network is
the relative frequency of “hubs” – vertices with a de-
gree that greatly exceeds the average. Identifying hubs
is often a primary step of understanding the network
structure, as hubs are thought to serve specific, per-
haps critical purposes in their network. For example,
one important task in bioinformatics is to identify the
hub proteins and hub genes.

On the other hand, Gaussian Markov random fields
(GMRFs) have been widely used to infer the struc-
ture of networks from data. In particular, suppose
that x = [x1, · · · , xp]′ follows a p-dimensional Gaus-
sian distribution with zero mean and covariance Σ. Let
Ω = Σ−1 be the precision matrix. It is well known that
the precision matrix reflects the dependency structure
of the GMRFs, since the (i, j) element of Ω is non-zero
if and only if xi and xj are connected in the Markov
random field, i.e., are conditionally dependent given
the values of all other elements of x. The task of infer-
ring network structure can be thus recast as the sta-
tistical problem of estimating the precision matrix Ω.
However, a major difficulty in this task derives from
the fact that the number of observed data points n is
usually small compared with the dimensionality p, in
which case the empirical covariance matrix will have
significant noise. The näıve method of simply taking
the empirical covariance matrix usually results in a
fully connected graph, and thus does not indicate any
structural independence within the network. Worse, in
the increasingly common case that n < p the empirical
covariance matrix becomes singular.

Various methods have been developed to estimate
the structure of graphical models through the use of
`1 regularizations (e.g., Meinshausen and Bühlmann,
2006; Yuan and Lin, 2007; Peng et al., 2009; Banerjee
et al., 2008). Among them, the neighborhood selection
method of Meinshausen and Bühlmann (2006) is per-
haps the simplest: by noting that the (i, j) element of
Ω is, up to a positive scalar, the regression coefficient
of variable j in the regression of variable i against the
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rest, they estimate a sparse graphical model by fitting
a collection of lasso regression models for each xi us-
ing the other variables x¬i = {xj |j 6= i} in turn. They
showed that this method provides an asymptotically
consistent estimator of the set of non-zero elements of
Ω. Building upon this approach, Peng et al. (2009)
proposed a joint sparse regression method to address
the asymmetry of Meinshausen and Bühlmann (2006).
This method is related to the recent symmetric lasso
method (Friedman et al., 2010), which is formulated as
a maximum pseduolikelihood estimator (Besag, 1974).
A more systematic approach is to maximize the `1 pe-
nalized log-likelihood (e.g., Yuan and Lin, 2007; Baner-
jee et al., 2008). Friedman et al. (2007) proposed an
efficient blockwise coordinate descend method, called
graphical lasso, which maximizes the `1 penalized log-
likelihood by iteratively solving a series of modified
lasso regressions.

However, it has been observed in previous work that
`1-based methods work poorly for scale-free networks,
in which some nodes (called hubs) have extremely high
degrees. Schäfer and Strimmer (2005) showed an ex-
periment in which Meinshausen and Bühlmann (2006)
failed to identify the hub-type structures in gene net-
works. A possible reason for this is that the `1 regular-
ization imposes sparsity uniformly and independently
on each node, without any preference for identifying
hub-like structures. Theoretically, the consistency re-
sult in Meinshausen and Bühlmann (2006) relies on
an sparsity assumption that restricts the maximal size
of the neighborhoods of variables (see Assumption 3
in Meinshausen and Bühlmann (2006)), which is in-
consistent with the existence of hubs. For graphical
lasso, Ravikumar et al. (2008) shows that to ensure

an elementwise bound ||Ω̂ − Ωtrue||∞ = O(
√

log p
n )

holds with high probability, one need a sample size
of n = Ω(d2 log p), where d is the maximum degree
of the graph. In other words, by this scaling analysis
the sample size needs to be polynomial in the graph
degree, while only logarithmic in its size (dimensional-
ity). This suggests that the “curse of degree” is even
worse than the “curse of dimensionality”. Ravikumar
et al. (2010) shows that a similar difficulty occurs in
high dimensional Ising model selection when using `1-
regularized logistic regression.

In fact, it has been widely realized that a simple `1
sparsity prior often does not take full advantage of the
prior information that we may hold about the underly-
ing model, especially when the true network has some
specific structural features. There has been consider-
able recent work on improving the lasso by incorporat-
ing various prior information of structures in addition
to simple sparsity, including the group lasso (Yuan
and Lin, 2006), simultaneous lasso (Turlach et al.,

2005) and fused lasso (Tibshirani et al., 2005) in vari-
able selection problems. Analogously, there are many
works incorporating different structured prior informa-
tion in Gaussian graphical model selection in various
ways, for example Duchi et al. (2008); Schmidt et al.
(2009); Marlin et al. (2009); Friedman et al. (2010);
Peng et al. (2010); Marlin and Murphy (2009); and
Jacob et al. (2009). In this work, we develop an effi-
cient method to incorporate a preference for scale-free
behavior into our prior for network inference. We show
that our method can be recast as a sequence of iter-
atively reweighted `1 regularization problems, where
the regularization coefficients of the nodes with higher
degree are decreased, encouraging the creation of hubs.
We demonstrate the performance of our algorithm on
both simulated and gene expression data.

2 Learning sparse networks

Suppose x = [x1, x2, · · · , xp]′ is drawn from a multi-
variate normal distribution N (0,Σ), where Σ is the
p× p covariance matrix. Let Ω = Σ−1 = {ωij} be the
precision matrix. X = [x1, x2, · · · , xn] is a collection
of n observed data. The task is to estimate the set
of non-zero elements of Ω, which corresponds to the
edges of the Gaussian graphical model. Let us denote
ρij = corr(xi, xj |x¬ij) to be the partial correlation,
where x¬ij are the other elements of x besides xi and
xj . A well known fact is that the multivariate Gaus-
sian model can be presented in a self-regression form,
xi =

∑
i 6=j βijxj + δi, where βij = −ωij

ωii
= ρij

√
ωjj

ωii
,

and δi are Gaussian noise that are independent of x¬i:
δi ∼ N (0, 1/ωii). We will use B to represent a matrix
with zero diagonal and βij as the off-diagonal entries,
and Φ a matrix with zero diagonal and ρij in the off-
diagonals. Note that the off-diagonals of Ω, B and Φ
only differ up to a nonzero constant, and hence share
the same non-zero pattern; one can predict the model
structure by estimating the non-zero pattern of any
one of them.

A body of research has been developed to estimate the
non-zero pattern by applying `1 regularization to the
precision matrix or partial correlation matrix. Mein-
shausen and Bühlmann (2006) proposed a simple negh-
borhood selection method (henceforth referred to as
“MB”) by regressing each variable w.r.t. to all the
other variables with a `1 regularization:

min
β

1
2
||xi −

∑
j 6=i

βijxj ||2 + λ
∑
j 6=i

|βij |,

in which the non-zero elements of {βij |j 6= i} decide
the neighborhood of xi. This leads to n independent
standard lasso problems, which can be solved by effi-
cient algorithms such as LARS or coordinate descent
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(Friedman et al., 2007). It was shown that it gives
asymptotical consistent estimator of the set of non-
zero elements of precision matrix. Its disadvantage,
however, is that since βij and βji are estimated inde-
pendently, it cannot guarantee that the non-zero pat-
tern of βij is symmetric and must use post-processing
to create a symmetric estimate.

Peng et al. (2009) proposed a joint regression sparse
method (“JSRM”) to address this asymmetry issue,
by minizing the following joint loss function

1
2

p∑
i

µi||xi −
∑
j 6=i

ρij

√
ωjj
ωii

xj ||2 + λ
∑
j 6=i

|ρij |. (1)

with the symmetry constraint that ρij = ρji. For fixed
ωii, (1) also forms a joint lasso regression of variable
[ρ12, ρ13, · · · , ρp−1,p]T ; for fixed ρij , ωii can be opti-
mized analytically. Therefore, Peng et al. (2009) pro-
posed to optimize ρij and ωii iteratively. Note that
MB is equivalent to a simplified version of (1) in which
the symmetry constraint is relaxed and ωii are set to
be a uniform constant. The weights µi in (1) are
parameters that can be manipulated to increase the
flexibility of the method. If µi = ωii, (1) resembles
a maximum pseudo likelihood estimator of the mul-
tivariate Gaussian model, which was made precise by
the recent “symmetric lasso” method (Friedman et al.,
2010). Peng et al. (2009) also explored various heuris-
tics for choosing µi, and suggested that by taking µi
to be the estimated degree of node i in the previous it-
eration, the algorithm (referred as “JSRM.dew”) will
prefer scale free networks. This relates to our basic
task of learning scale free networks, and we return to
discuss and compare this method further in the sequel.

A more systematic solution is to minimize the neg-
ative `1 penalized log-likelihood (e.g. Yuan and Lin,
2007; Banerjee et al., 2008; d’Aspremont et al., 2008;
Friedman et al., 2008):

− log p(x|Ω) + λ
∑
i,j

|ωij |, (2)

where the log-likelihood is

log p(x|Ω) = log det(Ω)− tr(SΩ),

with S = 1
nXX

T being the empirical covariance ma-
trix. The matrix Ω is constrained to be symmetric and
positive definite during the optimization.

Optimizing (2) can be recognized as a non-
differentiable convex problem. Various optimization
methods have been developed to solve it. See e.g.,
Banerjee et al. (2008); Friedman et al. (2008); Duchi
et al. (2008). One of the most efficient is the graphi-
cal lasso (“glasso”), which uses a blockwise coordinate

descent strategy, updating each row/column of the co-
variance matrix by solving a modified lasso subprob-
lem in each descent step. This method is guaranteed
to maintain the property of positive definiteness dur-
ing each update, so that the constraint does not need
to be considered explicitly.

Across these methods there is a debate as to whether
|ωij | or |ρij | should be regularized. (Note that ρij =
− ωij√

ωiiωjj
.) In principle, JSRM can be modified to reg-

ularize |ωij |, or an optimizer of the likelihood (2) such
as graphical lasso could instead regularize |ρij |. They
are all based on the idea of `1 regularization for en-
couraging sparse patterns, but have minor differences
in their mathematical details. Since the focus of the
current work is to show how existing methods can be
improved by incorporating scale-free priors, we will re-
spect the different traditions of the original methods.

In general, all the described `1 based methods have a
similar basic form, maximizing a score function with a
`1 penality term

L`1(Θ) = S(X,Θ)− λ||Θ||1, (3)

where ||Θ||1 =
∑
ij |θij | is the `1 norm. Θ may be

the precision matrix Ω or the partial correlation ma-
trix Φ, and S(X,Θ) takes on different forms depend-
ing on the implementation details of different methods.
The term ||Θ||1 can be thought of as the continuous
convex surrogate of the `0 norm of Θ, which equals
the number of non-zero elements and thus encourages
sparsity; there are also arguments that `1 is in fact the
optimal convex surrogate in certain senses (see e.g.,
d’Aspremont et al., 2008). From a Bayesian point of
view, the `1 term can be interpreted as a Laplacian
prior, i.e., as assuming that the parameters θij are
distributed i.i.d. according to prior probability distri-
bution p(θij) ∝ exp(−λ|θij |).

3 Power Law Regularization

In scale-free network, the degree distribution of the
vertices follows a power law: p(d) ∝ d−α. The degree
d of vertex i in a GMRF can be understood as the
`0 norm of θ¬i = {θij |j 6= i}. We propose to use
||θ¬i||1 + εi as a continuous surrogate of the degree
d, where ||θ¬i||1 =

∑
i 6=j |θij | is the `1 norm. The

small positive term εi is used to make the surrogate
positive, and hence ensure that its value in the power
law distribution will be well defined. Then, we can
optimize the following score function:

Lsf (Θ) = S(X,Θ)− α
∑
i

log(||θ¬i||1 + εi)− β
∑
i

|θii|.

(4)
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The positive term εi represents the sensitivity thresh-
old for the parameters and is used to “smooth out” the
scale-free property. In practice, we take εi to have the
same order as θij . If εi is very large, i.e., ||θ¬i||1 � εi,
then log(||θ¬i||1 + εi) ≈ 1

εi
||θ¬i||1 + log(εi), and the

off-diagonal regularization term becomes α
∑
i 6=j(

1
εi

+
1
εj

)|θij |, which is equivalent to the standard `1 reg-
ularization in (2), but with a different regularization
coefficient on each element (i, j). In this sense, (4)
generalizes the `1 regularization method. The diago-
nal elements are separated out, since we do not want
to apply the power law to the diagonal. In practice, we
take β = 2 αεi , which is the `1 regularization coefficient
in the limiting case of ||θ¬i||1 � εi. Note that when Θ
is the partial correlation, the diagonal terms are zero,
and need not to be not considered.

The scale-free regularization is no longer convex as in
standard `1 regularization because of the use of the log
function. Intuitively, nonconvexity arises naturally in
the problem of learning a scale-free network, since the
locations of the hubs must be identified, creating the
potential for multiple local modes.

As an alternative interpretation, the regularization in
(4) can be also thought of as an approximate form of
the log-normal distribution, which has been proposed
as an alternative to the power law for characterizing
the degree distribution of scale-free networks (Pennock
et al., 2002; Mitzenmacher, 2003; Arita, 2005). A ran-
dom variable z is said to be log-normal if log(z) follows
a normal distribution. Formally, its log probability is

log p(z) = − log(z)− 1
2

(
log(z)− µ

σ

)2

+ const.

If σ is very large, the second term is small and the
log-log plot of z versus p(z) becomes approximately
linear (Arita, 2005). Therefore, we can interpret (4)
as the approximate posterior distribution after adding
a log-normal prior on (||θ¬i||1 +εi)1/α. Analogously to
the central limit theorem, which states that the sum of
many i.i.d. random variables approaches a Gaussian
distribution, the product of many i.i.d. positive ran-
dom variables approaches a log-normal distribution.
Therefore, log-normal distributions arise quite natu-
rally throughout the physical world, making it a rea-
sonable prior on the parameters from a more formal
Bayesian perspective.

4 Reweighted Methods

In this section, we derive an algorithm to maximize
(4). We show that (4) can be solved by a sequence
of `1 regularization problems, whose regularization co-
efficients are updated iteratively in a way that mim-

ics the preferential attachment in scale free networks.
Our method is derived as an instance of the minorize-
maximize (MM) algorithm (Hunter and Lange, 2004),
which is an extension of the expectation-maximization
(EM) algorithm (Bilmes, 1998; Dempster et al., 1977).
The MM algorithm maximizes the objective function
by iteratively maximizing its minorizing functions,
which are lower bounds of the objective function that
are tangent to it at the current estimation point. In
this way, one can always guarantee that the objective
function increases monotonically and converges if it is
upper bounded (Dempster et al., 1977; Wu, 1983)).
More specifically, suppose Θn is the estimate found in
the last iteration; noting that

α
∑
i

log(||θ¬i||1 + εi)− α
∑
i

log(||θn¬i||1 + εi)

≤ α
∑
i

(
||θ¬i||1 + εi
||θn¬i||1 + εi

− 1
)

=
∑
i 6=j

λij |θij |+ const.

where

λij = α

(
1

||θn¬i||1 + εi
+

1
||θn¬j ||1 + εj

)
. (5)

then we have

Lsf (Θ)− Lsf (Θn)

≥ S(X,Θ)−
∑
i 6=j

λij |θij | − β
∑
i

|θii|+ const. (6)

The equality in (6) holds if and only if Θ = Θn.

Therefore, Lsf (Θ) can be improved by iteratively max-
imizing the lower bound:

Θn+1 = arg max
Θ

Q(Θ|Θn)

= arg max
Θ
{S(X,Θ)−

∑
i 6=j

λij |θij | − β
∑
i

|θii|},

(7)

which can be implemented using any of the previously
discussed methods (MB, JSRM, graphical lasso, or
others). It is easy to see that (6) and (7) establishes
a MM algorithm, and hence the objective function in-
creases monotonically, i.e., Lsf (Θn+1) ≥ Lsf (Θn).

This process (and the MM algorithm in general) is
closely analogous to the EM algorithm, with (5) cor-
responding to the E-step and (7) corresponding to the
M-step. The properties of EM can thus be directly
applied to our algorithm. For example, the results of
Wu (1983) demonstrate that {Θn} convergences to a
stationary point of Lsf(Θ), under some mild regular-
ity conditions. We also note that it is not necessary
to exactly maximize Q(Θ|Θn); as with the philoso-
phy of generalized EM (GEM) (Dempster et al., 1977),
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the desired properties can be maintained so long as
Q(Θ|Θn) is improved in each iteration. In algorithms
such as graphical lasso in which the exact optimiza-
tion of (7) is iterative and costly, one can update the
weights more quickly, for example after one sweep of
all the rows.

The weight update in (5) has an appealing intuition. It
decreases the regularization strength if ||θ¬i||1 is large,
and hence encourages the appearance of high degree
nodes (network hubs) in a rich-get-richer fashion. The
process mirrors the mechanism of preferential attach-
ment (Barabási and Albert, 1999) that has been pro-
posed as an underlying generative model to explain
power law degree distributions in scale-free networks.

5 Related Work

There is some existing work on learning scale free net-
works, but little in a systematic manner. For exam-
ple, as Peng et al. (2009) suggested, JSRM can be
encouraged to learn scale free network by setting the
weights µi in (1) to be proportional to the estimated
degrees in the previous iteration. This heuristic ap-
proach, however, cannot be adapted to improve other
methods such as the graphical lasso. A strength of
our approach is that it can be applied to improve any
`1 based methods that have the form (3) when the
underlying network is believed to be scale free. Our
experimental results also suggest that our method can
provide more accurate estimates than by adjusting µi.
Another work related to constructing scale free net-
works is Chen et al. (2008), which is based on a simple
heuristic of ranking the empirical correlation matrix.

Very recent work such as Friedman et al. (2010) and
Peng et al. (2010) use a similar idea based on group
lasso, where a `2 regularization on the columns of Θ is
applied. These works are similar to our method in the
sense that edges incident on the same node share infor-
mation with each other, but induce different behaviors.
Friedman et al. (2010) encourages “node sparsity”, in
which a node with weak correlations tends to be to-
tally disconnected, while our method tends to reshape
the network towards a power degree distribution.

An interesting connection can be drawn between our
technique and the reweighted `1 minimization method
for compressive sensing (Candés et al., 2008), which
gives a different perspective for (5) . To illustrate,
we re-write the `0 norm of some vector z as ||z||0 =∑
i
|zi|
|zi|+εi , where εi is positive constant that is much

smaller than the non-zero elements of z. The `1 norm
||z||1 =

∑
i |zi| has been widely used as a convex surro-

gate of ||z||0. However, it introduces large bias when
the magnitude of the non-zero entries of z are very

different from one another. A more accurate approx-
imation is ||z||w =

∑
i
|zi|
|z0i |+εi

, where z0 is a previous
estimate of z. Candés et al. (2008) showed that an
iteratively reweighted `1 minimization is closer to the
ground truth `0 in this sense, and presented exper-
iments demonstrating that the reweighted algorithm
leads to remarkably improved performance in appli-
cations such as sparse signal recovery. Candés et al.
(2008) further noticed that the reweighted algorithm is
equivalent to using the log surrogate

∑
i log(|zi|+ εi),

which also appears in our regularization. An analogous
idea for lasso was explored in Shimamura et al. (2009),
and was demonstrated to decrease the false positive
rate when inferring a gene network. Also related in
spirit is the two-pass adaptive lasso (Zou, 2006; Huang
et al., 2006; Shimamura et al., 2007), in which z0 is es-
timated using a predefined rough estimator such as
shrinkage regression, but no further steps are taken to
refine the weighting. Zou and Li (2008) and Fan et al.
(2009) proposed a nonconcave penality function called
the SCAD penality, to attenuate the bias problem of
the `1 penality, and showed that the objective function
can be optimized by solving a series of reweighted `1
problems. Although all these methods relate to the
idea of reweighting coefficients in various ways, they
are distinct from our method in that they do not ex-
plore using the weights to encourage a scale free prior
of the network, but focus on attenuating the statisti-
cal bias from `1 regularization. Our preferential at-
tachment updating is tailored to reconstruct scale free
networks, which appear widely in real-world systems
across many disciplines.

6 Experimental Results

We show simulation results in two types of simulated
data: scale free networks simulated using a preferen-
tial attachment mechanism, and a sparse network with
a few dominant hubs. Finally, we apply our method
to infer a network from gene expression data, illus-
trating its ability to find and prefer attachments to
hubs. For all the experiments in this paper, we im-
plemented our scale free regularization on neighbor-
hood selection (“MB”), JSRM with uniform weights
(“JSRM”), and graphical lasso(“glasso”). We refer
to the scale free versions of MB, JSRM, and glasso
as MB-SF, JSRM-SF and glasso-SF. For comparison,
we also implemented the degree-reweighted version of
JSRM in Peng et al. (2009) (“JSRM.dew”). For MB-
SF and JSRM-SF, the variables θij are the partial cor-
relations ρij ∈ [−1, 1], and we take εi = 1. For graph-
ical lasso, θij = ωij are the elements of the precision
matrix, we take εi equal to θii estimated in the last
iteration, to make sure εi is on the same magnitude
of ||θ¬i||1. For all the scale free methods, the initial
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Figure 1: Top: The true scale free network and the networks estimating using JSRM (Peng et al., 2009),
JSRM.dew (Peng et al., 2009), and JSRM-SF (this work). The four hubs of the original graph are shown in red
in all four networks. Bottom: log-log plots of the degree distributions for each estimated network. JSRM.dew
and JSRM-SF encourage scale-free degree distributions, evidenced by their linear appearance.

values of Θ are all taken to be the identity matrix so
that initially ||θ¬i||1 = 0. This makes the first itera-
tion of each of the reweighting methods equivalent to
its original `1 counterpart. For each method we stop
after the 5th reweighting iteration, although as we will
show later the most significant improvement has usu-
ally been obtained even by the 2nd iteration (i.e., the
first reweighted iteration). The JSRM related meth-
ods are implemented in the “SPACE” R package (Peng
et al., 2009).

6.1 Scale Free Network

We tested our method in random simulated scale-
free networks. First, a scale-free network is simu-
lated via the Barabási -Albert (BA) model (Barabási
and Albert, 1999), which generates random scale-free
networks using a preferential attachment mechanism.
More specifically, the network begins with an initial,
4-node cycle. New nodes are added to the network one
at a time, and each new node is connected to one of the
existing nodes with a probability that is proportional
to the current degree of the existing node. Formally,
the probability pi that the new node is connected to
node i is pi = di/

∑
j dj , where di is the degree of i-th

node. Our resulting network consisted of 100 nodes
and 99 edges, with 4 hubs having degrees larger than
9; see Figure 1a.

We define L = ηD − G, where G is the adjacency
matrix, D is a diagonal matrix with i-th diagonal entry
equal to the degree of the node i, and η is a constant

larger than 1. If η = 1, L is the Laplacian matrix.
We take η to be strictly larger than one (e.g., η =
1.1) to force L to be positive definite. The precision
matrix Θ is then defined by Θ = Λ

1
2LΛ

1
2 , where Λ

is the diagonal matrix of L−1, which scales Θ such
that the covariance matrix Σ = Θ−1 has unit diagonal,
meaning that each dimension of the random vector x
has equal, unit variance.

We simulated a dataset X from the Gaussian Markov
model N (0,Θ−1) with size n = 100. We tested MB,
JSRM and glasso and their counterpart with scale free
regularization on this dataset. The off-diagonal regu-
larization coefficients α are varied to control the false
positive and true positive rate for edge prediction,
which yields an ROC curve. We repeat the experi-
ment 20 times, and plot the averaged ROC curves in
Figure 2. The fraction of estimated edges connecting
to the hubs are shown in Figure 2 as well.

As can be seen in Figure 2 (best viewed in color), the
ROC curves of the scale-free regularization methods
(solid lines) are consistently above their original coun-
terparts (dashed), and encourage a greater number of
edges connecting to the hubs. Comparing the results of
JSRM.dew and our JSRM-SF, it shows that the power
law regularization is a more effective way of learning
scale free networks.

In Figure 2c, we show the ROC curve of JSRM-SF
after performing different numbers of iterations. It is
evident that the greatest gain in accuracy is obtained
at the 2nd iteration, i.e., with only one extra iteration
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Figure 2: Experimental results on estimating the edges of a scale free network (see also Figure 1). (a) The
ROC curves of each of the methods. Standard methods are shown as dashed, while their scale-free versions are
shown as solid. In each case, the scale-free version significantly dominates its original; in the case of JSRM,
it also dominates the scale-free JSRM.dew variant. (b) The fraction of edges connecting to the hubs vs. the
false positive rate. Note that the true fraction is 0.6. Scale-free variants are more likely to find hub-connected
edges “early”, when few edges have been included in the graph. (c) The ROC curves of JSRM-SF after different
numbers of iterations. Note that the major improvement of accuracy is obtained at the 2nd iteration (i.e., one
extra iteration compared to the original `1 counterpart). This suggests that our method is not significantly more
computationally expensive than the `1 counterpart.
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Figure 3: Experiment results on estimating the edges of a hub network. (a) The true hub network from which
data are simulated. (b) The ROC curves of different methods. Standard methods are shown as dashed, while
their scale-free versions are shown as solid. Again in each case, the scale-free version significantly dominates its
original, as well as the scale-free JSRM.dew variant. (c) The fraction of edges connecting to the hubs vs. the
false positive rate. Note that the true fraction is 0.5053. Again, we see that the scale-free variants find edges
incident to the hubs earlier than their original counterparts.

compared with the original `1 method. Therefore, our
scale-free iterative reweighting does not entail much
additional computation over the original methods. In-
terestingly, similar behaviors have been found in other
reweighting methods (e.g. Candés et al., 2008; Zou and
Li, 2008), and it is recommended by many authors
to stop after the 2nd iteration, i.e., perform only one
reweighting step (Fan et al., 2009; Candés et al., 2008;
Zou and Li, 2008). In case when the underlying net-
work is not scale free, using fewer iterations may also
avoid introducing too large of a bias.

We also show examples of the estimated networks
found by JSRM, JSRM.dew and JSRM-SF in Figure 1.
All the estimated networks have been selected to have
the same number of edges (≈ 160) and thus the same
false positive rate (≈ 0.025). The bottom row of Fig-
ure 1 shows log-log plots of the true degree distribution
and the degree distributions of the estimated networks.
Visually, the network estimated by scale free regular-
ization most closely follows a power law; the network
estimated by JSRM.dew is also similar. The results
of MB vs. MB-SF and glasso vs. glasso-SF are also
similar, but are not shown due to space limitations.
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Figure 4: Networks estimated on gene expression data. (a) The network with 120 edges estimated using glasso.
(b) The network with 120 edges estimated using glasso-SF. The top 4 hubs are colored red. Both algorithms
identify the same four hubs, but they are more “hub-like” in the network estiamted with glasso-SF. (c) The
log-log plot of the degree distributions of the networks in (a) and (b). The network estimated using glasso-SF is
noticeably more scale-free.

6.2 Hub Network

We also tested our algorithm on a sparse network with
a few dominating hubs. This graph consists of four
k-star subgraphs of k = 25 nodes, in which a hub con-
nects to all the other nodes in its subgroup. We then
add random edges between the non-hub nodes. Our
network (shown in Figure 3a) results in 100 nodes and
190 edges with 4 hubs each of degree of 24. We simu-
lated the values of the precision matrix using the same
method described in Section 6.1. We draw sample data
sets of size 200, and repeat the experiment 20 times to
find average performance. The ROC curves of each of
the different methods are shown in Figure 3b, and the
fraction of edges connected to the true hubs are plot-
ted in Figure 3c. The result strengthens the argument
that our method improves accuracy compared to each
of its `1 counterparts, and prefers hub structures.

6.3 Network for Gene Expression Data

We tested our algorithm on a time course profile for a
set of 102 genes selected from Saccharomyces cerevisiae
(Spellman et al., 1998; Chen et al., 2008). These mi-
croarray experiments were designed to identify yeast
genes that are periodically expressed during the cell
cycle. The gene expressions were collected over 18 time
points, which are treated as independent samples from
a GMRF in our setting. Figure 4 shows two networks
with 120 edges estimated using glasso and glasso-SF,
along with a log-log plot of their degree distributions
(the other methods are implemented but bear similar
results and are omitted for space). Visually, the net-
work estimated using our algorithm appears closer to
scale-free behavior and exhibits more clustering to the
hubs. It is difficult to assess the accuracy of any of the

algorithms for this problem, since the true underly-
ing network is unknown, and existing side information
is not very consistent with the data set (Chen et al.,
2008; Zou and Conzen, 2005). However, we note that
our methods identify the same set of highest-degree
nodes (colored in red) with their `1 counterparts, but
allocate more edges on the hubs (exhibiting a “pref-
erential attachment” mechanism). This suggests that
our method is consistent in the sense that it does not
deviate greatly from the original methods, but imposes
a slight bias toward the scale-free behavior believed to
exist in the true network.

7 Conclusions and Future Directions

The study of complex networks is an active area of sci-
entific research that examines common topological fea-
tures of real-world networks. While scale-free behavior
is widely acknowledged to be common, it is only one
of many possible examples. Other features, such as
assortativity or disassortativity among vertices, com-
munity, and hierarchical structure may also provide
important information for network inference. We ex-
pect to see considerable additional cross fertilization
between these two areas. There are also a number of
theoretical issues of our algorithm which remain unex-
plored; for example, the asymptotic consistency, and
the method of selecting the regularization coefficient.
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