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This is a collection of notes on rectified flow. It is still under development.
The references are not complete.

It is accompanied with a code base and blog:

Code: https://github.com/lqiang67/rectified-flow.

Blog: https://rectifiedflow.github.io/

Please let us know (rectifiedflow@gmail.com) if you have any sugges-
tions, comments, or notice any typos.
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Figure 1.1: Curved trajectories suffer from dis-
cretization error when approximated by Euler’s
method.

CHAPTER ONE

Rectified Flow

1.1 Overview

Generative modeling can be formulated as finding a computational proce-
dure that transforms a noise distribution, denoted by π0, into the unknown
data distribution π1. In flow models, this procedure is represented by a
ordinary differential equation (ODE):

Żt = vt(Zt), ∀t ∈ [0, 1], starting from Z0 ∼ π0, (1.1)

where Żt = dZt/dt denotes the time derivative, and the velocity field
vt(x) = v(x, t) is a learnable function to be estimated to ensure that Z1

follows the target distribution π1 when starting from Z0 ∼ π0. In this case,
we say that the stochastic process Z = {Zt} provides an (ODE) transport
from π0 to π1.

It is important to note that, in all but trivial cases, there exist infinitely
many ODE transports from π0 to π1, provided that at least one such process
exists. Thus, it is essential to be clear about which types of ODEs we should
prefer.

One option is to favor ODEs that are easy to solve at inference time.
In practice, the ODEs are approximated using numerical methods, which
typically construct piecewise linear approximations of the ODE trajectories.
For instance, a common choice is Euler’s method:

Ẑt+ε = Ẑt + εvt(Ẑt), ∀t ∈ {0, ε, 2ε, . . . , 1}, (1.2)

where ε > 0 is a step size. Varying the step size ε introduces a trade-off
between accuracy and computational cost: smaller ε yields high accuracy,
but incurs larger number of calculation steps. Therefore, we should seek
ODEs that can be approximated accurately even with large step sizes.

The ideal scenario arises when the ODE follows straight-line trajec-
tories, in which case Euler approximation yields zero discretization error
regardless of the choice step sizes. In such cases, the ODE, up to time
reparameterization, should satisfy:

Zt = tZ1 + (1− t)Z0, ⇒ Żt = Z1 − Z0.

These ODEs, known as straight transports, enable fast generative models
that can be simulated in a single step. We refer to the resulting pair (Z0, Z1)

as a straight coupling of π0 and π1. In practice, we may not achieve perfect
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X0 X1

Xt = tX1 + (1− t)X0

Figure 1.2: Interpolation process X: We first draw
the random end points (X0, X1), and then build the
intermediate path.

Z0 Z1

Żt = vt(Zt)

Figure 1.3: The ODE (a.k.a flow) process Zt, which
generates Zt causally with increasing t starting from
the initialization Z0.

Figure 1.4: Imagine emitting particles along the
trajectories of the interpolation paths {Xt}. When
these trajectories intersect, the particles collide and
merge into a larger particle, which then continues
moving in the average direction.

straightness but can aim to make the ODE trajectories as straight as possible
to maximize computational efficiency.

It is possible to discuss generalized notions of straightness when solvers
other than Euler’s method are used.

Rectified Flow

The independent coupling (X0, X1) ∼ π0 × π1

serves as a special starting point because it is what
we can observe empirically even without any
meaningful pairing relations between data from π0

and π1. But the algorithm works for arbitrary
couplings, if available.

To construct a flow transporting π0 to π1, let us assume that we are given
an arbitrary coupling (X0, X1) of π0 and π1, from which we can obtain
empirical draws. This can be simply the independent coupling with law
π0 × π1, as is common in practice when we have access to independent
samples from π0 and π1. The idea is that we are going to take (X0, X1) and
convert it to a better coupling generated by an ODE model, and optionally,
we can go further to iteratively repeat this process to further enhance
desired properties, such as straightness.

Rectified flow works in the following ways:
1. Build Interpolation: We build an interpolation process {Xt} =

{Xt : t ∈ [0, 1]} that smoothly interpolate between X0 and X1. Although
general choices are possible, let us consider the canonical choice of straight-
line interpolation:

Xt = tX1 + (1− t)X0.

Here {Xt} is a stochastic process generated in a special way: we first sam-
ple the endpoints X0 and X1 and then sample the intermediate trajectory
connecting them. Such processes are also known as bridge processes, where
the intermediate values of Xt smoothly “bridge” the distribution between
X0 and X1.

2. Marginal Matching: By construction, the marginal distributions
of X0 and X1 match the target distributions π0 and π1 through the inter-
polation process {Xt}. However, {Xt} is not a causal ODE process like
Żt = vt(Zt), which evolves forward from Z0. Instead, generating Xt re-
quires knowledge of both X0 and X1, rather than evolving solely from X0

as t increases.
This issue can be resolved if we can convert {Xt} somehow into a

causal ODE process, while preserving the marginal distributions of Xt at
each time t. Perhaps surprisingly, this can be achieved by simply training
the ODE model Żt = vt(Zt) to match the slope Ẋt of the interpolation
process via:

min
v

∫ 1

0

E
[∥∥∥Ẋt − vt(Xt)

∥∥∥2]dt. (1.3)

The theoretical minimum is achieved by

v∗t (x) = E
[
Ẋt | Xt = x

]
,

which denotes the expectation of the slope Ẋt of the interpolation process
passing through a given point Xt = x. We have v∗t (x) = Ẋt only one
trajectory passing Xt = x. If multiple trajectories pass point Xt = x, the
velocity v∗t (x) is the average of Ẋt for these trajectories.
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With the canonical straight interpolation, we have Ẋt = X1 −X0 by
taking derivative of Xt w.r.t. t. It yields

min
v

∫ 1

0

E
[
∥X1 −X0 − vt(Xt)∥2

]
dt, Xt = tX1 + (1− t)X0.

In practice, the optimization in (1.3) can be efficiently solved even for
large AI models when v is parameterized as modern deep neural networks.
This is achieved by leveraging off-the-shelf optimizers with stochastic
gradients, computed by drawing pairs (X0, X1) from data, sampling t

uniformly in [0, 1], and then computing the corresponding (Xt, Ẋt) using
the interpolation formula.

Background (Random Variables and Expectation). To put it simply, a
random variable X = X(ω) is a measurable function of a “random
seed” ω following a baseline distribution P. A stochastic process
Xt = X(t, ω) is a time-dependent random variable. We use uppercase
letters like X,Y to represent random variables (RVs).

Viewing the interpolation process above, the random seed is given
by the endpoints, i.e., ω = (X0, X1). The slope is defined as Ẋt =

∂tX(t, ω), which is another function of the same random seed.
The expectation in the loss (1.3), written in full, is

Eω∼P

[
∥∂tX(t, ω)− vt(X(t, ω))∥2

]
,

though we often omit the random seed in writing.

Background (Conditional Expectation). For any joint random variable
(X,Y ), the conditional expectation E [Y |X] is a function f∗ of X that
yields the best prediction of Y given X,

f∗ = argmin
f

E
[
∥Y − f(X)∥2

]
,

that is, E [Y |X] = f∗(X). This can be seen from the bias-variance
decomposition,

E
[
∥Y − f(X)∥2

]
= E

[
∥Y − E [Y |X]∥2 + ∥E [Y |X]− f(X)∥2

]
= E [Var(Y | X)]︸ ︷︷ ︸

variance

+E
[
∥E [Y |X]− f(X)∥2

]
︸ ︷︷ ︸

bias

,

where the first term represents the variance of Y given X, which is
independent of f . The second term is the bias, which is zero when
f(X) = E[Y | X]. Thus, the optimal choice for f is f∗(X) = E[Y | X].

So E[Y | X] is a random variable, as it is a function of X. We
can "instantiate" it at a fixed value X = x, and get the deterministic
quantity E[Y | X = x] = f∗(x).

Figure 1.5 illustrates the intuition:

1. In the interpolation process {Xt}, different trajectories may have
intersecting points, resulting in multiple possible values of Ẋt associ-
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Figure 1.5: Intuition of rectified flow and reflow. (a) The interpolation {Xt} constructed
from independent coupling (X0, X1), which has intersecting points in the middle. (b) The
rectified flow {Zt} induced from {Xt}, which rewires the trajectories at the intersecting
points, while preserving the marginal distributions. (c) The new interpolation build from
(Z0, Z1) of the rectified from in (b), which has less intersecting points. (d) The new rectified
flow build from the interpolation from (c), which is now almost straight.

(a) (b) (c)
Figure 1.6: A close-up view of how rectification "rewires" interpolation trajectories. (a)
Interpolation trajectories with intersections. (b) Averaged velocity directions at intersection
points (red arrows). (c) Trajectories of the resulting rectified flow.

ated with a same point Xt due to uncertainty about which trajectory
it was drawn from (see Figure 1.5(a)).

2. On the other hand, by the definition of an ODE Żt = v∗t (Zt), the
update direction Żt at each point Zt is uniquely determined by Zt,
making it impossible for different trajectories of {Zt} to intersect and
then diverge along different directions.

3. At these intersection points of {Xt}, where Ẋt is stochastic and non-
unique, Zt “derandomizes” the update direction by following the
conditional expectation v∗t (Xt) = E[Ẋt | Xt], thus providing the
unique update direction required by ODEs.

4. Since ODE trajectories {Xt} cannot intersect, they must curve at
potential intersection points to "rewire" the original interpolation
paths and avoid crossing.

Remark 1. Figure 1.6 illustrates a close-up view of how rectification
“rewires” interpolation trajectories.

Consider two "beams" of interpolation trajectories intersecting to
form the "region ofz confusion" (shaded area in the middle). Within
this region, a particle moving along the rectified flow follows the
averaged direction v∗t . Upon exiting, the particle joins one of the
original interpolation streams based on its exit side and continues
moving. Since rectified flow trajectories do not intersect within the
region, they remain separated and exit from their respective sides,
effectively "rewiring" the original interpolation trajectories.

The example described above results in a velocity field that is

CHAPTER 1. RECTIFIED FLOW 7



discontinuous at the boundary of the region of confusion. However,
when the coupling is randomized, this intersection process can be
viewed as occurring infinitely many times, yielding a smooth velocity
field.

Definition 1. For any time-differential stochastic process {Xt} = {Xt : t ∈
[0, 1]}, We call the ODE process Żt = v∗t (Zt) with v∗t (z) = E

[
Ẋt | Xt = z

]
,

and Z0 = X0 the rectified flow induced by {Xt}. We denote it as

{Zt} = Rectify({Xt}).

Remark 2. Although {Xt} is an interpolation process in the algo-
rithm, the definition of Rectify(·) applies to general time-differential
stochastic processes.

What makes rectified flow {Zt} useful is that it preserves the marginal
distributions of {Xt} at each point, while resulting in a “better” coupling
(Z0, Z1) in terms of optimal transport:

[Marginal Preservation]

The {Xt} and its rectified flow {Zt} share the same marginal distributions
at each time t ∈ [0, 1], that is,

Law(Zt) = Law(Xt), ∀t ∈ [0, 1].

[Transport Cost]

The start-end pairs (Z0, Z1) from the rectified flow {Zt} guarantees to yield
no larger transport cost than (X0, X1), simultaneously for all convex cost
functions c:

E [c(Z1 − Z0)] ≤ E [c(X1 −X0)] , ∀convex c : Rd → R.

1.2 Reflow

While rectified flows tend to favor straight trajectories, they are not per-
fectly straight. As shown in Figure 1.5(b), the flow makes turns at inter-
section points of the interpolation trajectories {Xt}. How can we further
improve the flow to achieve straighter trajectories and hence speed up
inference?

A key insight is that the start-end pairs (Z0, Z1) generated by rectified
flow, called the rectified coupling of (X0, X1), form a better and “straighter”
coupling compared to (X0, X1). This is because if we connect Z0 and
Z1 with a new straight-line interpolation, it would yield less intersection
points. Hence, training a new rectified flow based on this new interpolation
would result in straighter trajectories, leading to faster inference.

Formally, we apply the Rectify(·) procedure recursively, yielding a
sequence of rectified flows starting from (Z0

0 , Z
0
1 ) := (X0, X1):

Reflow: {Zk+1
t } = Rectify(Interp(Zk

0 , Z
k
1 )), (1.4)

CHAPTER 1. RECTIFIED FLOW 8



where Interp(Zk
0 , Z

k
1 ) denotes an interpolation process given (Zk

0 , Z
k
1 ) as

the endpoints. We call {Zk
t } the k-th rectified flow, or simply k-rectified

flow, induced from (X0, X1).
This reflow procedure is proved to “straightening” the paths of rectified

flows in the following sense: Define the following measure of straightness
of {Zt}:

Define S({Zt}) =
∫ 1

0

E[∥Z1 − Z0 − Żt∥2]dt,

where S({Zt}) is a measure of the straightness of {Zt}, with S({Zt}) = 0

corresponding to straight paths. Then we have

Ek∼Unif({1,...,K})[S({Zk
t })] = O(1/K), (1.5)

which says that the average of S({Zk
t }) of the firstK steps decrease with an

O(1/K) rate. Hence, we would obtain perfectly straight-line dynamics with
(S({Zk

t }) → 0) in the limit of k → +∞. Note that reflow can begin from
any coupling (X0, X1), so it provides a general procedure for straightening
and thus speeding up any given dynamics while preserving the marginals.

1.3 Interpolations

The algorithm is not limited to the straight-line interpolation. In general,
we can consider any smooth interpolation process of form:

Xt = It(X0, X1), ∀t ∈ [0, 1] (1.6)

where I is a function that satisfies the boundary conditions of X0 =

I0(X0, X1), X1 = I1(X0, X1) to ensure that interpolation process is valid.

Definition 2. A function I : [0, 1]×Rd×Rd → Rd, denoted as It(x0, x1),
is said to be an interpolation, or an interpolation function, if it satisfies

I0(x0, x1) = x0, I1(x0, x1) = x1, for any x0, x1 ∈ Rd.

We call {Xt} with Xt = It(X0, X1) the interpolation process con-
structed from I and coupling (X0, X1).

For now, we assume that Xt is a time-differentiable process, that is, the
derivative Ẋt := ∂It(X0, X1) exists pointwisely. Hence, the loss function
in (1.3) reduces to

min
v

∫ 1

0

E∥∂tIt(X0, X1)− vt(It(X0, X1))∥2,

which yields

v∗t (x) = E [∂tIt(X0, X1) | It(X0, X1) = x] .

Here we first find the pairs (X0, X1) that yields Xt = It(X0, X1) = x,
and then calculating the corresponding derivative Ẋt = ∂tIt(X0, X1). If
(X0, X1) is not fully determined by It(X0, X1) = x, then the derivatives
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are averaged across all solutions of (X0, X1). If (X0, X1) can be fully deter-
mined by Xt, corresponding to the case when no interpolation trajectories
intersect, then conditional expectation reduces to calculating an inverse
function: first invert function I to get (X0, X1) from Xt, and then calculate
the derivative ∂It(X0, X1).

Example 1 (Affine Interpolations). In the literature, the class of affine
interpolations is mostly studied:

Xt = αtX1 + βtX0,

where αt, βt are sequences satisfying

α0 = β1 = 0, α1 = β0 = 1.

In addition, we may want αt to be monotonically increasing, and βt
monotonically decreasing, even though this is not strictly required by
the theory.

Example 2 (Straight Interpolation). With αt = t, βt = 1− t, we obtain
the time-uniform straight interpolation:

Xt = tX1 + (1− t)X0, Ẋt = X1 −X0. (1.7)

In general, affine interpolations satisfying αt+βt = 1 yields a straight
interpolation trajectories. In this case, different choices of αt intro-
duces a time scaling.

Example 3 (The DDPM Interpolation). The DDPM [Ho et al., 2020],
DDIM [Song et al., 2020a], and the VP ODE of [Song et al., 2020b]
use αt and βt satisfying α2

t +β
2
t = 1, which corresponds to a spherical

curve. In particular, DDPM&DDIM use a special non-uniform speed:

αt = exp

(
−1

4
a(1− t)2 − 1

2
b(1− t)

)
,

where the suggested default values are a = 19.9, b = 0.1.
The time-uniform variant of this is

Xt = sin(
π

2
t)X1 + cos(

π

2
t)X0, ∀t ∈ [0, 1].

Example 4 (General Spherical Interpolations). The more general spheri-
cal interpolation, a.k.a. Slerp, is

Xt =
sin(ωt)

sin(ω)
X1 +

sin(ω(1− t))

sin(ω)
X0, ∀t ∈ [0, 1],

where ω ∈ [−π, π) is a parameter. This reduces to the straight interpo-
lation with ω → 0, and it satisfies α2

t + β2
t = 1 only with ω = ±π/2.
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Remark 3. The interpolation process can be further generalized in at
least two ways:

1) The interpolation function I can be randomized:

Xt = It(X0, X1, ω), ω ∼ πω,

which depends on a random seed ω drawn form distribution πω.
2) Further, It(X0, X1) may not be differentiable w.r.t. t, such as

the case when Xt is a diffusion process [Song et al., 2020b, Liu et al.,
2022c, Peluchetti, 2021, Albergo et al., 2023]. We will discuss these
possibilities.

Impacts of Different Interpolations

Understanding the impact of different interpolation processes is a key ques-
tion of both theoretical and practical significance. Section 3 elaborates on
this issue, that all interpolation processes that are pointwise transformable
in a suitable sense yield essentially equivalent rectified flow dynamics and
rectified couplings. Notably, all affine interpolation processes are pointwise
transformable and therefore "essentially equivalent" [Kingma et al., 2021,
Karras et al., 2022b, Shaul et al., 2023, Gao et al., 2024]. Consequently, it
suffices to adopt a simple form, such as the straight Xt = tX1 + (1− t)X0,
while maintaining the flexibility to recover all affine interpolations through
adjustments in time parameterization and inference algorithms.

1.4 Models and Loss Functions

Beyond the standard quadratic loss (1.3), a variety of alternative loss
functions have been explored. A notable example is the time-weighted loss
function: ∫ 1

0

ηtE
[∥∥∥Ẋt − vt(Xt)

∥∥∥2]dt,
where ηt is a positive time weight. The non-uniform weights have been
found useful and used in training large models such as Stable Diffusion 3,
Flux and MovieGen.

In addition, the training procedure may vary depending on the choice
of the target function that the neural network is designed to estimate. For
example, rather than estimating vt, many studies suggest training neural
networks to approximate the condition expectation of noise X0 or target
X1 given Xt:

x̂0|t(x) = E [X0 | Xt = x] , x̂1|t(x) = E [X1 | Xt = x] . (1.8)

With Xt = tX1 + (1− t)X0, we can see that x̂0|t and x̂1|t are related to vt
via linear relations:

x̂1|t(x) = x+ (1− t)vt(x), x̂0|t(x) = x− tvt(x).

As a result, the different model formulations can be converted into one
another by adjusting the time weightings in the training loss. For example,
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if we set the problem as predicting x̂1|t(x) with a time weighting η, the
loss becomes∫ 1

0

ηtE
[∥∥X1 − x̂1|t(x)

∥∥2] dt = ∫ 1

0

ηt(1− t)2E
[
∥X1 −X0 − vt(Xt)∥2

]
dt,

which is equivalent to learning vt with a weighting of η̃t = (1 − t)2ηt.
Similarly, using different affine interpolation can be shown to correspond
to training with different time weights (Section 3.3).

Beyond time weighting with square losses, it is possible to explore more
general loss functions. A key property is that the minimum of the loss
should enforce vXt (x) = E

[
Ẋt|Xt = x

]
. This can be ensured in general

with Bregman divergence (Section 2.5).

1.5 Samplers

At inference time, we need to numerically solve the ODE dZt = vt(Zt)dt to
obtain samples. In addition to using off-the-shelf numerical ODE solvers,
specialized algorithms should be developed by exploiting the intrinsic
properties of rectified flow.

Euler’s method is default algorithm for solving the ODEs of rectified
flow. However, it has become common to 1) use non-uniform step sizes
for better performance, and 2) in the case of curved interpolations, apply
specialized natural Euler discretization update rules that align with the
underlying interpolation. As discussed in Section 1.3, these two choices
are interconnected, as using curved interpolations is equivalent to using
straight interpolations with non-uniform time steps. See Section 3 for
further details.

Another direction concerns the distinction between flow and diffusion
models. Although rectified flow is introduced as a method for learning
an ODE, it is possible to introduce stochasticity into the sampling process,
yielding an stochastic differential equation (SDE) for sampling at inference
time. Specifically, we may consider

dZt = vt(Zt)dt︸ ︷︷ ︸
Rectified flow

+σ2
t∇ log ρt(Zt) +

√
2σ2

t dWt︸ ︷︷ ︸
Langevin dynamics on ρt = Law(Zt)

,

where ρt is the density function of Zt. Here, we introduce an additional
Langevin dynamics component on the density of the current random vari-
able Zt, which is always in an equilibrium state due to the rectified flow,
and hence does not contribute to the change of the density in the ideal case
when Zt follows ρt exactly. However, when approximated in practice, the
Langevin dynamics acts as a negative feedback mechainsm to help bring
Zt back towards ρt.

In general, we need to learn the score function ∇ log ρt in addition to
vt. In the special case of independent coupling and Gaussian X0, however,
ρt can be obtained from vt using an explicit formula, which allows us to
freely switch between ODE and SDE samplers without retraining models
[Song et al., 2020b,a, Karras et al., 2022b].
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1.6 Literature

We follow the order of first introducing flow and then presenting diffusion
as an added option at inference time. This is in contrast to the historical
development of diffusion models, which follows the reversed order:

1. Diffusion. Denoising diffusion models were initially developed with
diffusion processes playing a fundamental role. Their development
began from the perspective of hierarchical variational inference [Sohl-
Dickstein et al., 2015, Ho et al., 2020], the learning of score functions
for energy-based models [Song and Ermon, 2019, 2020], and time-
reversal SDEs as introduced by Song et al. [2020b]. Complementary
perspectives were offered through Schrödinger bridges [De Bortoli
et al., 2021b, Shi et al., 2024], mixtures of diffusion [Peluchetti,
2021, 2023], and lazy EMs and h-transforms [Liu et al., 2022c, Ye
et al., 2022]. All these works established diffusion processes and SDE
concepts as central and indispensable building blocks.

2. Diffusion ⇒ Flow. It was discovered that at inference time, the
learned SDE models can be converted to deterministic ODE models.
This means that one can switch between SDE and ODE samplers at
inference time without re-training the model. This insight led to the
development of denoising diffusion implicit models (DDIM) [Song
et al., 2020a] and probability-flow ODEs (PF-ODEs) [Song et al.,
2020b]. ODE-based procedures are simpler and faster than SDE-
based inference, making them more appealing when computational
speed is a concern. However, these methods still rely on the SDE as
an intermediate step, which is somewhat counterintuitive, given that
SDEs are more sophisticated than ODEs.

3. Flow. It was later observed that ODE models can be introduced
directly, bypassing the need for SDEs altogether, whether for theoret-
ical or practical reasons. The works include rectified flow [Liu et al.,
2022a], flow matching [Lipman et al., 2022], stochastic interpolation
[Albergo et al., 2023], and alpha-blending [Heitz et al., 2023]. Also
related is related the action matching proposed by Neklyudov et al.
[2023].

Remark 4. The term diffusion models has frequently been used to refer
specifically to the DDIM and DDPM approaches. Here, we use it to
refer to general models that learn the diffusion process as a generative
mechanism.
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CHAPTER TWO

Marginals and Errors

We show that any time-differential stochastic process {Xt} shares the same
marginal distributions with the rectified flow {Zt} induced from {Xt}, that
is,

Law(Zt) = Law(Xt) for ∀t.

We provide the proof and also establish error bounds when the rectified
flow is learned exactly.

2.1 Marginals are Determined by E[Ẋt|Xt]

In the following, we establish the marginal preserving property, drawing
connection to the continuity equation.

Definition 3. For a path-wise continuously differentiable random pro-
cess {Xt} = {Xt : t ∈ [0, 1]}, its expected velocity vX , also called its
rectified flow (RF) velocity, is defined as

vXt (x) = E
[
Ẋt | Xt = x

]
, ∀x ∈ supp(Xt).

For x ̸∈ supp(Xt), the conditional expectation is not defined and we
set vX arbitrarily, say vXt (x) = 0.

Definition 4. We call that {Xt} is rectifiable if vX is locally bounded
and the solution of the integral equation below exists and is unique
initialized from Z0 = X0 almost surely:

Zt = Z0 +

∫ t

0

vXs (Zs)ds, ∀t ∈ [0, 1], Z0 = X0. (2.1)

In this case, {Zt} = {Zt : t ∈ [0, 1]} is called the rectified flow induced
from {Xt}.

The integral equation (2.1) reduces to the ODE d
dtZt = vXt (Zt) if Zt is

time-differentiable for all t.

Theorem 1. Assume {Xt} is rectifiable and {Zt} is its rectified flow.
Then Law(Zt) = Law(Xt) for ∀t ∈ [0, 1].
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X0(= Z0)

Xs

Xt

Zt

Ẑt|s

Figure 2.1: Illustrating Ẑt|s = ΦZ
t|s(Xs), which

yields Ẑt|0 = Zt and Ẑt|t = Xt.

Remark 5. The marginal distributions of Xt in a time-differential
stochastic process {Xt} are fully determined by the initial condition

and the expected velocity vX(x) = E
[
Ẋt | Xt = x

]
, which depends

solely on the conditional expectation of Ẋt given Xt at each point.
Higher-order moments of the conditional distribution Ẋt|Xt do

not influence the marginal distributions of Xt at each individual time
t, but they do affect the joint distributions, such as (Xt1 , Xt2) for
different time points t1 and t2.

Proof. Denote by C1
c (Rd;R) the set of compactly supported continu-

ously differentiable functions. For each h ∈ C1
c (Rd;R), we have

d

dt
E [h(Xt)] = E

[
∇h(Xt)

⊤Ẋt

]
= E

[
∇h(Xt)

⊤vXt (Xt)
]
, (2.2)

where we used vXt (Xt) = E
[
Ẋt|Xt

]
. This readily establishes a series

of equations on the probability measures πt := Law(Xt):∫
hdπt −

∫
hπ0 =

∫ t

0

∫
∇h⊤vXs dπs, ∀h ∈ C1

c (Rd;R). (2.3)

It turns out these (infinite number of) equations identifies a unique
solution of the measures {πt} given an initial π0, if and only if Equa-
tion (2.1) admits an unique solution initialized from Z0 ∼ π0. (See
Corollary 1.3 of Kurtz [2011] or Theorem 4.1 of Ambrosio and Crippa
[2008]).

Because Zt is driven by the same velocity field vX , its marginal
law Law(Zt) solves the very same equation (2.3) with the same initial
condition (Z0 = X0). Hence, we have Law(Zt) = Law(Xt) by the
uniqueness of the solutions.

An Elementary Proof

The key part of the proof is the uniqueness of the solutions of (2.3). We
give an elementary proof to illustrate the idea here.

Let Φt|s be the transfer map from Zs to Zt following the ODE dZt =

vXt (Zt)dt, such that Zt = Φt|s(Zs). Note that

0 =
d

ds
Zt =

d

ds
Φt|s(Zs) = ∂sΦt|s(Zs) +∇Φt|s(Zs)

⊤vXs (Zs),

where we write ∇Φ = [∂iΦj ]ij , which is the transpose of the Jacobian
equation.

Assume the solution of the ODE exists and is unique starting from any
point Zs = z on Rd. We can replace Zs with any z and get the so-called
Kolmogorov backward equation:

∂sΦt|s(z) +∇Φt|s(z)
⊤vXs (z) = 0, ∀z ∈ Rd. (2.4)

As illustrated in Figure 2.1, define

Ẑt|s = ΦZ
t|s(Xs),
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which is the result we get by following X from X0 to Xs, and then switch
to the ODE to get Ẑt|s. Obviously, we have Ẑt|t = Xt and Ẑt|0 = Zt.

For any test function h ∈ C1
c (Rd;R),

d

ds
E
[
h(Ẑt|s)

]
=

d

ds
E
[
h(Φt|s(Xs))

]
= E

[
∇h(Ẑt|s)

⊤(∂sΦt|s(Xs) +∇Φt|s(Xs)
⊤Ẋs)

]
= E

[
∇h(Ẑt|s)

⊤(∇Φt|s(Xs)
⊤(Ẋs − vXs (Xs))

]
//using (2.4)

= E
[
∇h(Ẑt|s)

⊤(∇Φt|s(Xs)
⊤(E

[
Ẋs|Xs

]
− vXs (Xs))

]
= 0.

Therefore,

E [h(Xt)]− E [h(Zt)] = E
[
h(Ẑt|t)

]
− E

[
h(Ẑt|0)

]
=

∫ t

0

d

dt
E
[
h(Ẑt|s)

]
ds = 0.

Because E [h(Xt)] = E [h(Zt)] for any test function h, we conclude that Xt

and Zt have the same distributions.

2.2 Continuity Equations

If πt = Law(Xt) admits a smooth density function ρt, then, as we show
below, Equation (2.3) can be reduced to the continuity equation:

∂tρt(x) = −∇·(vXt (x)ρt(x)), (2.5)

which explicitly characterizes the evolution of the densities ρt of Xt based
on the expected velocity vXt (x) = E

[
Ẋt|Xt = x

]
. Here, for a velocity field

v : Rd → Rd, we denote by ∇· v the divergence operator of velocity field v,
defined as

∇· v(x) =
∑
i

∂xiv(x)i = Trace(∇v(x)).

It is the trace of the Jacobian matrix of v(x).

Derivation by Integration by Parts

The key of the derivation of (2.5) from 2.3 is using integration by parts.
Writing the equation in terms of the density function:∫

h(x)∂tρt(x)dx =

∫
∇h(x)⊤vXt (x)ρt(x)dx.

Applying integration by parts on the right hand side: Note that left and
right hand side of (2.3) are∫

∇h(x)⊤vXt (x)ρt(x)dx = −
∫
h(x)∇·(vXt (x)ρt(x))dx //integration by parts.

This shows that∫
h(x)(∂tρt(x) +∇·(vXt (x)ρt(x)))dx = 0,
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Source: ∇· v(x) > 0 Sink: ∇· v(x) < 0

Figure 2.2: Illustrating divergence.

for any test function h, which implies that ∂tρt +∇·(vXt ρt) = 0.
If πt does not admit density functions, Equation (2.3) is simply defined

as the continuity equation in the weak sense, which is written formally as

π̇t +∇·(vXt πt) = 0. (2.6)

2.2.1 The Divergence Operator

In physics, the divergence of a vector field measures how much the field
acts as a source or sink at a specific point. It quantifies the "outflow" of
field vectors from an infinitesimal region. As shown in Figure 2.2, positive
divergence (∇· v(x) > 0) indicates a source, while negative divergence
(∇· v(x) < 0) indicates a sink.

To see why this is the case, note that with integration by parts, we have
for any velocity field v and density function ρ,∫

∇· v(x)ρ(x)dx = −
∫
v(x)⊤∇ρ(x)dx.

This is rewritten into

EX∼ρ[∇· v(X)] = −EX∼ρ[v(X)⊤∇ log ρ(X)],

which is also known as Stein’s identity. It shows that the expectation
of divergence ∇· v(X) under any distribution ρ equals the negative of
expected inner product of v(X) and ∇ log ρ(X).

Now, let ρ ∼ Normal(x0, σ2I) be a Gaussian distribution centered a
point x0. We have ∇ log ρ(X) = −(X − x0)/σ

2. Hence,

E [∇· v(X)] =
1

σ2
E
[
v(X)⊤(X − x0)

]
. (2.7)

Thus, the expected divergence around x0 is proportional to the expected
inner product of v(X) with the lines (X − x0) radiating outward from x0
to X. Taking the limit as σ → 0, this confirms that ∇· v(x0) serves as a
local measure of “sourceness” at x0.

Remark 6. Back to the continuity equation ∂tρt = −∇·(vtρt). It
shows that the rate of change of ρt at each point equals the negative
divergence (which measures the amount of inward flow) of the flux
vtρt. Here, vtρt is the product of the velocity field vt and the density
ρt, which together define the flow of the density ρt driven by the
velocity field vt.

∂tρt = −∇·(vtρt): Change rate of ρt = negative divergence of flux.

2.2.2 Numerical Approximation of ∇· v
Calculating the divergence requires to sum over the partial derivatives
∂xiv(x)i. Because each of these terms takes derivative of a different ob-
jective v(x)i w.r.t. a different input xi, there exists no efficient vectorized
operators that calculate all the terms simultaneously, they have to be
calculated separately with a for loop, which is highly inefficient.
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The Stein’s identity in (2.7) provides a convenient approximation of
divergence. Taking a small σ ≈ 0, we have

∇· v(x0) ≈ E [∇· v(x0 + σξ)]

=
1

σ
E
[
v(x0 + σξ)⊤ξ

]
=

1

σ
E
[
(v(x0 + σξ)− v(x0))

⊤ξ
]
, (2.8)

where the right hand side can be approximated by Monte Carlo sampling
of ξ ∼ Normal(0, I).

In the limit of σ → 0, we obtain an unbiased estimation.

Proposition 1. Assume E
[
ξξ⊤

]
= I, we have

∇· v(x) = d

dσ
E
[
v(x+ σξ)⊤ξ

] ∣∣∣∣
σ=0

. (2.9)

Remark 7. It does not necessarily require a Gaussian ξ. The finite
difference approximation of (2.9) yields (2.8).

Proof.

d

dσ
E
[
v(x+ σξ)⊤ξ

] ∣∣∣∣
σ=0

= E
[
ξ⊤∇v(x)ξ

]
= Trace(∇v(x)E

[
ξξ⊤

]
)

= Trace(∇v(x)) = ∇· v(x).

2.3 Wasserstein Bounds

Due to learning and optimization errors, we may only yield an approxima-
tion v̂t of the expected velocity vXt (x) = E

[
Ẋt|Xt = x

]
. Let πẐ

t = Law(Ẑt)

be the distribution of Ẑt following the ODE d
dt Ẑt = v̂t(Zt) with Ẑ0 = X0,

and πX
t = Law(Xt) the marginal distribution of the interpolation process.

We show in the following that

W1,q(π
X
t , π

Ẑ
t ) ≤

∫ t

0

E
[∥∥∥∇ΦẐ

t|s(Xs)
⊤(vXs (Xs)− v̂s(Xs))

∥∥∥
q∗

]
ds

≤
∫ t

0

E
[∥∥∥∇ΦẐ

t|s(Xs)
⊤(Ẋs − v̂s(Xs))

∥∥∥
q∗

]
ds, (2.10)

where W1,q(·, ·) is the 1-Wasserstein distance under a norm ∥·∥q, and ∥·∥q∗
is the dual norm of ∥·∥q, and ΦẐ

t|s is the transfer map from Ẑs to Ẑt. We
can see that this bound mimics the training loss (1.3), but depends on
the Jacobian ∇ΦẐ

t|s and does not square the loss. It is possible to use this
bound as the training loss, if the Jacobian can be approximated properly.
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Lemma 1 (Wasserstein Distances). 1) Let d
dtZt = vZt (Zt) be an ODE

that yields an unique solution passing Zt = z for ∀t ∈ [0, 1] and
z ∈ Rd. Let ΦZ

t|s be its transfer map, such that Zt = Φt|s(Zs).
2) Let {Xt} be a time-differentiable process with RF velocity field

vXt (x) = E
[
Ẋt|Xt = x

]
. Assume X0 = Z0.

3) Let πX
t = Law(Xt) and πZ

t = Law(Zt) be the marginal laws.
Let ∥·∥q be any norm on Rd. Consider the 1-Wasserstein distance w.r.t.
a norm ∥·∥q:

W1,q(π
X
t , π

Z
t ) = sup

h
{E [h(Xt)]− E [h(Zt)] s.t. sup

x∈Rd

∥∇h(x)∥q ≤ 1}.

Then, we have

W1,q(π
X
t , π

Z
t ) ≤

∫ t

0

E
[∥∥∥∇ΦZ

t|s(Xs)
⊤(vXs (Xs)− vZs (Xs))

∥∥∥
q∗

]
ds

≤
∫ t

0

E
[∥∥∥∇ΦZ

t|s(Xs)
⊤(Ẋs − vZs (Xs))

∥∥∥
q∗

]
ds,

where ∥·∥q∗ is the dual norm of ∥·∥q, given by ∥x∥q∗ = supy{x⊤y : ∥y∥ ≤
1}.

Proof. Let Ẑt|s = ΦZ
t|s(Xs), so that we have Ẑt|t = Xt and Ẑt|0 = Zt.

d

ds
E
[
h(Ẑt|s)

]
=

d

ds
E
[
h(Φt|s(Xs))

]
= E

[
∇h(Ẑt|s)

⊤(∂sΦt|s(Xs) +∇Φt|s(Xs)
⊤Ẋs)

]
= E

[
∇h(Ẑt|s)

⊤(∇Φt|s(Xs)
⊤(Ẋs − vZs (Xs))

]
= E

[
∇h(Ẑt|s)

⊤(∇Φt|s(Xs)
⊤(vXs (Xs)− vZs (Xs))

]
,

where we used the backward equation ∂sΦt|s(z) +∇Φt|s(z)
⊤vZs (z) =

0. Hence,

E [h(Xt)]− E [h(Zt)]

= E
[
h(Ẑt|t)

]
− E

[
h(Ẑt|0)

]
=

∫ t

0

d

ds
E
[
h(Ẑt|s)

]
ds

=

∫ t

0

E
[
∇h(Ẑt|s)

⊤(∇Φt|s(Xs)
⊤(vXs (Xs)− vZs (Xs))

]
ds

≤
∫ t

0

E
[∥∥∥∇h(Ẑt|s)

∥∥∥
q

∥∥∇Φt|s(Xs)
⊤(vXs (Xs)− vZs (Xs))

∥∥
q∗

]
ds.
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This yields the result by the definition of the 1-Wasserstein distance:

W1,q(π
X
t , π

Z
t ) ≤

∫ t

0

E
[∥∥∥∇ΦZ

t|s(Xs)
⊤(vXs (Xs)− vZs (Xs))

∥∥∥
q∗

]
ds

≤
∫ t

0

E
[∥∥∥∇ΦZ

t|s(Xs)
⊤(Ẋs − vZs (Xs))

∥∥∥
q∗

]
ds,

where the last inequality follows Jensen’s inequality given that every
norm is convex.
The following is an upper bound of KL divergence between the marginal

distributions traded by an ODE and time-differential process.

2.4 KL Divergence

Besides Wasserstein distances, we often need to keep track of the KL
divergence of the marginal distributions driven by two time-differentiable
processes. The follow result plays a key role in many places.

Lemma 2 (KL Divergence Between ODEs). Let {Xt} and {X ′
t} be two

time-differentiable stochastic processes with RF velocity fields vt and
v′t, and smooth log densities ρt, ρ′t, respectively. We have

d

dt
KL(ρt || ρ′t) = EXt∼ρt [(∇ log ρt(Xt)−∇ log ρ′t(Xt))

⊤(vt(Xt)− v′t(Xt))].

d

dt
H(ρt) = −EXt∼ρt

[log ρt(Xt)
⊤vt(Xt)],

where KL(· || ·) and H(·) denotes KL divergence and entropy, respec-
tively.

Remark 8. This shows that the change rate of KL divergence equals the
expected inner product of the score difference ∇ log ρt −∇ log ρ′t and
velocity difference vt − v′t. The change rate of entropy H(ρt) equals
the negative expected inner product of ∇ log ρt and vt.

Remark 9. We have by Cauchy–Schwarz inequality,

KL(ρ1 || ρ′1) ≤
∫ 1

0

EXt∼ρt [∥∇ log ρt(Xt)−∇ log ρ′t(Zt)∥ ∥vt(Xt)− v′t(Xt)∥]dt.

The bound depends on both ρt and vt.

Remark 10. As shown in Section 4.1, if Xt = αtX1 + βtX0 is an affine
interpolation with X0 ⊥⊥ X1 and X0 ∼ Normal(0, I), then ∇ log ρt is
related to vt in closed form via

∇ log ρt(x) = ηt

(
vt(x)−

α̇t

αt
x

)
, with ηt =

1

β2
t

(
α̇t

αt
− β̇t
βt

)−1

.
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Assume the same relation also holds for ∇ log ρt and vt. We have

KL(ρ1 || ρ′1) =
∫ 1

0

EXt∼ρt [ηt ∥vt(Xt)− v′t(Xt)∥
2
]dt,

which reduces to a time-weighted square loss function.

Proof. Let Żt = vt(Zt) and Ż ′
t = v′t(Z

′
t) be the rectified flow of {Xt}

and {X ′
t}, respectively. Note that

KL(ρt || ρ′t) = EZt∼ρt
[log(ρt(Zt)/ρ

′
t(Zt)].

Its time derivative is

d

dt
KL(ρt || ρ′t) = E

[
∇(log ρt(Zt)/ρ

′
t(Zt))Żt

]
︸ ︷︷ ︸

I

+E [∂t log(ρt(Zt)/ρ
′
t(Zt))]︸ ︷︷ ︸

II

,

where we used d
dtrt(Zt) = ∂trt(Zt)+∇rt(Zt)

⊤Żt with rt = log(ρt/ρ
′
t);

the first term here differentiate through the random variable Zt, and
the second term through the log density ratio rt.

Because Żt = vt(Zt), the first term equals

I = E
[
(∇ log ρt(Zt)−∇ log ρ′t(Zt))

⊤vt(Zt)
]
. (2.11)

The second term can be separated into

II =

∫
ρt(z)∂t log ρt(z)dz︸ ︷︷ ︸

II1

−
∫
ρt(z)∂t log ρ

′
t(z)dz︸ ︷︷ ︸

II2

,

where the first part II1 equals zero, because

II1 =

∫
ρt(z)∂t log ρt(z)dz =

∫
∂tρt(z)dz = ∂t

∫
ρt(z)dz = ∂t1 = 0.

(2.12)

For the second part II2, note the continuity equation ∂tρ
′
t(z) =

−∇·(v′t(z)ρ′t(z)). By dividing both sides with ρ′t(z), it can be rewritten
into

∂t log ρ
′
t(z) = −(∇· v′t(z) +∇ log ρ′t(z)

⊤v′t(z)).

Hence,

E [∂t log ρt(Zt)] = E
[
−∇· v′t(Zt)−∇ log ρ′t(Zt)

⊤v′t(Zt)
]

= E
[
∇ log ρt(Zt)

⊤v′t(Zt)−∇ log ρ′t(Zt)
⊤v′t(Zt)

]
,

= E
[
(∇ log ρt(Zt)−∇ log ρ′t(Zt))

⊤v′t(Zt)
]
, (2.13)

where we used the integration by parts formula for divergence:∫
ρt(z)∇· vt(z)dz = −

∫
∇ρt(z)⊤vt(z)dz.

Combing Equation 2.11, 2.12 and 2.13 yields the result for d
dtKL(ρt || ρ′t).

The result for the entropy d
dtH(ρt) follows similarly except simpler.

CHAPTER 2. MARGINALS AND ERRORS 21



2.5 Bregman Divergence

The use of the quadratic loss (1.3) is critical in ensuring that v∗t (Xt) =

E
[
Ẋt|Xt

]
for ∀t ∈ [0, 1] at the optimum. The same property can be

achieved by other loss functions. A general loss that we may consider is of
form ∫ 1

0

ψt

(
E
[
ℓt(Ẋt, vt(Xt))

])
dt,

where ℓt(·, ·) is a loss function measuring the difference between Ẋt and
vt(Xt) at each time t, and ψt(·) decides how the losses across different
time are aggregated. We should choose ψt and ℓt to satisfy the following
conditions to ensure that minimum of the loss is attained by v∗t (Xt) =

E
[
Ẋt|Xt

]
for ∀t ∈ [0, 1]:

1. ψt(x) ≥ 0 for ∀x, and ψt(x) = 0 iff x = 0.

2. E [ℓt(Y, x)] ≥ 0, and E [ℓt(Y, x)] = 0 iff x = E [Y ], for any random
variable x.

Here, the property of ℓt, referred to as the mean-as-minimizer, is critical. It
is obviously ensured by the squared loss ℓt(y, x) = (y − x)2. Bregman di-
vergence represents a more general class of losses that satisfy this property
[e.g., Banerjee et al., 2005].

Definition 5. Let h : Ω → R be a continuously-differentiable, strictly
convex function defined on a convex set Ω. The Bregman divergence
associated with h is defined as

Bh(y, x) = h(y)− h(x)− ⟨∇h(x), y − x⟩, ∀x, y ∈ Ω.

It is the difference between h(y), and the first-order Taylor expansion
h(x) + ⟨∇h(x), y − x⟩ around point x evaluated at point y.

We have Bh(y, x) ≥ 0 for all x, y as a consequence of the convexity of
h, and Bh(y, x) = 0 iff x = y, which is true when h is strictly convex.
More importantly, Bregman divergence admits a generalized bias–variance
decomposition similar to that of mean square errors (MSEs), which ensures
that the minimum of E [Bh(Y, f(X))] is f∗(X) = E [Y |X].

Lemma 3. Bregman divergence yields the following decomposition:

E [Bh(Y, x)] = E [Bh(Y, E [Y ])]︸ ︷︷ ︸
variance

+E [Bh(E [Y ] , x)]︸ ︷︷ ︸
bias

.

Hence, the solution of minx E [Bh(Y, x)] is achieved by x∗ = E [Y ] .
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Proof.

E [Bh(Y, x)] = E
[
h(Y )− h(x)−∇h(x)⊤(Y − x)

]
= E

[
h(Y )− h(x)−∇h(x)⊤(E [Y ]− x)

]
= Bh(E [Y ] , x) + E [h(Y )]− E [h(E [Y ])] .

The result follows if we note that

E [Bh(Y, E [Y ])]
∗
= E

[
h(Y )− h(E [Y ])−∇h(E [Y ])⊤(Y − E [Y ])

]
= E [h(Y )]− E [h(E [Y ])] ,

where the last term in ∗
= is canceled because E[Y − E[Y ]] = 0.

Remark 11. As an alternative proof, note that

E [Bh(Y, x)] = E [h(Y )]− h(x)−∇h(x)⊤(E [Y ]− x).

Taking the derivative w.r.t. x:

∇xE [Bh(Y, x)] = −∇h(x)−∇2h(x)(E [Y ]− x) +∇h(x)
= −∇2h(x)(E [Y ]− x).

Because ∇2h(x) ≻ 0 as h is strictly convex, solving ∇xE [Bh(Y, x)] =

−∇2h(x)(E [Y ]− x) = 0 yields x = E [Y ].

2.5.1 Semantic Losses

In practice, it can be beneficial to impose the loss on a semantic space. Let
f(x) be feature mapping, one can consider∫ 1

0

E
[
∥f(X1)− f(Xt + (1− t)vt(Xt))∥2

]
dt, (2.14)

where we consider X̂1|t = Xt + (1 − t)vt(Xt) as a predict of X1. An
example of this is the LPIPS loss [Zhang et al., 2018]; see Lee et al. [2024].
However, for nonlinear f , the loss above does not generally satisfy the
mean-as-minimizer property, and hence may yield biased estimation.

Tangent Loss

Tangent loss is one approach to incorporate loss to avoid introducing bias
while incorporating the information of nonlinear feature maps.

Assume that ft(Xt) is a useful representation of Xt at each time t. The
transformed interpolation and ODEs are:

Xf
t = ft(Xt), Zf

t = ft(Zt).

By chain rule, the slopes of the induced curves are

Ẋf
t = ∇ft(Xt)

⊤Ẋt + ∂tft(Xt), Żf
t = ∇ft(Zt)

⊤vt(Zt) + ∂tft(Zt).
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Matching these two slopes yield

min
v

∫ 1

0

E
[∥∥∥∇ft(Xt)

⊤(Ẋt − vt(Xt))
∥∥∥2] dt. (2.15)

This allows us to place higher weight on the directions are important w.r.t.
the feature network ft. In practice, the space spanned by ∇f(Xt) may be
degenerate. In this case, we can take the linear combination of the loss
above with the standard L2 loss. See Liu et al. [2022a].

Remark 12. Note that (2.15) coincides with the Wasserstein bound
in (2.10) if we take ft(x) = Φ1|t(x) to be the transfer mapping of
dZt = vt(Zt)dt.

To avoid calculating the derivative, we can use Taylor approximation:

min
v

∫ 1

0

E

[∥∥∥∥ 1

εt
(ft+εt(Xt + εtẊt)− ft+εt(Xt + εtvt(Xt)))

∥∥∥∥2
]
dt, (2.16)

which converges to (2.15) when εt ≈ 0. It reduces to (2.14) when ε = 1−t
when Xt = tX1 + (1− t)X0.

What is the Effect of Using Biased Losses?

Using losses that do not satisfy the mean-as-minimizer property is equiv-
alent to impose a loss-dependent reweighing on the data points. Let us
consider, for example,

min
f

E [ℓ(Y, f(X))] .

Assume we minimize f in the set of all functions, using calculus of varia-
tions, the optimal solution f∗ should satisfy

E [∇f ℓ(Y, f
∗(X)) | X] = 0,

which can be writing into

f∗(X) =
E [w(X,Y )Y | X]

E [w(X,Y ) | X]
.

where the weighting function is w(X,Y ) := ∇f ℓ(Y, f
∗(X))/(Y − f∗(X)),

if they can be defined properly. Hence, these loss functions induce a non-
uniform weighting of data points, failing to accurately capture the original
distribution. While such biases might be hard to detect when training
models on very large datasets, they can potentially lead to unexpected
effects, such as bias amplification or mode collapse.

Remark 13. The magnitude of the bias depends on the variance of Y
conditioned on X. If X is fully deterministic given X, then no bias
is induced even if ℓ does not have the mean-as-minimizer property.
As suggested in Lee et al. [2024], the label Y = Ẋt can be highly
deterministic given Xt, using a nonlinear loss such as LPIPS may
suffer from the bias issue.
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CHAPTER THREE

Interpolations and Equivariance

The choice of the interpolation process can have a significant impact on in-
ference performance and speed, and it appears to be a decision that must be
made during the pre-training phase. However, for interpolation processes
that are pointwise transformable one-to-one in a suitable sense, the trajec-
tories of their induced rectified flow can also be transformed one-to-one,
indicating that Rectify(·) is equivariant under pointwise transformations.
This result holds not only for continuous-time ODEs but also for discretized
trajectories of the ODEs if a particular "natural Euler" method is used,
which takes the underlying interpolation into account.

Notably, all affine interpolation processes are pointwise transformable
through a simple rescaling of the time t and the input x, and hence they sat-
isfy the equivariance results mentioned above. In particular, the discretized
DDIM algorithm is a natural Euler method for spherical interpolation,
which is therefore equivalent to straight interpolation with the vanilla
Euler method. Straight interpolation is particularly simple because its
natural Euler method coincides with the vanilla Euler method. Conse-
quently, it suffices to adopt a simple form, such as the straight interpolation
Xt = tX1 + (1− t)X0, while still maintaining the flexibility to recover all
affine interpolations through adjustments in time parameterization and
inference algorithms. Similar observations was made in various settings
and from different perspectives [Kingma et al., 2021, Karras et al., 2022b,
Shaul et al., 2023, Gao et al., 2024].

3.1 Point-wisely Transformable Interpolations

We show that if two processes {Xt} and {X ′
t} are related pointwise by

X ′
t = ϕt(Xτt),

for some differentiable and invertible maps ϕ : (t, x) 7→ ϕt(x) and τ : t 7→ τt,
then their corresponding rectified flows, {Zt} and {Z ′

t}, satisfy the same
relation:

Z ′
t = ϕt(Zτt),

provided the relation holds at initialization, that is, Z ′
0 = ϕt(Z0).

This result suggests that rectified flows of pointwisely transformable
interpolations are essentially the same, upto the same pointwise transform.
Furthermore, if Xt = It(X0, X1) and X ′

t = It(X0, X1) are constructed
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from the same coupling (X0, X1), then they yield the same rectified cou-
pling (Z ′

0, Z
′
1) = (Z0, Z1).

Write {X ′
t} = Transform({Xt}) the pointwise transform above. The

results suggest that Rectify(·) is an equivariant map under the transforms:

Rectify(Transform({Xt})) = Transform(Rectify({Xt})).

Why is this true? The intuition is illustrated in Figure 3.1. The trajecto-
ries of the rectified flow (RF) are simply a “rewiring” of the interpolation
trajectories at their intersection points to avoid crossings. As a result, they
occupy the same “trace” as the interpolation process, even though they
switch between different trajectories at intersection points. Consequently,
any deformation applied to the interpolation trajectories is inherited by
the rectified flow trajectories. The deformation must be point-to-point here
to make it insensitive to the rewiring of the trajectories.

This is a general and fundamental property of the rectification process
and is not restricted to specific distributions, couplings, or interpolations.

Figure 3.1: Rectified flow rewires the interpolation trajectories to avoid crossing. When a
deformation is applied on the interpolation trajectories, the trajectories of the corresponding
rectified flow is deformed in the same way.

We now introduce and prove the results.

Definition 6. Two stochastic processes {Xt} and {X ′
t} is said to be

pointwisely transformable if

X ′
t = ϕt(Xτt), ∀t ∈ [0, 1],

where τ : [0, 1] → [0, 1] and ϕ : [0, 1] × Rd → Rd for t ∈ [0, 1] are
differentiable maps, and ϕt is invertible for t ∈ [0, 1].

Theorem 2. Assume that {Xt} and {X ′
t} are pointwise transformable

as per Definition 6. Let vt and v′t be their respective RF velocity fields.

CHAPTER 3. INTERPOLATIONS AND EQUIVARIANCE 26



Then we have

v′t(x) = ∂tϕt(ϕ
−1
t (x)) +∇ϕt(ϕ−1

t (x))⊤vτt(ϕ
−1
t (x))τ̇t.

In addition, let {zt} be a trajectory of the rectified flow of {Xt},
satisfying d

dtzt = vt(zt). Then a curve {z′t} satisfies z′t = ϕt(zτt),
∀t ∈ [0, 1] if and only if it is the trajectory of the rectified flow of {X ′

t}
initialized from z′0 = ϕ0(zτ0), that is,

z′t = ϕt(zτt), ∀t ∈ [0, 1] ⇔ z′0 = ϕ0(zτ0), and
d

dt
z′t = v′t(z

′
t), ∀t ∈ [0, 1].

Proof. 1) By definition of v′t, we have

v′t(x) = E
[
Ẋ ′

t | X ′
t = x

]
= E

[
d

dt
ϕt(Xτt) | ϕt(Xτt) = x

]
= E

[
∂tϕt(Xτt) +∇ϕt(Xτt)

⊤Ẋτt τ̇t | Xτt = ϕ−1
t (x)

]
= ∂tϕt(ϕ

−1
t (x)) +∇ϕt(ϕ−1

t (x))⊤vτt(ϕ
−1
t (x))τ̇t,

where we used vt(x) = E
[
Ẋt|Xt = x

]
.

2) Assume z′t = ϕt(zτt), then it implies d
dtz

′
t = vt(z

′
t), because

ż′t =
d

dt
ϕt(zτt)

= ∂tϕt(zτt) +∇ϕt(zτt)⊤żτt τ̇t
= ∂tϕt(zτt) +∇ϕt(zτt)⊤vτt(zτt)τ̇t
= ∂tϕt(ϕ

−1
t (z′t)) +∇ϕt(ϕ−1

t (z′t))
⊤vτt(ϕ

−1
t (z′t))τ̇t

= v′t(z
′
t).

where we used zτt = ϕ−1
t (z′t) and d

dtzt = vt(zt).
Conversely, if d

dtz
′
t = vt(z

′
t), we have

d

dt
(z′t − ϕt(zτt)) = v′t(z

′
t)−

d

dt
ϕt(zτt) = 0.

Hence, z′t − ϕt(zτt) = z′0 − ϕ0(zτ0) = 0, which shows that z′t =

ϕt(zτt).

Remark 14. Let d
dtZt = vt(Zt) be the rectified flow of {Xt}, which is

initialized with Z0 = X0 by default. Then Z ′
t = ϕt(Zτt) is the rectified

flow of {X ′
t} with a specific initialization

d

dt
Z ′
t = v′t(Z

′
t), ∀t ∈ [0, 1], and Z ′

0 = ϕ0(Zτ0).

Note that the initialization Z ′
0 has the same distribution as X ′

0, even
though we may not have Z ′

0 = X ′
0 in random variables. It is because

Z ′
0 = ϕ0(Zτ0)

law
= ϕ0(Xτ0) = X ′

0,
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where we use the marginal preservation property (Xτ0
law
= Zτ0) of

rectified flow.
If we further assume τ0 = 0, which is a natural condition, then

we have Zτ0 = Z0 = X0 = Xτ0 (not just equal in law), and hence
Z ′
0 = X ′

0, and {Z ′
t} is the rectified flow with the default initialization

of Z ′
0 = X ′

0.

Corollary 1. Assume the same conditions as Theorem 2, with the
additional assumption that τ(0) = 0. Let {Zt} and {Z ′

t} be the
rectified flows of {Xt} and {X ′

t}, respectively. Then

Z ′
t = ϕt(Zτt) for all t ∈ [0, 1].

Equivalence of Rectified Couplings

If the two pointwisely transformable interpolation processes are con-
structed from the same coupling, then, they yield the same rectified cou-
pling.

Corollary 2. If {Xt} and {X ′
t} share the same coupling, that is,

(X0, X1) = (X ′
0, X

′
1),

and they satisfy the condition in Theorem 2 with τ(0) = 0 and τ(1) =
1, then their rectified flow yields the same coupling, that is,

(Z0, Z1) = (Z ′
0, Z

′
1).

Proof. Corollary 1 gives

(Z ′
0, Z

′
1) = (ϕ0(Zτ0), ϕ1(Zτ1)).

One the other hand, we have X0 = X ′
0 = ϕ0(Xτ0) = ϕ0(X0), which

suggests that ϕ0 is the identity mapping, and hence Z0 = ϕ0(Z0) =

ϕ0(Zτ0). Similarly, Z1 = ϕ1(Z1) = ϕ1(Zτ1). Therefore,

(Z ′
0, Z

′
1) = (ϕ0(Zτ0), ϕ1(Zτ1) = (Z0, Z1).

3.2 Equivalence of Affine Interpolations

We now show that all affine interpolations can be pointwise transformed
to each other by appropriately scaling both time and the variable. Then by
Corollary 1 and Corollary 2, their rectified flows can be transformed point-
wisely with same maps, and they yield the identical rectified couplings.

Lemma 4. Let Xt = αtX1 + βtX0 and X ′
t = α′

tX1 + β′
tX0 be two

affine interpolation processes constructed from a common coupling
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(X0, X1), where α0 = β1 = α′
0 = β′

1 = 0 and α1 = β1 = α′
1 = β′

1 = 1.
Then we have

X ′
t =

1

ωt
Xτt , ∀t ∈ [0, 1],

where τt and ωt are found by solving:

ατt

βτt
=
α′
t

β′
t

, ωt =
ατt

α′
t

=
βτt
β′
t

, ∀t ∈ (0, 1), (3.1)

with the boundary condition of

ω0 = ω1 = 1, τ0 = 0, τ1 = 1.

In addition, there is at least one solution of (τt, ωt) in (3.1) if α′
t/β

′
t ≥

0 for t ∈ [0, 1], and αt/βt is continuous w.r.t. t. The solution is unique
if αt/βt is strictly increasing w.r.t. t.

Proof. 1) Write ω = ωt and τ = τt. When (3.1) holds, we have
ωtα

′
t = ατ and ωtβ

′
t = βτt . Hence, ωtX

′
t = ωtα

′
tX1 + ωtβ

′
tX0 =

ατtX1 + βτtX0 = Xτt .
2) For the existence of solution, note that by the boundary condi-

tions of the interpolation processes, we must have α0 = α′
0 = β1 =

β′
1 = 0, and α1 = α′

1 = β0 = β′
0 = 1. Hence,

α0

β0
=
α′
0

β′
0

= 0,
α1

β1
=
α′
1

β′
1

= +∞. (3.2)

Therefore, there is at least a solution of τt for each t once α′
t

β′
t
≥ 0 and

ατ

βτ
is continuous w.r.t. τ .
In addition, for the boundary conditions, note that τ0 = 0 and τ1 =

1 can be achieved due to (3.2), and with it we have ω0 = β0/β
′
0 = 1,

and ω1 = α1/α
′
1 = 1.

Theorem 3. Assume {Xt} and {X ′
t} are two affine interpolations in

Lemma 4.
1) Their respective rectified flows {Zt} and {Z ′

t} satisfy:

Z ′
t = ωt

−1Zτt , ∀t ∈ [0, 1].

2) Their rectified couplings are equivalent:

(Z0, Z1) = (Z ′
0, Z

′
1).

3) Their RF velocity fields vt and v′t satisfy

v′t(x) =
1

ωt
(τ̇tvτt(ωtx)− ω̇tx) .

Proof. It is the direct implication of Lemma 4, Corollary 1, and Corol-
lary 2.

But let us give a direct derivation of v′t(x) = E
[
Ẋ ′

t|Xt = x
]
. Tak-
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ing derivative of X ′
t =

1
ωt
Xτt ,

Ẋ ′
t =

d

dt

(
1

ωt
Xτt

)
=

1

ωt
Ẋτt τ̇t −

ω̇t

ωt
2
Xτt .

Hence,

v′t(x) = E
[
Ẋ ′

t | X ′
t = x

]
= E

[
1

ωt
Ẋτt τ̇t −

ω̇t

ωt
2
Xτt |

1

ωt
Xτt = x

]
= E

[
1

ωt
Ẋτt τ̇t −

ω̇t

ωt
2
Xτt | Xτt = ωtx

]
=

1

ωt
τ̇tvτt(ωtx)−

ω̇t

ωt
x.

Remark 15. The pointwise transform of affine interpolations was dis-
cussed in [Kingma et al., 2021, Karras et al., 2022b]. A proof of the
equivariance of RF ODEs with Gaussian X0 and independent cou-
plings was provided in Shaul et al. [2023]. See Gao et al. [2024] for
an exploratory introduction to the topic.

Remark 16. Further derivation shows that

v′t(x) =
αtκt
ατtκτt

vτt(ωtx) +

(
β̇t
βt

− αtκt
ατtκτt

β̇τt
βτt

ωt

)
x

=
κ′t

ωtκτt
vτt(ωtx) +

(
β̇′
t

β′
t

− κ′t
κτt

β̇τt
βτt

)
x,

where κt =
(

α̇t

αt
− β̇t

βt

)
.

Example 5. Consider the straight interpolation Xt = tX1 + (1− t)X0

with αt = t and βt = 1 − t, and we want to transfer it into another
interpolation X ′

t = α′
tX1 + β′

tX0. We need to solve

ωt =
τt
α′
t

=
1− τt
β′
t

.

This gives

τt =
α′
t

α′
t + β′

t

, ωt =
1

α′
t + β′

t

The velocity field is converted by

v′t(x) =
α̇′
tβ

′
t − α′

tβ̇
′
t

α′
t + β′

t

vτt(ωtx) +
α̇′
t + β̇′

t

α′
t + β′

t

x. (3.3)
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Figure 3.2: Plot of s(t) and ωt for t ∈ [0, 1].

Proof.

v′t(x) =
1

ω
(τ̇tvτt(ωx)− ω̇tx)

= (α′
t + β′

t)

(
α̇′
t(α

′
t + β′

t)− α′
t(α̇

′
t + β̇′

t)

(α′
t + β′

t)
2

vτt(ωtx) +
α̇′
t + β̇′

t

(α′
t + β′

t)
2
x

)

=
α̇′
tβ

′
t − α′

tβ̇
′
t

α′
t + β′

t

vτt(ωtx) +
α̇′
t + β̇′

t

α′
t + β′

t

x.

Example 6. In particular, consider converting the straight interpolation
Xt = tX1+(1− t)X0 to the spherical interpolation X ′

t = sin(π2 t)X1+

cos(π2 t)X0 with α′
t = sin(π2 t) and β′

t = cos(π2 t). We need to solve

ωt =
τt

sin(π2 t)
=

1− τt
cos(π2 t)

.

This gives

τt =
sin(π2 t)

sin(π2 t) + cos(π2 t)
, ωt =

1

sin(π2 t) + cos(π2 t)
.

The velocity field is converted by

v′t(x) =
1

ω
(τ̇tvτt(ωtx)− ω̇tx) .

Calculation shows that

τ̇t =
π

2
ωt

2, ω̇t = −π
2
ωt

2
(
cos(

π

2
t)− sin(

π

2
t)
)
.

Hence,

v′t(x) =
πωt

2

(
vτt(ωtx) +

(
cos(

π

2
t)− sin(

π

2
t)
)
x
)
. (3.4)

Figure 3.2 shows the plot of τt and ωt. We can see from the plot
that τt is a monotonic function of t and is similar to the identity
mapping, and the scaling factor ωt lies in interval [1/

√
2, 1]. Hence,

the transform between vt and v′t is relatively smooth.

Relations of Other Quantities

In the following, we demonstrate how other quantities, such as marginal
densities and score functions, can be converted between affine interpola-
tions. Their transformations are simpler than those between vt and v′t, and
they can sometimes be used to simplify derivations.

Theorem 4. Assume the conditions in Lemma 4. Let ρt be the density
function of Xt, and x̂1|t(x) = E[X1 | Xt = x] and x̂0|t(x) = E[X0 |
Xt = x] the expected target and noise. Let ρ′t, x̂

′
1|t, x̂

′
0|t be the
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analogous quantities of X ′
t. Let d be the dimension of Xt. We have

Density Function: ρ′t(x) = (ωt)
dρτt(ωtx),

Score Function: ∇ log ρ′t(x) = ωt∇ log ρτt(ωtx),

Expected X0, X1: x̂′1|t(x) = x̂1|τt(ωtx), x̂′0|t(x) = x̂0|τt(ωtx).

Proof. The result on ρt and ρ′t directly follows from the change-of-
variables formula for transform X ′

t = ωt
−1Xτt . For x̂1|t, we have

x̂′1|t(x) = E [X ′
1 | X ′

t = x]

= E
[
1

ω1
Xτ1 | 1

ωt
Xτt = x

]
= E [X1 | Xτt = ωtx]

= x̂1|τt(ωtx),

where we used X1 = 1
ω1
Xτ1 . The result for x̂0|t follows similarly.

There are some quantities that are invariant if we transform the process
together with the time.

Proposition 2. Let {Xt} and {X ′
t} be the two affine interpolations

satisfying the conditions in Lemma 4, and let t = τ(t′). We have

α′
t′

β′
t′

=
αt

βt
,

X ′
t′

α′
t′

=
Xt

αt
,

X ′
t′

β′
t′

=
Xt

βt
,

and

x̂′1|t′(X
′
t′) = x̂1|t(Xt), x̂′0|t′(X

′
t′) = x̂0|t(Xt).

Proof. α′
t′

β′
t′

= αt

βt
is directly from (3.1). From X ′

t′ =
1

ωt′
Xt and ωt′ =

αt

α′
t′

= βt

β′
t′

, we have

X ′
t′ =

α′
t′

αt
Xt =

β′
t′

βt
Xt.

The proves that X′
t′

α′
t′

= Xt

αt
, and X′

t′
β′
t′

= Xt

βt
.

Finally, we have x̂′1|t′(X
′
t′) = x̂1|t(ωt′X

′
t′) = x̂1|t(Xt), and the

same holds for x̂′0|t(X
′
t′).

Practical Implications

Despite the theoretical equivalences discussed above, using different inter-
polation methods can still have practical impacts on performance due to
the following reasons:

1) Training: Training with different interpolation schemes effectively
applies different time-weighting to the training loss and results in a differ-
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ent parameterization of the model.
2) Inference: Although different interpolation methods yield the same

rectified coupling (Z0, Z1), their flows have different trajectories {Zt} and
are subject to different discretization errors during inference, especially
when large step sizes are used.

Straighter trajectories of {Zt} are generally preferred. Thanks to the
transformation relations outlined above, it is possible to convert the inter-
polation scheme of a pre-trained model without retraining, allowing one
to identify the scheme that yields straighter trajectories of {Zt}.

3.3 Implications on Loss Functions

Assume that we have trained a model v̂t for the RF velocity field vt under
an affine interpolation. Using the formulas from the previous section, we
can convert it to an approximation v̂′t for the RF velocity v′t corresponding
to a different interpolation scheme at the post-training phase. This raises
the question of what properties the converted model v̂′t may have compared
to the models trained directly on the same interpolation, and whether it
suffers from performance degradation due to the conversion.

This section investigates this question. We show that the effect of
using different affine interpolation schemes during training is equivalent
to applying different time-weighting in the loss, and an affine transform on
the parametric model. Unless ωt and τt are highly singular, the conversion
does not necessarily degrade performance.

Specifically, assume we have trained a parametric model vt(x; θ) to
approximate the RF velocity vt of interpolation Xt = αtX1 + βtX0, using
the mean square loss:

L(θ) =

∫ 1

0

E
[
ηt

∥∥∥Ẋt − vt(Xt; θ)
∥∥∥2] dt. (3.5)

After training, we may convert the obtained model vt(x; θ) to an approxi-
mation of v′t of a different interpolation X ′

t = αtX1 + βtX0 via

v′t(x; θ) =
τ̇t
ωt
vτt(ωtx; θ)−

ω̇t

ωt
x, (3.6)

with ω and τ defined in (3.1).
On the other hand, if we train v′t(x; θ) directly to approximate v′t of

interpolation X ′
t = α′

tX1 + β′
tX0, the loss function with a time weight η′ is

L′(θ) =

∫ 1

0

E
[
η′t

∥∥∥Ẋ ′
t − v′t(X

′
t; θ)

∥∥∥2] dt. (3.7)
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Plugging (3.6) and Xτt = ωX ′
t, and Ẋ ′

t =
1
ωt

(
τ̇tẊτt − ω̇tX

′
t

)
, we have

L′(θ) =

∫ 1

0

E
[
η′t

∥∥∥Ẋ ′
t − v′t(X

′
t; θ)

∥∥∥2]dt
=

∫ 1

0

E

[
η′t

∥∥∥∥ τ̇tωt

(
Ẋτt − vτt(Xτt ; θ)

)∥∥∥∥2
]
dt

=

∫ 1

0

E
[
η′t
τ̇t

2

ωt
2

∥∥∥Ẋτt − vτt(Xτt ; θ)
∥∥∥2] dt

=

∫ 1

0

E
[
η′t
τ̇t
ωt

2

∥∥∥Ẋτt − vτt(Xτt ; θ)
∥∥∥2] dτt //dτt = τ̇tdt

=

∫ 1

0

E
[
η′tτ

τ̇(tτ )

ω(tτ )2

∥∥∥Ẋτ − vτ (Xτ ; θ)
∥∥∥2]dτ. //rename τt to τ

where we denote tτ as the inverse of the map τt. To match the loss in (3.5),
we should set η′tτ

τ̇(tτ )
ω(tτ )2

= ητ , which gives

η′t =
ω2
t

τ̇t
ητt .

Proposition 3. Training vt(x; θ) with the loss in (3.5) is equivalent to
training v′t(x; θ) with the loss in (3.5), but with the following time-
weighting and parameterization:

η′t =
ω2
t

τ̇t
ητt , v′t(x; θ) =

τ̇t
ωt
vτt(ωtx; θ)−

ω̇t

ωt
x. (3.8)

Remark 17. Notably, since the loss functions are equivalent, the equiva-
lence described above holds even when the models are approximately
optimized using gradient-based optimizers, as is common in prac-
tice, provided that the random seeds for initialization and mini-batch
sampling are matched exactly.

Example 7 (Loss from Straight to Affine). Consider the straight interpo-
lation Xt = tX1 + (1− t)X0 with αt = t and βt = 1− t, and another
affine interpolation X ′

t = α′
tX1 + β′

tX0. Assume we train the vt for
Xt with time weight ηt, then v′t converted from vt is equivalent to be
trained with the reparametrization in (3.3), and time weight

η′t =
ωt

2

τ̇t
ητt =

1

α̇′
tβ

′
t − α′

tβ̇
′
t

ητt ,

where we used ωt = 1
α′

t+β′
t
, τt =

α′
t

α′
t+β′

t
,, and τ̇t =

α̇′
tβ

′
t−α′

tβ̇
′
t

(α′
t+β′

t)
2 from

Example 5.

Example 8 (Losses of Straight vs Spherical). Continuing from Example 7,
interesting cases occur when

α̇′
tβ

′
t − αtβ̇

′
t = const,
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in which case we have η′t ∝ ητt . For instance, this holds for spherical
interpolation X ′

t = sin(π2 t)X1 + cos(π2 t)X0, which has

α̇′
tβ

′
t − αtβ̇

′
t =

π

2
,

and hence

η′t =
2

π
ητt , where τt = tan(

π

2
t)/(tan(

π

2
t) + 1).

This can be also seen by noting that τ̇t = π
2ωt

2 in Example 6.
Therefore, using the straight and spherical interpolations corre-

sponds to using equivalent time weights in the training loss, up to the
time scaling with τt.

In particular, training vt with straight interpolation using a uniform
weight ηt = 1 is equivalent to training v′t with spherical interpolation,
also using a uniform weight η′t = 1. In this case, the only difference
lies in the model parameterization.

From Equation (3.4), the model reparameterization is

v′t(x, θ) =
πωt

2

(
vτt(ωtx, θ) +

(
cos(

π

2
t)− sin(

π

2
t)
)
x
)
.

Given that the variable scaling factor ωt = (sin(π2 t) + cos(π2 t))
−1 is

bounded in [1/
√
2, 1] (see Example 6 and Figure 3.2), This reparam-

eteriztation may not impact the performance significantly. Overall,
the choice of using straight or spherical might have limited impact in
terms of the training performance.

3.4 Equivariance of Natural Euler Samplers

The Euler method can be seen as a piecewise linear approximation of the
ODE trajectory, where the curve is locally approximated using straight lines
tangent to the curve. This local straight-line approximation is a natural
choice for rectified flows induced by straight interpolation. However, if
the rectified flow is induced by a curved interpolation scheme, it may be
more appropriate to use curves derived from the underlying interpolation
scheme as the local approximation.

We refer to such approximation schemes as natural Euler samplers, as
they are similar to natural gradient descent in terms of the invariance of
trajectories under re-parameterizations. Popular methods that employ
curved interpolations, such as DDIM, DDPM, EDM, and DMP solvers, all
utilize natural Euler samplers.

In this section, we first introduce the concept of natural Euler samplers
and then establishe that the trajectories of natural Euler samplers are
equivariant for pointwise transformable interpolations:

When two interpolation processes are pointwise transformable, the tra-
jectories of their corresponding natural Euler samplers are also pointwise
transformable under the same maps, provided their time grids are mapped
using the corresponding time-scaling function τt.

This result implies that, when natural Euler samplers are used, em-
ploying different affine interpolations corresponds to using different time
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grids.

3.4.1 Natural Euler Samplers

Let Xt = It(X0, X1) be an interpolation process whose RF velocity field is
vt. Recall that in the vanilla Euler method, the trajectories of the flow are
approximated on a time grid {ti}i via

ẑti+1
= ẑti + (ti+1 − ti) vt(ẑti),

where the solution is locally approximated by the straight line tangent to
the rectified flow curve at the point ẑti .

In a curved Euler method with an interpolation scheme It, we replace
the straight line with an interpolation curve that is tangent at ẑti . The
update rule becomes

ẑti+1 = Iti+1(x̂0|ti , x̂1|ti),

where x̂0|ti and x̂1|ti are determined by solving

ẑti = Iti(x̂0|ti , x̂1|ti), vti(ẑti) = ∂tiIt(x̂0|ti , x̂1|ti). (3.9)

This identifies the endpoints x̂0|ti and x̂1|ti of the interpolation curve that
passes through the point ẑti with slope ∂ẑti = vti(ẑti) at time ti, ensuring
that the interpolation curve is tangent to the rectified flow at ẑti at time
ti. We assume that the solution of Equation (3.9) exists and is unique. For
affine interpolation, it admits a simple closed-form solution.

Figure 3.3: Vanilla Euler solver yields piecewise linear approximation,while curved Euler
solvers yield piecewise curved approximation.

The curved Euler method defines a general family of numerical methods
for solving ODEs. When the step size approaches zero, and provided that
the interpolation is differentiable, the approximation converges to the
ODE trajectory, as in the case of the vanilla Euler method. The idea is to
employ a better interpolation scheme that better approximates the true
ODE trajectories.

For rectified flows, it is natural to use the interpolation scheme used
to construct the flow itself. In this context, we refer to the method as the
natural Euler method.

Definition 7. For the rectified flow ODE induced by an interpolation
Xt = It(X0, X1), its natural Euler sampler is the curved Euler sampler
that employs the same interpolation It.
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Example 9. For affine interpolation Xt = αtX1 + βtX0, solving (3.9)
yields

x̂0|t(ẑt) =
−αtvt(ẑt) + α̇tẑt

α̇tβt − αtβ̇t
, x̂1|t(ẑt) =

βtvt(ẑt)− β̇tẑt

α̇tβt − αtβ̇t
.

Hence, the update from ti = t and ti+1 = t+ ε is

ẑt+ε = αt+εx̂1|t(ẑt) + βt+εx̂0|t(ẑt)

= αt+ε
βtvt(ẑt)− β̇tẑt

α̇tβt − αtβ̇t
+ βt+ε

−αtvt(ẑt) + α̇tẑt

α̇tβt − αtβ̇t

=
α̇tβt+ε − αt+εβ̇t

α̇tβt − αtβ̇t
ẑt +

αt+εβt − αtβt+ε

α̇tβt − αtβ̇t
vt(ẑt).

For straight interpolation Xt = tX1 + (1− t)X0, this reduces to the
standard Euler scheme. In general cases, however, it is a different
update that is nonlinear on the step size ε.

For the spherical interpolation Xt = sin(π2 t)X1 + cos(π2 t)X0, the
update reduces to

ẑt+ε = cos(π2 ε)ẑt +
2
π sin(π2 ε)vt(ẑt).

where we used the trigonometric identities:

α̇tβt′ − αt′ β̇t =
π
2 (cos

(
π
2 t
)
cos
(
π
2 t

′)+ sin
(
π
2 t

′) sin (π2 t)) = π
2 cos

(
π
2 (t

′ − t)
)
,

αt′βt − αtβt′ = sin
(
π
2 t

′) cos (π2 t)− sin
(
π
2 t
)
cos
(
π
2 t

′) = sin
(
π
2 (t

′ − t)
)
,

α̇tβt − αtβ̇t =
π
2 cos2

(
π
2 t
)
+ π

2 sin2
(
π
2 t
)
= π

2 .

Remark 18. The discretized inference scheme of DDIM is an instance
of natural Euler sampler. To see this, note that the inference up-
date of DDIM is written in terms of the expected noise x̂0|t(x) =

E [X0|Xt = x]. Hence, we write the update of ẑt in terms of x̂0|t(x):

ẑt+ε = αt+εx̂1|t(ẑt) + βt+εx̂0|t(ẑt)

∗
= αt+ε

(
ẑt − βtx̂0|t(ẑt)

αt

)
+ βt+εx̂0|t(ẑt)

=
αt+ε

αt
ẑt +

(
βt+ε −

αt+εβt
αt

)
x̂0|t(ẑt)

where in ∗
= we used αtx̂1|t(ẑt) + βtx̂0|t(ẑt) = ẑt. We can slightly

rewrite the update as

ẑt+ε

αt+ε
=
ẑt
αt

+

(
βt+ε

αt+ε
− βt
αt

)
x̂0|t(ẑt), (3.10)

which matches the DDIM update in Equation 13 of Song et al. [2020a].
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3.4.2 Equivalence of Natural Euler Trajectories

We show that the trajectories of natural Euler samplers are equivariant
under point-wise transforms. Let {Xt} and {X ′

t} be two interpolation
processes that are point-wisely transformable via X ′

t = ϕt(Xτt), and let
{ẑti}i and {ẑ′t′i}i be the trajectories returned by the natural Euler method
of the rectified flow under each interpolation on time grid {ti} and {t′i},
respectively. Assume that time grids satisfies τ(t′i) = ti for ∀i, and ẑ′t′0 =

ϕ(ẑτ(t′0)). Then, we can show

ẑ′t′i = ϕt′i(ẑti), ∀i = 0, 1, . . . . (3.11)

Moreover, if X1 = X ′
1 and τ(1) = 1, and the time grid ends at ti = t′i = 1,

then ẑ′1 = ẑ1, that is, they provide the same final output, even though the
intermediate trajectories can be different.

In particular, applying natural Euler method on an affine interpolation
X ′

t on uniform time grid t′i =
i
n is equivalent to applying standard Euler

method on the straight interpolation with on a non-uniform time grid
ti = τ( i

n ).
Note that this strengthens the equivariance result of the RF ODEs in

Theorem 2, which arises as the infinitesimal step size limit of the natural
Euler trajectories.

Let {X ′
t} = Transform({Xt}) denote the pointwise transform, and

Ẑ = NaturalEulerRF({Xt}) the mapping from {Xt} to the discretized
natural Euler trajectories. The result is the following equivariant property:

NaturalEulerRF(Transform({Xt})) = Transform(NaturalEulerRF({Xt})).

Example 10 (Equivalence of Straight Euler and DDIM). From Example 5,
The pointwise transform from straight interpolation Xt = tX1 + (1−
t)X0 to a general affine interpolation X ′

t = α′
tX1 + β′

tX0 is

X ′
t =

1

ωt
Xτt , with τt =

α′
t

α′
t + β′

t

, ωt =
1

α′
t + β′

t

. (3.12)

The vanilla Euler method under the straight interpolation is

ẑti+1
= ẑti + (ti+1 − ti)vti(ẑti). (3.13)

As predicted by the theory, transforming the trajectories in (3.13)
with the mapping in (3.12) would yield the natural Euler trajectories
of X ′

t = α′
tX1 + β′

tX0, which coincides with the DDIM inference (see
Remark 18), on time grid {t′i} that solves the equation:

ti =
α′
t′i

α′
t′i
+ β′

t′i

. (3.14)

Conversely, if we run natural Euler sampler of X ′
t = α′

tX1 + β′
tX0

with a uniform time grid t′i = i
n , then it corresponds to running
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vanilla Euler of straight interpolation with a non-uniform time grid

ti =
α′

i/n

α′
i/n

+β′
i/n

.

Proof. As a (tedious) exercise, let us manually apply the pointwise
transform in (3.12) to the straight Euler trajectory in (3.13), and
show that it coincides with the natural Euler samplers corresponding
to DDIM in Remark 18.

First, we rewrite the straight Euler update w.r.t. the predicted
noise x̂0|t(x) = E [X0|Xt = x]:

ẑti+1 = ẑti + (ti+1 − ti)vti(ẑti) =
ti+1

ti
ẑti −

ti+1 − ti
ti

x̂0|t(ẑti),

(3.15)

where we used vt(x) = (x − x̂0|t(x))/t. Our goal is to show that
applying the transform ẑ′t′i

= 1
ωt′

i

ẑti with ti = τ(t′i) to (3.15) yields

ẑ′t′i+1

α′
t′i+1

=
ẑ′t′i
α′
t′i

+

(
β′
t′i+1

α′
t′i+1

−
β′
t′i

α′
t′i

)
x̂′0|t′i

(z′t′i), (3.16)

which coincides with the DDIM inference update in (3.10).
To do so, applying the transform ẑ′t′i

= 1
ωt′

i

ẑti and ẑ′t′i+1
= 1

ωt′
i+1

ẑti+1

to (3.15) yields

ẑ′t′i+1
=

1

ωt′i+1

ẑti+1

=
1

ωt′i+1

(
ti+1

ti
ẑti −

ti+1 − ti
ti

x̂0|ti(ẑti)

)
=

ωt′i

ωt′i+1

ti+1

ti
ẑ′t′i −

1

ωt′i+1

ti+1 − ti
ti

x̂0|ti(ωt′i
ẑ′t′i)

=
ωt′i

ωt′i+1

ti+1

ti
ẑ′t′i −

1

ωt′i+1

ti+1 − ti
ti

x̂0|t′i(ẑ
′
t′i
),

where we used x̂0|ti(ωt′i
z′t′i

) = x̂′0|t′i
(z′t′i

) by Theorem 4.
We just need to clean up the coefficients. By (3.12) and (3.14),

we have ti = α′
t′i
ωt′i

, and hence

ωti

ωt′i+1

ti+1

ti
=
α′
t′i+1

α′
t′i

.
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1

ωt′i+1

ti+1 − ti
ti

= (α′
t′i+1

+ β′
t′i+1

)

α′
t′
i+1

α′
t′
i+1

+β′
t′
i+1

−
α′

t′
i

α′
t′
i
+β′

t′
i

α′
t′
i

α′
t′
i
+β′

t′
i

=
α′
t′i+1

β′
t′i
− α′

t′i
β′
t′i+1

α′
t′i

= α′
t′i+1

(
β′
t′i

α′
t′i

−
β′
t′i+1

α′
t′i+1

)
.

Rearranging the terms yields (3.16).

Proofs

In the following, we prove the general equivariance results of natural Euler
samplers in (3.11).

Definition 8. A function I : [0, 1]×Rd×Rd → Rd, denoted as It(x0, x1),
is said to be an interpolation, or interpolation function, if it satisfies
I0(x0, x1) = x0 and I1(x0, x1) = x1 for any x0, x1 ∈ Rd.

An interpolation I is said to be invertible if, for any x ∈ Rd, v ∈ Rd,
and t0 ∈ [0, 1], there exists a unique interpolation curve xt = It(x̂0, x̂1)

that passes through the point xt0 = x with slope ẋt0 = v.
In other words, there exists a unique solution for x̂0 and x̂1 such

that
x = It0(x̂0, x̂1), v = ∂tIt(x̂0, x̂1)

∣∣
t=t0

.

With an abuse of notation, we write xt = It(xt0 = x, ẋt0 = v).

Theorem 5. 1) Let {Xt} and {X ′
t} be two interpolation processes

constructed from the same coupling via

Xt = It(X0, X1), X ′
t = I′t(X0, X1),

where I and I′ are two invertible interpolations. Let vt, v′t be the RF
velocity fields of {Xt} and {X ′

t}, respectively.
2) Assume I and I′ are point-wisely transformable via

I′t(x0, x1) = ϕt(Iτt(x0, x1)), ∀t ∈ [0, 1], x0, x1 ∈ Rd,

where ϕt(x) and τt = τ(t) are differentiable functions and ϕt is
invertible for ∀t ∈ [0, 1].

3) Let {ẑti}i and {ẑ′t′i}i be the trajectories returned by the natural
Euler method of the rectified flow under each interpolation on time
grid {ti} and {t′i}, respectively.

Assume that the time grids satisfy τ(t′i) = ti for all i, and that the
initial condition satisfies ẑ′t′0 = ϕt′0(ẑt0). Then, the two trajectories can
be pointwise mapped via:

ẑ′t′i = ϕt′i(ẑti), ∀i = 0, 1, . . . .
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Proof. Assume that ẑ′t′i = ϕt′i(ẑti) holds, we just need to prove that
ẑ′t′i+1

= ϕt′i+1
(zti+1

) for the next time point. Note that the next points
are fetched on the interpolation curve that is tangent to the rectified
flow curves at the current time point:

ẑti+1
= Iti+1

(zti = ẑti , żti = vt(ẑti)),

ẑ′t′i+1
= It′i+1

(z′t′i = ẑ′t′i , ż
′
t′i
= v′t(ẑ

′
t′i
)),

where we have z′t′i = ϕt′i(zti) and ti = τ(t′i). Following Lemma 5, we
have z′t′i+1

= ϕt′i+1
(zti+1

).

Lemma 5. 1) Let {Xt} and {X ′
t} be two interpolation processes con-

structed from the same coupling via

Xt = It(X0, X1), X ′
t = I′t(X0, X1),

where I and I′ are two invertible interpolations. Let vt, v′t be the RF
velocity fields of {Xt} and {X ′

t}, respectively.
2) Assume I and I′ are point-wisely transformable via

I′t(x0, x1) = ϕt(Iτt(x0, x1)), ∀t ∈ [0, 1], x0, x1 ∈ Rd,

where ϕt(x) and τt = τ(t) are differentiable functions and ϕt is
invertible for ∀t ∈ [0, 1].

3) Let d
dtzt = vt(zt) be a trajectory of RF of {Xt} and {yt} the

interpolation curve that is tangent to {zt} at time t0. Similarly, let
d
dtz

′
t = v′t(z

′
t) be a trajectory of RF of {X ′

t}, and {y′t} the interpolation
curve that is tangent to {z′t} at time t′0. In other words:

yt = It(yt0 = zt0 , ẏt0 = vt(zt0))

y′t = It(y
′
t0 = z′t′0 , ẏ

′
t′0

= v′t(z
′
t′0
)).

We assume that z′0 = ϕ0(zτ0) and τ(t′0) = t0.

Then {yt} and {y′t} can be mapped point-wisely via

y′t = ϕt(yτt), ∀t ∈ [0, 1].

Proof. To prove the result, we define {y′t} by the mapping y′t = ϕt(yτt),
and then we have:

1) {y′t} and {z′t} are tangent at time t′0. This follows Lemma 6
because {yt} and {zt} are tangent at t0 = τ(t′0), and y′t = ϕt(yτt), and
z′t = ϕt(zτt) (following Theorem 2).

2) {y′t} is an interpolation curve under interpolation I ′. This is
because

y′t = ϕt(Iτt(y0, y1))

= I′t(y0, y1).

This shows that {y′t} is an interpolation curve that is tangent to {z′t}
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at t′0, which is unique because the interpolation I′ is invertible. The
proves the result.

Lemma 6. Let {xt} and {yt} are be time-differentiable curves that are
tangent at a time point t0, that is,

xt0 = yt0 , ẋt0 = ẏt0 .

Assume the x′t = ϕt(xτt) and y′t = ϕt(yτt), where ϕ : [0, 1]× Rd → Rd

and τ : [0, 1] → [0, 1] are differentiable maps.
Then {x′t} and {y′t} are tangent at time t′0, that is,

x′t′0 = y′t′0 , ẋ′t′0 = ẏ′t′0 ,

where t′0 satisfies τ(t′0) = t0.

Remark 19. In other words, when x′t = ϕt(xτt), there exists a function
F , such that ẋ′t = F (xτt , ẋτt), so that ẋ′t is completely determined by
xτ and ẋτt .

Proof. Obviously, we have x′t′0 = y′t′0
by definition. For the slope, taking

derivative of x′t and y′t:

ẋ′t = ∂tϕt(xτt) +∇ϕt(xτt)τ̇tẋτt , ẏ′t = ∂tϕt(yτt) +∇ϕt(yτt)τ̇tẏτt .

Plugging t = t′0 and τt = τ(t′0) = t0, we get

ẋ′t′0 = ∂tϕt′0(xt0) +∇ϕt′0(xt0)τ̇(t
′
0)ẋt0 ,

ẏ′t′0 = ∂tϕt′0(yt0) +∇ϕt′0(yt0)τ̇(t
′
0)ẏt0 .

Hence, xt0 = yt0 and ẋt0 = ẏt0 imply that ẋ′t′0 = ẏ′t′0
.

3.5 Stochastic Smooth Interpolations

Although we have focused on deterministic interpolation processes Xt =

It(X0, X1) in which Xt is deteministic given (X0, X1), the same algorithm
extends naturally to stochastic interpolations of form

Xt = It(X0, X1, ω), ω ∼ πξ,

where Xt depends on an extra random variable ω. It should still satisfy the
correct boundary condition Xi = Ii(X0, X1, ω) for i ∈ {0, 1}.

Assume the trajectory-wise time derivative Ẋt = ∂tIt(X0, X1, ω), then

the rectified flow dZt = vt(Zt)dt is defined as vt(x) = E
[
Ẋt | Xt = x

]
as

usual, which solves

min
µ

∫ 1

0

E
[
∥∂tIt(X0, X1, ω)− µt(It(X0, X1, ω), t)∥2

]
dt.

A natural example of this is the following randomized affine interpolation:

Xt = αtX1 + βtX0 + γtξ, (3.17)
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where ξ is an independent noise, and αt, βt, γt are differentiable time
sequences satisfying α0 = 1− α1 = β1 = 1− β0 = γ0 = γ1 = 0. It yields a
loss of form

min
µ

∫ 1

0

E
[∥∥∥α̇tX1 + β̇tX0 + γ̇tξ − µt(Xt, t)

∥∥∥2] dt.
It introduces the extra flexibility of choosing γt and the distribution of ξ
beyond the standard affine interpolation.

The question is, however, when and how stochastic interpolations are
useful beyond deterministic interpolations. We have the following results:

For a time-differential process {Xt}, one can de-randomize it into
a deterministic interpolation Xd

t = Idt (X0, X1), satisfying Ẋd
t =

E
[
Ẋt | Xt, X1

]
, such that

1. {Xt} and {Xd
t } share the same marginal distributions: Law(Xt) =

Law(Xd), ∀t ∈ [0, 1].

2. They yield the same rectified flow, that is,

Rectify({Xd
t }) = Rectify({Xt}).

3. RF loss of {Xd
t } yields a Rao–Blackwellization of the RF loss of

{Xt}, and hence has smaller variance.

This suggests that there is no motivation to use a stochastic interpola-
tion if we can use its de-randomized interpolation. In particular, for the
randomized affine interpolation in (3.17), when (X0, X1, ξ) are mutually
independent, and X0, ξ ∼ Normal(0, I), as the case of 1-rectified flow, the
de-randomized interpolation is an affine interpolation Xt = αd

tX1 + βdtX0,
where αd

t , β
d
t are determined by αt, βt, γt. In this case, there may be no

clear motivation to use the randomized interpolation (3.17).
On the other hand, when it is computationally intractable to calculate

the slope Ẋd
t = E

[
Ẋt|Xt, X1

]
of the de-randomized interpolation, it may

still be useful to employ randomized interpolations. This is especially true
when (X0, X1) does not form an independent coupling, as in the case of
the reflow step. In such scenarios, introducing randomness enables greater
flexibility in the algorithm design space and may induce better regularity
conditions on the resulting rectified flow.

3.5.1 De-randomized Interpolation

Let {Xt} be a time-differentiable stochastic process that corresponds to a
randomized interpolation, Its de-randomized interpolation {Xd

t } can be
constructed as the rectified flow of the conditioned process {Xt} | X1.

Definition 9. {Xd
t } is said to be the X1-conditioned rectified flow of

{Xt} if (Xd
0 , X

d
1) = (X0, X1), and conditioned on (Xd

0 , X
d
1) = (x0, x1),
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the path Xd
t for t ∈ [0, 1] follows the ODE:

d

dt
Xd

t = v
X|X1

t (Xd
t | x1), Xd

0 = x0, (3.18)

where
v
X|X1

t (xt | x1) = E
[
Ẋt | Xt = xt, X1 = x1

]
.

We assume the solutions of the ODEs exist and are unique.

Proposition 4. Assume {Xd
t } is the X1-conditioned rectified flow of

{Xt}. We have

1. {Xt} and {Xd
t } share the same marginal distributions:

Law(Xt) = Law(Xd), ∀t ∈ [0, 1].

2. They yield the same rectified flow, that is,

Rectify({Xd
t }) = Rectify({Xt}).

3. It is easier to predict Ẋd
t from Xd

t than Ẋt from Xt:

Cov(Ẋd
t | Xd

t ) = Cov(Ẋt | Xt)− E
[
Cov(Ẋt|Xt, X1)

]
⪯ Cov(Ẋt | Xt).

Proof. 1) From the definition, (X0, X1) = (Xd
0 , X

d
1), and the condi-

tioned process Xd
t |X1 = x1 is the rectified flow of the conditioned pro-

cess Xt|X1 = x1. Therefore, the conditional marginal distribution of

Xd
t |X1 = x1 equals that of Xt|X1 = x1. Hence, (Xd

t , X
d
1)

law
= (Xt, X1).

2) Because Xd
t |X1 = x1 is the rectified flow of Xt|X1 = x1, we

have

E
[
Ẋd

t | Xd
t = xt, X1 = x1

]
= E

[
Ẋt | Xt = xt, X1 = x1

]
, ∀xt, x1.

Marginalizing x1 out:

E
[
Ẋd

t | Xd
t

]
= E

[
Ẋt | Xt

]
.

This suggests that {Xd
t } shares the same rectified flow as {Xt}.

3) For the conditional variance, we have

Cov(Ẋd
t | Xd

t ) = Cov(v
Xt|X1

t (Xd
t , X1) | Xd

t ) //by (3.18)

= Cov(v
Xt|X1

t (Xt, X1) | Xt) //(Xd
t , X1)

law
= (Xt, X1)

= Cov
(
E
[
Ẋt | Xt, X1

]
| Xt

)
= Cov(Ẋt | Xt)− E

[
Cov(Ẋt | Xt, X1)

]
⪯ Cov(Ẋt | Xt),
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where we use the law of total variance.

3.5.2 De-randomizing Affine Interpolations

Lemma 7. Assume Xt = αtX1 + βtX0 + γtξ, where (X0, X1, ξ) are
mutually independent and X0, ξ ∼ Normal(0, I). The de-randomized
interpolation {Xd

t } of {Xt} satisfies

Xd
t = αd

tX1 + βdtX0,

where αd
t , β

d
t satisfies

α̇d
t −

β̇dt
βdt
αd
t = α̇t −

β̇t
βt
αt −

(
γ̇t −

β̇t
βt
γt

)
γt(β

2
t + γ2t )

−1αt,

β̇dt
βdt

=
β̇t
βt

+

(
γ̇t −

β̇t
βt
γt

)
γt(β

2
t + γ2t )

−1.

Lemma 8. Assume {Xt} satisfies Xt = αtX1 + βtX0 + γtξ, where
αt, βt, γt are time-differential sequences. Define

ξ̂
X|Xt

t (xt | x1) = E [ξ | Xt = xt, X1 = x1] .

1) We have

v
X|X1

t (xt | x1) =

(
α̇t −

β̇t
βt
αt

)
x1 +

β̇t
βt
xt +

(
γ̇t −

β̇t
βt
γt

)
ξ̂
X|Xt

t (xt | x1).

2) Further, assume ξ ∼ Normal(0, I), and (X0, X1) ⊥⊥ ξ. Let ρt be
the density function of Xt. We have

ξ̂
X|Xt

t (xt | x1) = −γt∇ log ρXt|X1
(xt|x1).

3) Further, assume X0 ⊥⊥ X1 and X0 ∼ Normal(µ0,Σ0). Then

ξ̂
X|Xt

t (xt | x1) = γtΣ
−1
t (xt − µt(x1)),

where µt(x1) = αtx1 + βtµ0, and Σt = β2
tΣ0 + γ2t I.

4) Further, assume µ0 = 0 and Σ0 = I. We have

v
X|X1

t (xt | x1) = adtx1 + bdtxt.

where

adt = α̇t −
β̇t
βt
αt −

(
γ̇t −

β̇t
βt
γt

)
γt(β

2
t + γ2t )

−1αt,

bdt =
β̇t
βt

+

(
γ̇t −

β̇t
βt
γt

)
γt(β

2
t + γ2t )

−1.
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Hence, Xd
t satisfies

Xd
t = αd

tX1 + βdtX0,

where αd
t and βdt should satisfy

α̇d
t −

β̇dt
βdt
αd
t = α̇t −

β̇t
βt
αt −

(
γ̇t −

β̇t
βt
γt

)
γt(β

2
t + γ2t )

−1αt

β̇dt
βdt

=
β̇t
βt

+

(
γ̇t −

β̇t
βt
γt

)
γt(β

2
t + γ2t )

−1.

Proof. For 1), we have

v
X|X1

t (xt | x1) := E
[
Ẋt | Xt = xt, X1 = x1

]
= E

[
α̇tX1 + β̇tX0 + γ̇tξ | Xt = xt, X1 = x1

]
= E

[
α̇tx1 + β̇t

(
xt − αtx1 − γtξ

βt

)
+ γ̇tξ | Xt = xt, X1 = x1

]
=

(
α̇t −

β̇t
βt
αt

)
x1 +

β̇t
βt
xt +

(
γ̇t −

β̇t
βt
γt

)
E [ξ | Xt = xt, X1 = x1] .

For 2), using the generalized Tweedie’s formula in Theorem 6, we
have

∇ log ρXt|X1
(xt | x1) = γ−1

t E [∇ξ log ρξ(ξ) | Xt = xt, X1 = x1] .

The results follow given that ∇ log ρξ(ξ) = −ξ.
For 3), we just use 2) and note thatXt |X1 = x1 ∼ Normal(µt(x1),Σt).
For 4), the form of vX|X)t

t is obtained by combining the results
above.

3.6 Affine Interpolation Identities

In many derivations and algorithms, it is often necessary to solve equations
related to interpolation functions. For instance, given Xt and Ẋt, we
often need to to find X0 and X1 that satisfy Xt = It(X0, X1) and Ẋt =

İt(X0, X1).
For affine interpolations, this problem reduces to solving a simple

2× 2 linear system, which yields a closed-form solution. Additionally, the
conditional expectation counterparts, x̂i|t(Xt) = E[Xi | Xt] and vt(Xt) =

E[Ẋt | Xt], satisfy the same relations due to the linearity of expectation.
For convenience, we collect these formulas here for easy reference.
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Lemma 9. Let Xt = αtX1 + βtX0, and Ẋt = α̇tX1 + β̇tX0, and

RF velocity field : vt(x) = E
[
Ẋt | Xt = x

]
Expected noise X0 : x̂0|t(x) = E [X1 | Xt = x]

Expected target X1 : x̂1|t(x) = E [X1 | Xt = x] .

We have

vt(x) =
α̇t

αt
x− βt(

α̇t

αt
− β̇t
βt

)x̂0|t(x),

vt(x) =
β̇t
βt
x+ αt(

α̇t

αt
− β̇t
βt

)x̂1|t(x),

and

x̂0|t(x) =
−α̇tx+ αtvt(x)

αtβ̇t − α̇tβt
= − 1

βt

(
α̇t

αt
− β̇t
βt

)−1(
vt(x)−

α̇t

αt
x

)
,

x̂1|t(x) =
β̇tx− βtvt(x)

αtβ̇t − α̇tβt
=

1

αt

(
α̇t

αt
− β̇t
βt

)−1(
vt(x)−

β̇t
βt
x

)
,

and

x̂1|t(x) =
x− βtx̂0|t(x)

αt
, x̂0|t(x) =

x− αtx̂1|t(x)

βt
.

Proof.

vt(x) = E
[
Ẋt | Xt = x

]
= E

[
α̇tX1 + β̇tX0 | Xt = x

]
= E

[
α̇tX1 + β̇t

(Xt − αtX1)

βt
| Xt = x

]
=
β̇t
βt
x+ αt(

α̇t

αt
− β̇t
βt

)x̂1|t(x).

The other relations are derived similarly using the relations in Lemma 10.

Lemma 10. Let Xt = αtX1 + βtX0, and Ẋt = α̇tX1 + β̇tX0, then
1) X0, X1 from Xt, Ẋt:

X1 =
β̇tXt − βtẊt

αtβ̇t − α̇tβt
=

1

αt

(
α̇t

αt
− β̇t
βt

)−1(
Ẋt −

β̇t
βt
Xt

)
,

X0 =
−α̇tXt + αtẊt

αtβ̇t − α̇tβt
= − 1

βt

(
α̇t

αt
− β̇t
βt

)−1(
Ẋt −

α̇t

αt
Xt

)
.
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2) Ẋt from Xt, X0 (or X1):

Ẋt =
α̇t

αt
Xt − βt(

α̇t

αt
− β̇t
βt

)X0,

Ẋt =
β̇t
βt
Xt + αt(

α̇t

αt
− β̇t
βt

)X1.

3) Xt from Ẋt and X0 (or X1):

Xt =
αt

α̇t

(
Ẋt + βt(

α̇t

αt
− β̇t
βt

)X0

)
,

Xt =
βt

β̇t

(
Ẋt − αt(

α̇t

αt
− β̇t
βt

)X1

)
.

4) X0 (resp. X1) from Xt and X1 (resp. X0):

X1 =
Xt − βtX0

αt
, X0 =

Xt − αtX0

βt
.

Lemma 11. Let Xt = αtX1 + βtX0, and Ẋt = α̇tX1 + β̇tX0. We have
1) X0, X1 from Ẋt:

X1 − E [X1|Xt] =
1

αt

(
α̇t

αt
− β̇t
βt

)−1 (
Ẋt − E

[
Ẋt|Xt

])
,

X0 − E [X0|Xt] = − 1

βt

(
α̇t

αt
− β̇t
βt

)−1 (
Ẋt − E

[
Ẋt|Xt

])
.

2) Ẋt from X0 (or X1):

Ẋt − E
[
Ẋt|Xt

]
= −βt(

α̇t

αt
− β̇t
βt

)(X0 − E [X0|Xt]),

Ẋt − E
[
Ẋt|Xt

]
= αt(

α̇t

αt
− β̇t
βt

)(X1 − E [X1|Xt]).

3) X0 and X1:

X1 − E [X1|Xt] = −βt
αt

(X0 − E [X0|Xt]),

X0 − E [X0|Xt] = −αt

βt
(X1 − E [X1|Xt]).
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CHAPTER FOUR

Identities

We present some important identities related to rectified flow, particularly
in the case when (X0, X1) is an independent coupling, which corresponds
to the 1-rectified flow derived from the data. Furthermore, more appealing
properties can be established if π0 is a Gaussian distribution.

4.1 Score Identities

Assume that ρt is the density function of Xt for Xt = αtX1 + βtX0. In this
section, we provide a set of formulas regarding the score function ∇ log ρt.

In particular, when X0 ⊥⊥ X1 and X0 is Gaussian, the score function is
connected with the RF velocity field via

∇ log ρt(x) =
1

β2
t

(
α̇t

αt
− β̇t
βt

)−1(
vt(x)−

α̇t

αt
x

)
. (4.1)

This is a well known result that have been heavily explored in the literature.
We start with an array of basic identities regarding score functions in-

volving marginalizing latent variables. Note the subtle differences between
the three results below and their conditions.

Lemma 12 (Score Functions and Latent Variables). Assume all log den-
sities involved below are continuously differentiable.

1) For any continuous random variable (X,Y ),

∇x log ρX(x) = E [∇X log ρX,Z(X,Z) | X = x]

= E
[
∇X log ρX|Z(X|Z) | X = x

]
,

where ρX|Z , ρX,Z is the conditional and joint density functions.
2) Moreover, if X = Y + Z, we have

∇x log ρX(x) = E
[
∇Z log ρZ|Y (Z|Y ) | X = x

]
= E

[
∇Y log ρY |Z(Y |Z) | X = x

]
.

3) Further, if X = Y + Z and Y ⊥⊥ Z, we have

∇x log ρX(x) = E [∇Z log ρZ(Z) | X = x]

= E [∇Y log ρY (Y ) | X = x] .
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Proof. 1) Directly taking the derivative:

∇x log ρX(x) =
∇xρX(x)

ρX(x)

∗
=

∇x

∫
z
ρX,Z(x, z)dz

ρX(x)

=

∫
∇x log ρX,Z(x, z)ρX,Z(x, z)dz

ρX(x)

=

∫
∇x log ρX,Z(x, z)ρZ|X(x, z)dz

= E[∇x log ρX,Z(X,Z) | X = x]
∗∗
= E[∇x log ρX|Z(X|Z) | X = x].

The major step here is to exchange the order of derivative and integral
operators in ∗

=. In the last step ∗∗
=, we used

∇x log ρX,Z(x, z) = ∇x log ρZ(z) +∇x log ρX|Z(x|z) = ∇x log ρX|Z(x|z).

2) If X = Y + Z, we have

ρX|Z(x|z) = ρY |Z(x− z|z).

Plugging it into the result above yields

∇x log ρX(x) = E[∇X log ρY |Z(X − Z|Z) | X = x]

= E[∇Y log ρY |Z(Y |Z) | X = x],

where we used Y = X − Z in the last step.
3) Further, if Y ⊥⊥ Z, we have ρY |Z(y|z) = ρY (y), and hence the

results follow directly.

Theorem 6. Assume Xt = αtX1 + βtX0, where X0 ⊥⊥ X1. We have

∇ log ρt(x) = E
[
β−1
t ∇ log ρ0(X0) | Xt = x

]
= E

[
α−1
t ∇ log ρ1(X1) | Xt = x

]
,

(4.2)

where ρ0, ρ1 are the density functions of X0 and X1, respectively.

Equation (4.2) expresses ∇ log ρX using either ∇ log ρY or ∇ log ρZ . We
should decide which one to use based on the problems and our needs.

Proof. Let Y = βtX0 and Z = αtX1, we have ρY (y) = ρX0
(β−1

t y)β−1
t ,

and hence ∇y log ρY (y) = β−1
t ∇ log ρX0(β

−1
t y).

Using Lemma 12, we have

∇ log ρt(x) = E [∇ log ρY (Y ) | Xt = x]

= E
[
β−1
t ∇ log ρX0

(β−1
t Y ) | Xt = x

]
= E

[
β−1
t ∇ log ρX0(X0) | Xt = x

]
,
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where we substitute X0 = β−1
t Y in the last step. The other form

follows by symmetry.
The case when X0 is Gaussian, say X0 ∼ Normal(µ0,Σ0), is particu-

larly interesting because the score function of the noise ∇ log ρ0(X0) =

Σ−1
0 (X0 − µ) is linear on X0, which allows for a simple relation between

∇ log ρt, the expected noise x̂0|t(x) = E [X0|Xt = x], and the velocity vt.

Corollary 3 (Tweedie’s Formula). Let Xt = αtX1 +βtX0 and X0 ⊥⊥ X1.
If X0 ∼ Normal(µ0,Σ0), we have ∇ log ρ0(x) = −Σ−1

0 (x − µ0), and
hence

∇ log ρt(x) = − 1

βt
E
[
Σ−1

0 (X0 − µ0) | Xt = x
]

= − 1

βt
Σ−1

0 (x̂0|t(x)− µ0).

Using the relation of x̂0|t(x) and vt(x) in Lemma 9, we have

∇ log ρt(x) = − 1

βt
Σ−1

0 (x̂0|t(x)− µ0)

=
1

β2
t

(
α̇t

αt
− β̇t
βt

)−1

Σ−1
0

(
vt(x)−

α̇t

αt
x

)
+

1

βt
Σ−1

0 µ0.

Hence,

vt(x) =
α̇t

αt
x+ βt(

α̇t

αt
− β̇t
βt

)Σ0(βt∇ log ρt(x)− µ0).

Corollary 4 (Tweedie’s Formula). In particular, if X0 ∼ Normal(0, I) is
the standard Gaussian noise, we have

∇ log ρt(x) = − 1

βt
E [X0 | Xt = x] .

Hence,

vt(x) =
α̇t

αt
x+ β2

t (
α̇t

αt
− β̇t
βt

)∇ log ρt(x),

and

∇ log ρt(x) =
1

β2
t

(
α̇t

αt
− β̇t
βt

)−1(
vt(x)−

α̇t

αt
x

)
.

Example 11 (Score Function of Straight Interpolation). For straight inter-
polation Xt = tX1+(1− t)X0 with X0 ⊥⊥ X1 and X0 ∼ Normal(0, I),
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the score function ∇ log ρt and velocity field vt is related via

∇ log ρt(x) =
tvt(x)− x

1− t
,

vt(x) =
(1− t)∇ log ρt(x) + x

t
.

(4.3)

Remark 20. If X0 is not Gaussian, the score function of the noise
∇ log ρ0(X0) is not linear on X0, and hence ∇ log ρt can not be ex-
pressed with vt. In this case, we may need to learn an extra model
gt(x, θ) to approximate ∇ log ρt(x). Using Equation (4.2), a loss func-
tion can be

min
θ

∫
ηtE

[
∥βtgt(Xt, θ)−∇ log ρ0(X0)∥2

]
dt.

4.2 Covariance Identities

For Xt = αtX1 +βtX0 with X0 ⊥⊥ X1, and X0 ∼ Normal(0, I), we provide
some identities related to the derivative matrix ∇vt and the Hessian matrix
∇2 log ρt:

∇2 log ρt(x) = β−2
t (Var(X0 | Xt = x)− I)

∇vt(x) =
β̇t
βt
I +

1

β2
t

(
α̇t

αt
− β̇t
βt

)−1Var(Ẋt | Xt = x),
(4.4)

where Var(·|·) denotes the conditional covariance matrix. These formulas
may find various applications. We provide two examples here.

Divergence and Straightness

Taking the sum of diagonals yields a formula for the divergence ∇· vt:

∇· vt(x) =
β̇t
βt
d+

1

β2
t

(
α̇t

αt
− β̇t
βt

)−1Trace(Var(Ẋt | Xt = x)), (4.5)

where d is the dimension of Xt.
On the other hand, note that the trace of conditional variance Trace(Var(Ẋt |Xt =

x)) coincides with the minimum square loss:

ℓ∗t := min
vt

E
[∥∥∥Ẋt − vt(Xt)

∥∥∥2] = E
[
Trace(Var(Ẋt | Xt))

]
, (4.6)

where ℓ∗t = 0 implies that Ẋt is determined by Xt, indicating no different
trajectories of {Xt} intersect at t. Hence ℓ∗t is an indication of straightness
of the rectified flow. Combining (4.5) and (4.6) yields

ℓ∗t = β2
t (
α̇t

αt
− β̇t
βt

)

(
E [∇· vt(Xt)]−

β̇t
βt
d

)
, (4.7)

This suggests that the divergence E [∇· vt(Xt)] reveals information regard-
ing the straightness of the rectified flow. This also provides an approach to
empirically estimate ℓ∗t , since the right hand side can be estimated given
vt.
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Monotonicity of One-Step Euler Steps

Equation (4.4) suggest that ∇vt(x)− β̇t

βt
I is a positive semi-definite matrix.

This can be used to show that the one-step Euler update ΦEuler
s|t (x) =

x+(s− t)vt(x) is always a monotonic map and corresponds to the gradient
of a convex function. We discuss this result in detail in Section 4.4, and
use it to prove a bound in relation to L2 optimal transport in (4.5)

Proofs

We now provide the proofs of Equation (4.4) and more related results.

Definition 10. The cross-covariance matrix of a joint random vector
(X,Y ) is defined as

Cov(X,Y ) = E
[
(X − E [X])(Y − E [Y ])⊤

]
,

The covariance matrix of X is

Var(X) = Cov(X,X) = E
[
(X − E [X])(X − E [X])⊤

]
.

Lemma 13. Let Xt = αtX1 + βtX0 where X0 ⊥⊥ X1, and X0 ∼
Normal(0, I).
For ∇xx̂1|t(x) := E [X1 | Xt = x], we have

∇xx̂1|t(x) := E [X1 | Xt = x]

= − 1

βt
Cov(X0, X1 | Xt = x)

=
αt

β2
t

Var(X1 | Xt = x)

=
1

αt
Var(X0 | Xt = x).

(4.8)

For vt(x) = E
[
Ẋt|Xt = x

]
, we have

∇xvt(x) =
β̇t
βt
I − αt

βt
(
α̇t

αt
− β̇t
βt

)Cov(X0, X1 | Xt = x)

=
β̇t
βt
I +

α2
t

β2
t

(
α̇t

αt
− β̇t
βt

)Var(X1 | Xt = x)

=
β̇t
βt
I + (

α̇t

αt
− β̇t
βt

)Var(X0 | Xt = x)

=
β̇t
βt
I +

1

β2
t

(
α̇t

αt
− β̇t
βt

)−1Var(Ẋt | Xt = x)

(4.9)

Let ρt be the density function of Xt, the Hessian of log ρt is

∇2 log ρt(x) = β−2
t (Var(X0 | Xt = x)− I). (4.10)

Proof. Write Xt = αtX1 + Y , where Y = βtX0 ∼ Normal(0, β2
t I).
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Using Lemma 16 on x̂1|t(x) = E [X1|Xt = x], we have

∇x̂1|t(x) = Cov((− Y

β2
t

), X1 | Xt = x) = − 1

βt
Cov(X0, X1 | Xt = x).

We then have (4.8) using Lemma 15.
For vt(x), Eq (4.9) follows by noting that x̂1|t(x) and vt(x) are

relate via

vt(x) = E
[
α̇tX1 + β̇tX0 | Xt = x

]
= E

[
α̇tX1 + β̇t

(Xt − αtX1)

βt
| Xt = x

]
=
β̇t
βt
x+ αt(

α̇t

αt
− β̇t
βt

)x̂1|t(x).

For ∇ log ρt(x), note that

∇ log ρt(x) = E
[
−X0

βt
| Xt = x

]
= E

[
−Xt − αtX1

β2
t

| Xt = x

]
= − x

β2
t

+
αt

β2
t

x̂1|t(x).

Hence, plugging (4.8) gives

∇2 log ρt(x) =
αt

β2
t

∇x̂1|t(x)−
1

β2
t

I

= −αt

β3
t

Cov(X1, X0 | Xt = x)− 1

β2
t

I

=
α2
t

β4
t

Var(X1 | Xt = x)− 1

β2
t

I

=
1

β2
t

(Var(X0 | Xt = x)− I).

Lemma 14. For any random variables (X,Y, Z), we have

Cov(X, (aY + bZ)) = aCov(X,Y ) + bCov(X,Z).

Proof.

Cov(X, (aY + bZ))

= E
[
X(aY + bZ)⊤

]
− E [X]E

[
(aY + bZ)⊤

]
= aE

[
XY ⊤]+ bE

[
XZ⊤]− aE [X]E

[
Y ⊤]− bE [X]E

[
Z⊤]

= aCov(X,Y ) + bCov(X,Z).
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Lemma 15. For Xt = αtX1 + βtX0 and Ẋt = α̇tX1 + β̇tX0, we have

Cov(X1, X0 | Xt) = −βt
αt

Var(X0 | Xt)

= −αt

βt
Var(X1 | Xt)

= − 1

αtβt(
α̇t

αt
− β̇t

βt
)2
Var(Ẋt | Xt = x).

This suggests that X0 and X1 are negatively correlated conditioned on
Xt if αt, βt ≥ 0, regardless of the unconditioned coupling (X0, X1).

Proof. Plugging X0 = (Xt − αtX1)/βt, we get

Cov(X1, X0 | Xt)

=
1

βt
Cov(X1, (Xt − αtX1) | Xt = x)

=
1

βt
(Cov(X1, Xt|Xt = x)− αtCov(X1, X1 | Xt = x))

= −αt

βt
Cov(X1, X1 | Xt = x),

where we used Cov(X1, Xt|Xt = x) = Cov(X1, x|Xt = x) = 0, that
the covariance of any random variable with a constant equals zero.

Similarly, using X1 = (Xt − βtX0)/αt, we get

Cov(X1, X0 | Xt)

= Cov((Xt − βtX0)/αt, X0 | Xt = x)

= −βt
αt

Cov(X0, X0 | Xt = x).

Finally, solving Xt = αtX1 + βtX0 and Ẋt = α̇tX1 + β̇tX0 for X0,

and X1, we get

X0 =
α̇tXt − αtẊt

α̇tβt − αtβ̇t
, X1 =

β̇tXt − βtẊt

β̇tαt − βtα̇t

.

Hence,

Cov(X0, X1 | Xt) = Cov

(
α̇tXt − αtẊt

α̇tβt − αtβ̇t
,
β̇tXt − βtẊt

β̇tαt − βtα̇t

∣∣∣∣ Xt

)

= Cov

(
−αtẊt

α̇tβt − αtβ̇t
,

−βtẊt

β̇tαt − βtα̇t

∣∣∣∣ Xt

)
//Xt are viewed as constants

= − 1

αtβtκ2t
Cov(Ẋt, Ẋt | Xt),

where we write κt = α̇t

αt
− α̇t

αt
.

Lemma 16 (Second Order Score Identities). Let µh(X) = E [h(Z) | X]
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where (X,Z) is a joint random variable and h is a function. Let ρX,Z ,
ρX|Z , and ρX denote the joint, conditional, and marginal density
functions, respectively. Assume all relevant derivatives exist and
continuous.
1) For any (X,Z), we have

∇Xµh(X) = Cov(∇X log ρX,Z(X, Z), h(Z) | X)

= Cov(∇X log ρX|Z(X | Z), h(Z) | X).

2) If X = Y + Z, we have

∇Xµh(X) = Cov(∇Y log ρY |Z(Y | Z), h(Z) | X).

3) If X = Y + Z and Y ⊥⊥ Z, we have

∇Xµh(X) = Cov(∇Y log ρY (Y ), h(Z) | X).

4) If X = Y + Z, Y ⊥⊥ Z and Y ∼ Normal(µ,Σ), we have

∇Xµh(X) = Cov(Σ−1(µ− Y ), h(Z) | X).

Proof.

µh(x) =

∫
h(z)ρX,Z(x, z)dz

ρX(x)
.

Taking derivative, we have

∇µh(x) =

∫
h(z)∇xρX,Z(x, z)dz

ρX(x)
−
∫
h(z)ρX,Z(x, z)dz

ρX(x)

∫
∇xρX,Z(x, z)dz

ρX(x)

= E
[
∇X log ρX,Z(X,Z)h(Z)

⊤ | X = x
]
− E [∇X log ρX,Z(X,Z) | X = x]E

[
h(Z)⊤ | X = x

]
= Cov(∇X log ρX,Z(X,Z), h(Z) | X = x)

= Cov(∇X log ρX|Z(X|Z), h(Z) | X = x),

If X = Y + Z, we have ρX|Z(x | z) = ρY |Z(x− z | z), and hence

∇µh(x) = Cov(∇X log ρY |Z(X − Z | Z), h(Z) | X = x)

= Cov(∇Y log ρY |Z(Y | Z), h(Z) | X = x).

If Y ⊥⊥ Z, we have ∇Y log ρY |Z(Y | Z) = ∇Y log ρY (Y ) and hence
the third result follows. The fourth result follows ∇y log ρY (y) =

Σ−1(y − µ) for Y ∼ Normal(µ,Σ).

4.3 Curvature Identities

For the rectified flow dZt = vt(Zt)dt, it is of interest to estimate the
curvature Z̈t =

d
dt Żt of the trajectories. Small curvatures means straighter

trajectories and hence it incurs smaller discretization error when solved
with numerical algorithms. As we discussed in Section 4.2, the conditional
variance Var(Ẋt | Xt), which is related to ∇vt(x), provides a measure of
how much the trajectories of {Xt} intersect, which is is related to the
straightness of the {Zt} trajectories. However, Var(Ẋt | Xt) does not
exactly equal the curvature Z̈t.
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We provide an explicit formula for the curvature Z̈t for rectified flows.
Note that the curvature of dZt = vt(Zt)dt is

Z̈t =
d

dt
vt(Zt) = ∂tvt(Zt) +∇vt(Zt)

⊤vt(Zt).

We have the following formula:

Theorem 7. LetXt = αtX1+βtX0 withX0 ⊥⊥ X1 andX0 ∼ Normal(0, I).
Let vt the RF velocity field and ρt the density function of Xt. We have

∂tvt(Xt) +∇v⊤t vt(Xt) = E
[
Ẍt|Xt

]
−Var(Ẋt|Xt)∇ log ρt(Xt) + I,

where Ẍt = α̈tX1+ β̈tX0, and I is a term involving third order central
moment:

I =
1

βt
E
[
(Ẋc

t )(Ẋ
c
t )

⊤(Xc
0) | Xt

]
= − 1

β2
t

(
α̇t

αt
− β̇t
βt

)−1E
[
(Ẋc

t )(Ẋ
c
t )

⊤(Ẋc
t ) | Xt

]
= −α

3
t

β2
t

(
α̇t

αt
− β̇t
βt

)2E
[
(Xc

1)(X
c
1)

⊤(Xc
1) | Xt

]
= βt(

α̇t

αt
− β̇t
βt

)2E
[
(Xc

0)(Ẋ
c
0)

⊤(Ẋc
0) | Xt

]
,

where Xc
0 = X0 − E[X0|Xt], Xc

1 = X1 − E[X1|Xt] and Ẋt = Ẋt −
E[Ẋt|Xt] are the centered random variables.

Proof. It is rewritten from Lemma 17 by noting that E [X0|Xt] =

−βt log ρt(Xt).

For the straight interpolation Xt = tX1 + (1− t)X0, we have Ẍt = 0,
and hence

∂tvt(Xt) +∇v⊤t vt(Xt)

= −Var(Ẋt|Xt)∇ log ρt(Xt)−
t

1− t
E
[
(Ẋc

t )(Ẋ
c
t )

⊤(Ẋc
t ) | Xt

]
.

Theorem 8. LetXt = αtX1+βtX0 withX0 ⊥⊥ X1 andX0 ∼ Normal(0, I).
Let vt the RF velocity field and ρt the density function of Xt.

Then, if Var(Ẋt|Xt = x) = 0 and βt > 0, we have

∂tvt(x) +∇vt(x)⊤vt(x) = E
[
Ẍt | Xt = x

]
.

Proof. If Var(Ẋt|Xt = x), then it means Ẋt is deterministic givenXt =

x, hence E
[
(Ẋc

t )(Ẋ
c
t )

⊤(Ẋc
t ) | Xt = x

]
= 0 and result follows.

Remark 21. We observe that curvature involves third-order moments,
while Var(Ẋt | Xt = x) is second-order. It is possible to bound third-
order moments in terms of second-order moments using sub-Gaussian
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inequalities.

Proofs

Lemma 17. LetXt = αtX1+βtX0 withX0 ⊥⊥ X1 andX0 ∼ Normal(0, I).
For x̂1|t(x) = E [X1 | Xt = x] , we have

∂tx̂1|t(x) =
1

βt
Cov(X1, X

⊤
0 Ẋt | Xt),

and

∂tvt(Xt) = E
[
Ẍt|Xt

]
+
αt

βt

(
α̇t

αt
− β̇t
βt

)
Cov(X1, X

⊤
0 Ẋt | Xt)−

β̇t
βt
vt(x),

and

∂tvt(Xt) +∇v⊤t vt(Xt)

= E
[
Ẍt|Xt

]
+
αt

βt
(
α̇t

αt
− β̇t
βt

)Cov(X1, X
⊤
0 (Ẋt − E[Ẋt|Xt]) | Xt)

= E
[
Ẍt|Xt

]
+ βt(

α̇t

αt
− β̇t
βt

)2E
[
(X0 − E [X0|Xt])(X0 − E[X0|Xt])

⊤X0 | Xt

]
= E

[
Ẍt|Xt

]
+

1

βt
E
[
(Ẋt − E[Ẋt|Xt])(Ẋt − E[Ẋt|Xt])

⊤X0 | Xt

]
,

where Ẍt = α̈tX1 + β̈tX0.

Proof. The formula of ∂tx̂1|t(x) is obtained by applying Lemma 18
with Xt = X and X1 = Z, t = θ. Note that

ρXt,X1
(x, x1) ∝ ρX1

(x1) exp

(
−∥x− αtx1∥2

2β2
t

)
1

βd
t

.

Taking the log, we get

log ρXt,X1(x, x1) = log ρX1(x1)−
∥x− αtx1∥2

2β2
t

− d log βt,

where d is the dimension of Xt. Taking derivative w.r.t. t,

∂t log ρXt,X1(x, x1) =
(x− αtx1)

⊤x1α̇t

β2
t

+
∥x− αtx1∥2 β̇t

β3
t

− dβ̇t
βt
.
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Using Lemma 18, we have

∂tx̂1|t(Xt)

= Cov(X1, ∂t log ρXt,X1
(X,X1) | Xt)

= Cov(X1,
(Xt − αtX1)

⊤X1α̇t

β2
t

+
∥Xt − αtX1∥2 β̇t

β3
t

− dβ̇t
βt

| Xt)

= Cov(X1,
X⊤

0 X1α̇t

βt
+

∥X0∥2 β̇t
βt

− dβ̇t
βt

| Xt)

=
α̇t

βt
Cov(X1, X

⊤
0 X1 | Xt) +

β̇t
βt

Cov(X1, ∥X0∥2 | Xt)

=
1

βt
Cov(X1, α̇tX1 + β̇tX0)

⊤X0 | Xt)

=
1

βt
Cov(X1, Ẋ

⊤
t X0 | Xt).

Next, we need to convert the formula to that of ∂tvt. From Xt =

αtX1+βtX0 and Ẋt = α̇tX1+β̇tX0, we have by taking the conditional
expectation E [· | Xt]:

x = αtx̂1|t(x) + βtx̂0|t(x), (4.11)

vt(x) = α̇tx̂1|t(x) + β̇tx̂0|t(x). (4.12)

Taking derivatives of Equation (4.11) w.r.t. time yields α̇tx̂1|t(x) +

β̇tx̂0|t(x) + αt∂tx̂1|t(x) + βt∂tx̂0|t(x) = 0. Combining it with Equa-
tion (4.12) yields

vt(x) + αt∂tx̂1|t(x) + βt∂tx̂0|t(x) = 0.

Hence,

∂tx̂0|t(x) = − 1

βt
(vt(x) + αt∂tx̂1|t(x)). (4.13)

Taking the derivative of Equation (4.12) w.r.t. t:

∂tvt(x) = α̈tx̂1|t(x) + β̈tx̂0|t(x) + α̇t∂tx̂1|t(x) + β̇t∂tx̂0|t(x)

= E
[
Ẍt|Xt = x

]
+ α̇tx̂1|t(x)−

β̇t
βt

(vt(x) + αt∂tx̂1|t(x)) //by (4.13)

= E
[
Ẍt|Xt = x

]
+ (α̇t −

αtβ̇t
βt

)∂tx̂1|t(x)−
β̇t
βt
vt(x)

= E
[
Ẍt|Xt = x

]
+
αt

βt

(
α̇t

αt
− β̇t
βt

)
Cov(X1, Ẋ

⊤
t X0 | Xt)−

β̇t
βt
vt(x).

One the other hand, we have ∇xvt(x) =
β̇t

βt
I−αt

βt
( α̇t

αt
− β̇t

βt
)Cov(X0, X1 |Xt =

x) from Equation (4.9), which gives

(∇vt(x))⊤vt(x) =
β̇t
βt
vt(x)−

αt

βt
(
α̇t

αt
− β̇t
βt

)Cov(X1, X0 | Xt = x)vt(x).
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Sum them together:

∂tvt(Xt) +∇v⊤t vt(Xt)

= E
[
Ẍt|Xt

]
+
αt

βt
(
α̇t

αt
− β̇t
βt

)(Cov(X1, Ẋ
⊤
t X0 | Xt)− Cov(X1, X0| Xt)vt(Xt))

= E
[
Ẍt|Xt

]
+
αt

βt
(
α̇t

αt
− β̇t
βt

)Cov(X1, X
⊤
0 (Ẋt − E[Ẋt|Xt]) | Xt)

= E
[
Ẍt|Xt

]
+
αt

βt
(
α̇t

αt
− β̇t
βt

)E
[
(X1 − E [X1|Xt])(Ẋt − E[Ẋt|Xt])

⊤X0 | Xt

]
.

Note that X1−E [X1|Xt] =
1
αt
( α̇t

αt
− β̇t

βt
)−1(Ẋt−E

[
Ẋt|Xt

]
). We have

∂tvt(Xt) +∇v⊤t vt(Xt)

= E
[
Ẍt|Xt

]
+

1

βt
E
[
(Ẋt − E[Ẋt|Xt])(Ẋt − E[Ẋt|Xt])

⊤X0 | Xt

]
.

Note that Ẋt − E[Ẋt|Xt] = −βt( α̇t

αt
− β̇t

βt
)(X0 − E[X0|Xt]) and X1 −

E[X1|Xt] = − βt

αt
(X0 − E[X0|Xt]), we get

∂tvt(Xt) +∇v⊤t vt(Xt)

= E
[
Ẍt|Xt

]
+ βt(

α̇t

αt
− β̇t
βt

)2E
[
(X0 − E [X0|Xt])(X0 − E[X0|Xt])

⊤X0 | Xt

]
.

Lemma 18 (Parametric Second Order Score Identities). Let µh(X) =

E [h(Z) | X] where (X,Z) is a joint random variable and h is a func-
tion. Assume the density functions ρX,Z = ρθX,Z depend on a parame-
ter. Assume all relevant derivatives exist and are continuous.
1) For any (X,Z), we have

∇θµh(X) = Cov(∇θ log ρX,Z(X, Z), h(Z) | X).

2) If X = Y + Z, we have

∇θµh(X) = Cov(∇θ log ρZ(Z) +∇θ log ρY |Z(Y | Z), h(Z) | X).

3) If X = Y + Z and Y ⊥⊥ Z, we have

∇θµh(X) = Cov(∇θ log ρZ(Z) +∇θ log ρY (Y ), h(Z) | X).

Proof.

µh(x) =

∫
h(z)ρX,Z(x, z)dz

ρX(x)
.
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Taking derivative

∇θµh(x) =

∫
h(z)∇θρX,Z(x, z)dz

ρX(x)
−
∫
h(z)ρX,Z(x, z)dz

ρX(x)

∫
∇θρX,Z(x, z)dz

ρX(x)

= E
[
∇θ log ρX,Z(X,Z)h(Z)

⊤ | X = x
]
− E [∇θ log ρX,Z(X,Z) | X = x]E

[
h(Z)⊤ | X = x

]
= Cov(∇θ log ρX,Z(X,Z), h(Z) | X = x).

If X = Y +Z, we have ρX,Z(x, z) = ρZ(z)ρY |Z(x− z | z). Hence

∇θµh(x) = Cov(∇θ log ρZ(Z) +∇θ log ρY |Z(X − Z | Z), h(Z) | X = x)

= Cov(∇θ log ρZ(Z) +∇θ log ρY |Z(Y | Z), h(Z) | X = x).

If Y ⊥⊥ Z, we have ∇Y log ρY |Z(Y | Z) = ∇Y log ρY (Y ) and hence
the third result.

4.4 Monotonicity of the Euler Updates

As an application of Lemma 13, we show that the update rule of Euler
schemes on rectified flow are monotonic maps for affine interpolations with
independent Gaussian noises. Specifically, assume we solve the rectified
flow d

dtZt = vt(Zt) with Euler updates,

Φ̂Euler
s|t (z) = z + (s− t)vt(z),

which advances from Ẑt to Ẑs following one step of Euler update. Assume
we use the straight interpolation Xt = tX1 + (1− t)X0, then we show that
Φ̂Euler

s|t (z) is a monotonic map for any 0 ≤ t ≤ s ≤ 1, in the sense that

(Φ̂Euler
s|t (z)− Φ̂Euler

s|t (z′))⊤(z − z′) ≥ 0, ∀z, z′.

In fact, Φ̂Euler
s|t is the gradient of a convex function, that is, there exists a

convex function f : Rd → R, such that Φ̂Euler
s|t (z) = ∇f(z).

Definition 11. A mapping Φ: Rd → Rd is said to be monotonic if

(Φ(x)− Φ(x′))⊤(x− x′) ≥ 0, ∀x, x′ ∈ Rd.

It is called strictly monotonic if (Φ(x) − Φ(x′))⊤(x − x′) > 0 unless
x = x′.

Lemma 19. Assume Φ is continuously differentiable, then it is mono-
tonic iff ∇Φ is positive definite (even though it may not be symmetric)
in the sense of

u⊤∇Φ(x)u ≥ 0, ∀x, u ∈ Rd. (4.14)

It is strictly monotonic if u⊤∇Φ(x)u > 0 unless u = 0.

Eq. (4.14) is equivalent to the symmetric matrix ∇Φ(x) +∇Φ(x)⊤ is posi-
tive definite in the typical sense.
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Proof. Let u = x− x′ and xt = x+ t(x′ − x) for t ∈ [0, 1]. We have

(Φ(x)− Φ(x′))⊤(x− x′) =

∫ 1

0

u⊤∇Φ(xt)udt.

Hence, if u⊤Φ(xt)u ≥ 0 everywhere, then Φ is monotonic.
For the other direction, if there exists u, z such that u⊤Φ(z)u < 0,

we can choose x = z+ εu and x′ = z− εu with very small ε, such that
(Φ(x)− Φ(x′))⊤(x− x′) =

∫ 1

0
u⊤∇Φ(xt)u < 0.

Theorem 9. Let d
dtZt = vt(Zt) be the rectified flow induced by Xt =

αtX1 + βtX0, with X0 ⊥⊥ X1 and X0 ∼ Normal(0, I), and α̇t

αt
≥ 0 ≥

β̇t

βt
.

Assume we solve d
dtZt = vt(Zt) with Euler updates,

Φ̂Euler
s|t (z) = z + (s− t)vt(z),

which maps Ẑt to Ẑs following one Euler update.
Then Φ̂Euler

s|t is a monotonic mapping if 0 ≤ (s − t) ≤ −βt/β̇t.
Moreover, there exists a convex function f(x), such that Φ̂Euler

s|t (z) =

∇f(z).

Proof. Taking the Jacobian matrix using Lemma 13,

∇Φ̂Euler
s|t (z) = I + (s− t)∇vt(z)

= (1 + (s− t)
β̇t
βt

)I + (s− t)(
α̇t

αt
− β̇t
βt

)Var(X0 | Xt = x).

Hence, ∇Φ̂Euler
s|t (z) is positive semi-definite if (s − t) β̇t

βt
+ 1 ≥ 0 and

(s− t)( α̇t

αt
− β̇t

βt
) ≥ 0. Because α̇t

αt
− β̇t

βt
≥ 0, the condition reduces to

0 ≤ (s− t) ≤ −βt/β̇t.

Remark 22. For straight interpolation Xt = tX1 + (1− t)X0, we have
−βt

β̇t
= 1− t, and hence Theorem 9 holds for all Euler updates with

0 ≤ t ≤ s ≤ 1.

Remark 23. Unfortunately, the composition of multiple Euler steps is
not guaranteed to be monotonic, except in one-dimensional cases.
It is because compositions of monotonic maps are not necessarily
monotonic in multi-dimensional cases. The fundamental difficulty
here is that the product AB of two positive definite matrices A,B is
not necessarily positive definite, unless A and B are commutative.

Remark 24. As a result, the exact transport mapping Φs|t(z), which
can be viewed as composing infinitely many small Euler steps, is not
monotonic in general as well. It is well known that Φt|s of a general
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ODE is orientation-preserving in that det(∇Φt|s) > 0. In the one-
dimensional case of Zt ∈ R, this implies that Φt|s is a monotonic map.
In high-dimensional cases (Zt ∈ Rd), orientation-preserving maps are
not necessarily monotonic in the typical sense.

Remark 25. This result can be leveraged to avoid calculating the Jaco-
bian matrix in control or inverse problems. Assume we are interested
in adjusting zt to minimize an objective defined on ẑ1 = ΦEuler

1|t (zt):

min
z
ℓ̂(z) := ℓ(ΦEuler

1|t (zt)).

The exact gradient is

∇z ℓ̂(z) = ∇ΦEuler
1|t (zt)∇ℓ(ẑ1).

However, because ∇ΦEuler
1|t (zt) is positive definite, we can use ∇ℓ(ẑ1)

in place of ∇z ℓ̂(z) during optimization, because they have positive
inner products: ∇zℓ(ẑ1)

⊤∇ℓ(ẑ1) ≥ 0.

4.5 An Error Bound w.r.t. L2 Optimal Transport

With Theorem 9, we show that the accuracy of the one-step Euler update
controls how optimal the rectified coupling (Z0, Z1) in terms of sovling the
L2 optimal transport problem.

Theorem 10. Let dZt = vt(Zt)dt be the rectified flow of {Xt} with
Xt = tX1 + (1 − t)X0 with X0 ⊥⊥ X1 and X0 ∼ Normal(0, I). We
have for 0 ≤ t ≤ s ≤ 1,

E
[
∥Zs − Zt∥2

]1/2
−W2(πt, πs) ≤ 2E

[
∥Zs − Zt − vt(Zt)∥2

]1/2
.

In particular, at t = 0 and s = 1,

E
[
∥Z1 − Z0∥2

]1/2
−W2(π0, π1) ≤ 2E

[
∥Z1 − Z0 − v0(Z0)∥2

]1/2
.

Hence, if one step Euler is exact, then the rectified coupling (Z0, Z1) is the
L2 optimal coupling.

Proof. Let π̂s|t the distribution of Ẑs|t = ΦEuler
s|t (Zt) = Zt+(s−t)vt(Zt).

By Theorem 9, the mapping is the gradient of a convex function. By
Brenier Theorem, ΦEuler

s|t forms the L2 optimal transport between πt
and π̂s|t, that is,

W2(πt, π̂s|t) = E
[∥∥∥Ẑs|t − Zt

∥∥∥2]1/2 .
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By triangle inequalities,

E
[
∥Zs − Zt∥2

]1/2
≤ E

[∥∥∥Ẑs|t − Zt

∥∥∥2]1/2 + E
[∥∥∥Ẑs|t − Zs

∥∥∥2]1/2
≤W2(πt, π̂s|t) + E

[∥∥∥Ẑs|t − Zs

∥∥∥2]1/2
≤W2(πt, πs) +W2(π̂s|t, πs) + E

[∥∥∥Ẑs|t − Zs

∥∥∥2]1/2
≤W2(πt, πs) + 2E

[∥∥∥Ẑs|t − Zs

∥∥∥2]1/2 ,
where we used W2(π̂s|t, πs) ≤ E

[∥∥∥Ẑs|t − Zs

∥∥∥2]1/2 .
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CHAPTER F IVE

Stochastic Solvers

Given an ODE dZt = vt(Zt) dt with ρt as the density function of Zt, it is
always possible to convert it into a stochastic differential equation (SDE)
by compounding the ODE with the Langevin dynamics of ρt:

dZ̃t = vt(Z̃t) dt︸ ︷︷ ︸
Rectified flow

+σ2
t ∇ log ρt(Z̃t) dt+

√
2σt dWt︸ ︷︷ ︸

Langevin dynamics

, Z̃0 = Z0, (5.1)

where we add a Langevin dynamics component, thereby transforming the
deterministic dynamics into a stochastic one. However, since the target ρt
of the Langevin dynamics is set to match the original marginal distribution
of the ODE, the Langevin dynamics remains in equilibrium and does not
alter the distribution of the process at each step. This ensures that the
SDE and ODE share the same marginal distributions at each step, i.e.,
Law(Z̃t) = Law(Zt), even though the trajectory-wise distributions of {Zt}
and {Z̃t} are clearly different.

Implementing (5.1) of course requires knowing the score function
∇ log ρt in addition to vt, which is not avaiable generally. However, if
the ODE is the rectified flow induced from an affine interpolation of an
independent coupling (X0 ⊥⊥ X1) with Gaussian noise X0, we can express
∇ log ρt using vt in a closed form with Tweedie’s formula as shown in
Section 4.1:

∇ log ρt(x) =
αtvt(x)− α̇tx

βt(α̇tβt − αtβ̇t)
.

This is what allows us to freely switch between ODEs and SDEs during
inference after the RF velocity field vt is learned, without additional re-
training.

However, given that ODEs are simpler and faster to solve, what mo-
tivates the introduction of diffusion noise? What are the pros and cons
of using SDEs instead of ODEs? It turns out that introducing Langevin
dynamics provides a self-correcting mechanism that helps reduce outliers
when the trajectory deviates from ρt due to practical errors. On the other
hand, since the estimation of ∇ log ρt is itself imperfect, the SDE intro-
duces errors of its own. In particular, a large diffusion coefficient tends
to make samples more concentrated — that is, larger diffusion yields more
concentrated samples. We draw understandings on why this is the case.
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5.1 Langevin Dynamics as a Guardrail

One of the problems with rectified flow is that errors may accumulate over
time as we solve the ODE dZt = vt(Zt)dt. These errors can arise from both
the approximation error of the model vt and the numerical discretization
error. If the estimate Ẑt at inference deviates from the true distribution
Zt ∼ ρt, there is no built-in mechanism in the ODE to correct it. Instead,
the error may amplify when Ẑt deviates from the true distribution ρt, as
the model vt is estimated less accurately in the low-density regions of ρt,
which are rarely sampled during training.

It would be ideal if we could introduce a mechanism that dynamically
corrects errors or acts as a "guardrail" to keep the estimated distribution
Ẑt close to the true distribution ρt when significant deviations occur. One
approach is to use the Langevin dynamics of ρt to steer Ẑt towards ρt
during such deviations. To introduce this concept, some quick background
is in order.

Background (Stochastic Differential Equations). A stochastic differential
equation (SDE) introduces randomness into an ordinary differential
equation (ODE) and is given by

dYt = vt(Yt) dt+ σt dWt, (5.2)

where vt represents the deterministic drift, and σt denotes the diffu-
sion coefficient, and Wt is a random process that drives the stochastic-
ity. We assume that Wt is a Brownian motion (or a Wiener process),
which satisfies Ws ∼ Normal(Wt, s− t) for any s ≥ t and W0 = 0.

The Euler–Maruyama (or simply Euler) discretization of this SDE
with time step ε approximates the solution as

Yt+ε = Yt + εvt(Yt) + σt(Wt+ε −Wt). (5.3)

For Brownian motion, the noise increment is Wt+ε − Wt =
√
ε ξt,

where ξt ∼ N (0, 1).
Although a full treatment of SDEs is involved, for the purpose of

understanding, it is sufficient to know that (5.2) is the limit of (5.3)
in a suitable sense as ε→ 0+. All properties of the SDE can be derived
from the discretized form (5.3) by taking the limit as ε→ 0+.

Background (Fokker–Planck Equation). Let ρt be the density function
of Yt in the SDE (5.2) at time t. A major result to know is the
Fokker–Planck equation, which governs the evolution of ρt:

∂ρt(x)

∂t
= −∇· (v̄t(x)ρt(x)) , with v̄t(x) = vt(x)−

σ2
t

2
∇ log ρt(x).

It resembles the continuity equation for ODEs, but introduces a neg-
ative gradient term −σ2

t

2 ∇ log ρt(x) in the drift due to randomness.
This negative gradient term decreases the probability density ρt, re-
sulting in a "diffusion" effect that drives particles away from regions
of high probability in ρt.
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Background (Langevin Dynamics). For a distribution with a density
function ρ∗, its (overdamped) Langevin dynamics is

dYt = σ2
t∇ log ρ∗(Yt) +

√
2σtdWt,

where σt > 0 is the diffusion coefficient. It is expected that the
distribution of Yt converges to that of ρ∗ at convergence when t→ ∞.
To see this quickly, note that the density ρt of Yt at time t satisfies the
Fokker-Planck equation

∂tρt = −σ2
t ∇·(v̄tρt), with vt = ∇ log ρ∗t −∇ log ρt.

Obviously, ρ∗ is an invariant measure of the process, because v̄t = 0

when ρt = ρ∗.
It is known that Langevin dynamics can be viewed as the gradient

flow of the KL divergence KL(ρt || ρ∗) under the 2-Wasserstein metric:
We can interpret gradρt

KL(ρt || ρ∗) := ∇·((∇ log ρ∗t −∇ log ρt)ρt) as
the gradient of the KL divergence functional KL(ρt || ρ∗) w.r.t. ρt
under the 2-Wasserstein metric, and hence the Langevin dynamics
can be viewed as a gradient flow in the space of distributions:

∂tρt = −σ2
t gradρt

KL(ρt || ρ∗).

To use Langevin dynamics as a correction mechanism, at each time t,
before advancing to the next time point, we can simulate a short segment of
Langevin dynamics to correct the distribution of Ẑt towards ρt. Specifically,
starting from Zt,0 = Ẑt, we simulate the Langevin dynamics associated
with ρt for a certain amount of time τ :

dZt,τ = σ2
τ ∇ log ρt(Zt,τ ) dτ +

√
2στ dWτ , τ ≥ 0, (5.4)

where τ represents the simulation time of the Langevin dynamics.
At each time t, the SDE starts from an initial point Zt,0, and it is

expected that Zt,∞ will follow the distribution ρt. However, if we have
been following the rectified flow, the distribution is already close to ρt, so
it is not necessary to simulate the Langevin dynamics for too long. Hence,
it can be sufficient to perform only one step of Langevin dynamics per
rectified flow update. Furthermore, the Langevin and flow updates can be
merged into a single step, resulting in the combined SDE system:

dZ̃t = vt(Z̃t)dt︸ ︷︷ ︸
Rectified flow

+σ2
t∇ log ρt(Z̃t)dt+

√
2σtdWt︸ ︷︷ ︸

Langevin dynamics

, Z̃0 = Z0, (5.5)

Here, the rectified flow component is responsible for driving the density
function ρt forward according to the original plan, while the Langevin
component acts as a “negative feedback loop” that corrects distributional
drift when it appears, but without introducing any bias when the distribu-
tions are already well aligned. This is because, if the simulation has been
accurate and Z̃t follows the correct distribution ρt, the Langevin dynamics
for ρt remain in equilibrium at each time t, and therefore do not contribute
to the evolution of the density.
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5.2 The SDEs Preserve Marginals

In the following, we provide a rigorous proof that Z̃t, which follows the SDE
in (5.5), preserves the marginal distribution of the ODE dZt = vt(Zt) dt

when ρt is the density of Zt. As we see below, the proof requires careful
treatment to inductively establish the preservation of the marginal distri-
bution over time, starting from the initialization Z̃0 = Z0. This is achieved
by using the KL divergence formula in Lemma 2.

Theorem 11. Let ρt be the density function of Zt following ODE dZt =

vt(Zt)dt, whose solution is unique on t ∈ [0, 1]. Assume ∇ log ρt(x)

and vt(x) are continuously differentiable.
Then the marginal distributions of Z̃t of (5.5) matches that of Zt

from rectified flow dZt = vt(Zt)dt:

Law(Z̃t) = Law(Zt), ∀t ∈ [0, 1].

Proof. Let ρ̃t be the density function of Z̃t. By Fokker Planck equation,

∂tρ̃t = −∇·((vt + σ2
t∇ log ρt(x))ρ̃t) + σ2

t ∇·(∇ρ̃t)
= −∇·((vt + σ2

t (∇ log ρt(x)−∇ log ρ̃t(x)))ρ̃t)

= −∇·(v̄tρ̃t),

where we define v̄t = vt+σ
2
t (∇ log ρt−∇ log ρ̃t). Therefore, Z̃ shares

the same marginal distributions with Z̄t following the ODE below:

dZ̄t = v̄t(Z̄t)dt = (vt(Z̄t) + σ2
t (∇ log ρt(Z̄t)−∇ log ρ̃t(Z̄t)))dt, Z̄0 = Z0.

Applying Lemma 2 for KL divergence between marginal distributions
of dZt = vt(Zt)dt and dZ̄t = v̄t(Z̄t)dt, we get

d

dt
KL(ρ̃t || ρt) = E

[
(∇ log ρ̃t(Z̄t)−∇ log ρt(Z̄t))

⊤(v̄t(Z̄t)− vt(Z̄t))
]

= −σ2
tE
[∥∥∇ log ρ̃t(Z̄t)−∇ log ρt(Z̄t)

∥∥2] ≤ 0.

This suggests that

KL(ρ̃t || ρt) ≤ KL(ρ̃0 || ρ0) = 0,

where we used ρ̃0 = ρt by initialization. Hence, ρ̃t = ρt for t ≥ 0.

5.3 SDEs with Independent Gaussian X0

In the case of affine interpolation Xt = αtX1 + βtX0 with an independent
coupling (X0 ⊥⊥ X1), one can express ∇ log ρt as

∇ log ρt(x) = β−1
t E [∇ log ρ0(X0) | Xt = x] , (5.6)

where ρ0 is the density function of the noise X0.

Further, if X0 is a Gaussian distribution, i.e., X0 ∼ Normal(µ0,Σ0),
then the score function is ∇ log ρ0(x) = −Σ−1

0 (x − µ0), which is a linear
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function of x. Hence, we can push the conditional expectation in (5.6)
into the input side of ∇ log ρ0(·), and hence express ∇ log ρt using with
expected noise x̂0|t(x) = E [X0|Xt = x]:

∇ log ρt(x) = β−1
t E [∇ log ρ0(X0)|Xt = x]

= β−1
t ∇ log ρ0(E [X0|Xt = x]) //∇ log ρ0 is linear

= β−1
t ∇ log ρ0(x̂0|t(x)).

With this, we can rewrite the SDE as

dZt = vt(Zt)dt+
σ2
t

βt
∇ log ρ0(x̂0|t(Zt))dt+

√
2σtdWt.

Because βt converges to zero when t→ 1, it is more stable to rewrite it as

dZt = vt(Zt)dt+ γt∇ log ρ0(x̂0|t(Zt))dt+
√

2βtγtdWt. (5.7)

where we take the diffusion variance to be σ2
t = βtγt. In this case, if γt is

bounded, then the diffusion variance σ2
t = βtγt decays to zero with rate βt

as t→ 1.
Another suggestive form is obtained by setting σ2

t = β2
t et, which decays

to zero faster with β2
t :

dZt = vt(Zt)dt︸ ︷︷ ︸
Rectified flow

+βt
(
et∇ log ρ0(x̂0|t(Zt))dt+

√
2etdWt

)︸ ︷︷ ︸
Langevin on noise distribution ρ0

. (5.8)

This form is particularly intuitive, as the term in the brackets can be
viewed as Langevin dynamics on the noise distribution ρ0. Since Zt

law
=

Xt = αtX1 + βtX0, the Langevin term on the noise space is scaled by the
coefficient βt to obtain the update for dZt.

Algorithm 1 SDE Sampler of Rectified Flow

Inputs: The rectified flow dZt = vt(Zt)dt induced by interpolation
path Xt = αtX1 + βtX0 with an independent coupling X0 ⊥⊥ X1 and a
Gaussian X0 ∼ Normal(µ0,Σ0). A non-negative sequence γt controlling
the noise magnitude.

Algorithm: Numerically solve the SDE initialized from Z0 ∼ π0:

dZt = vt(Zt)dt− γt(x̂0|t(Zt)− µ0)dt+
√

2βtγtΣ
1/2
0 dWt,

where x̂0|t(x) = (αtvt(x)− α̇tx)/(α̇tβt − αtβ̇t).
In particular, one discretization scheme is

Ẑt+εt = Ẑt + εt(vt(Zt)− γt(x̂0|t(Zt)− µ0)) + σdiff(ξt − µ0),

where ξt ∼ π0, and σdiff =
√
2βtγt (for Euler-Maruyama method), or

σdiff =
√
β2
t − (βt − γt)2 for the stable variant in Remark 29.

Return the estimated X1.
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Remark 26. To expand on the intuition further, note that each Zt can
be decomposed into

Zt = αtX̂1|t + βtX̂0|t, (5.9)

where X̂1|t = x̂1|t(Zt) and X̂0|t = x̂0|t(Zt) are the estimated end
points given Xt = Zt and its slope Ẋt = vt(Zt).

In particular, the X̂0|t term is the estimated noise. We can view
Langevin dynamics as injecting some fresh noise to X̂0|t without
changing its distribution. This is achieved by applying Langevin
update w.r.t. the noise distribution ρ0:

X̃0|t ≃ X̂0|t + et∇ log ρ0(X̂0|t)dt+
√
2etdWt.

We then combine the updated X̂ ′
0|t with X̃0|t to obtain an updated Zt:

Z̃t = αtX̂1|t + βtX̃0|t. (5.10)

Combining (5.9) and (5.10):

Z̃t = Zt + βt(X̃0|t − X̂1|t)

= Zt + βt(et∇ log ρ0(X̂0|t)dt+
√
2etdWt).

This yields (5.8). Note, however, this is purely an intuition expla-
nation, because the posterior expectation X̂0|t = E [X0|Xt] does not
actually follow ρ0, except at t = 0 when X̂0|t = X0.

Example 12 (SDEs with Standard Gaussian X0). If X0 ∼ Normal(0, I)
is the standard Gaussian noise, we have ∇ log ρ0(x) = −x, and the
SDE (5.7) reduces to

dZt = vt(Zt)dt− γtx̂0|t(Zt)dt+
√

2βtγtdWt.

We can further convert x̂0|t(x) to vt(x) via Lemma 9. Note that

x̂0|t(x) =
α̇tx− αtvt(x)

α̇tβt − αtβ̇t
.

We have

dZt = vt(Zt)dt+
γt
λt

(αtvt(Zt)− α̇tZt)dt+
√
2βtγtdWt, (5.11)

where λt = α̇tβt − αtβ̇t. Note that λt is bounded away from typical
interpolations. We have λt = 1 for straight interpolation.

Example 13 (The SDE of DDPM). The noise schedule γt (or equiva-
lently σt and et) is a parameter that we can choose freely at inference
time. A particular choice, which recovers the continuous limit of
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DDPM, and the SDEs in Song et al. [2020b], is

γDDPMt =
λt
αt
,

with which the SDE in (5.11) becomes

dZt = 2vt(Zt)dt−
α̇t

αt
Ztdt+

√
2
βtλt
αt

dWt.

This choice is singular at t = 0 because αt = 0 as required by the
interpolation process. Hence, an approximation or modification of γt
is needed in practice.

In fact, the default DDPM uses αt = exp(− 1
4a(1− t)2 − b

2 (1− t))

with a = 19.9 and b = 0.1, which does not satisfy α0 = 0. Alternatively.
it might be better to use an α that validates α0 = 0, but modify the
coefficient to γDDPMt = λt

αt+ε with ε > 0, or something similar.

Example 14 (SDE for Straight Interpolation). When βt = 1 − αt, we
have λt = α̇t(1− αt) + αtα̇t = α̇t. Equation (5.11) reduces to

dZt = vt(Zt)dt+
γt
α̇t

(αtvt(Zt)− α̇tZt) dt+
√

2(1− αt)γtdWt.

In particular, when αt = t and βt = 1− t, we have

dZt = vt(Zt)dt+ γt (tvt(Zt)− Zt) dt+
√

2(1− t)γtdWt. (5.12)

If γt = 1 is constant, this leads to a linearly decaying coefficient
σ2
t = (1− t).

With γDDPM = 1/t, we have

dZt = 2vt(Zt)dt−
1

t
Ztdt+

√
2
1− t

t
dWt. (5.13)

Example 15 (SDE for Spherical Interpolation). When α2
t + β2

t = 1, we
have α̇tαt = β̇tβt = 0, and hence

λt = α̇tβt − αtβ̇t = α̇tβt +
α̇tα

2
t

βt
=
α̇t

βt
.

The SDE becomes

dZt = vt(Zt)dt+
γtβt
α̇t

(αtvt(Zt)− α̇tZt) dt+
√

2βtγtdWt.

With γDDPMt = α̇t

αtβt
, it gives

dZt = 2vt(Zt)dt−
α̇t

αt
Ztdt+

√
2
α̇t

αt
dWt.
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If αt = sin(π2 t) and βt = cos(π2 t), we have λt = π
2 , and

dZt =
(
(1 + 2γt

π sin(π2 t))vt(Zt)− γt cos(
π
2 t)Zt

)
dt+

√
2cos(π2 t)γtdWt.

5.4 Diffusion May Cause Over-Concentration

Although things work out nicely in theory, we need to be careful that the
introduced score function ∇ log ρt(x) itself has errors, and it may introduce
undesirable effects if we rely on it too much (by using a large σt). This
is indeed the case in practice. As shown in the figure below, when we
increase the noise magnitude σt, the generated samples tend to cluster
closer to the centers of the Gaussian modes.

Figure 5.1: Generated samples with varying noise magnitude σt.

So, larger diffusion yields more concentrated results? This appears
counterintuitive at first glance. Why does this happen?

To see this, assume the estimated velocity field is v̂t ≈ vt. The corre-
sponding estimated score function from Tweedie’s formula becomes:

∇ log ρ̂t(x) =
1

λtβt
(αtv̂t(x)− α̇tx) .

Because βt must converge to 0 as t→ 1, the estimated score function
∇ log ρ̂t(x) would diverge to infinity in this limit. On the other hand, the
true magnitude of ∇ log ρt(x) may be finite, thus being significantly over-
estimated when t is close to 1. Since ∇ log ρt(x) points toward the centers
of mass of clusters, its overestimation leads to an overly concentrated
distribution around these centers.

Remark 27 (Role of Noise). In summary, the Langevin guardrail can
become too excessive, causing over-concentration. It is the score
function ∇ log ρt(x) that drives this concentration, rather than the
noise itself, as one might initially assume from the ODE vs. SDE
dichotomy. The noise component in Langevin dynamics compensates
for the concentration induced by the score function, but it does not
necessarily prevent it when the score is overestimated.

In the context of text-to-image generation, this over-concentration
effect often produces overly smoothed images, which sometimes appear
cartoonish. Such over-smoothing eliminates fine details and high-frequency
variations, resulting in outputs with a blurred appearance.
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5.5 Natural Euler Discretization of SDEs

Similar to the natural Euler discretization of the ODE system, it is possible
to consider natural variants of Euler(-Maruyama) discretization for the SDE
system, when the interpolation is not straight. As expected, the natural
Euler discretization is equivalent to the vanilla Euler discretization of the
SDE under the straight interpolation with a reparametrization of time and
noise schedule.

In the following, we first discuss the idea of natural Euler discretization
for SDEs. and then study the equivariance property analogous to natural
Euler ODE samplers.

Natural Euler Discretization of SDEs

Recall that the update from Ẑt to Ẑt+ε of the natural Euler sampler of
the rectified flow dZt = vt(Zt)dt based on the affine interpolation Xt =

αtX1 + βtX0 is

Ẑt+ε = αt+εX̂1|t + βt+εX̂0|t,

with X̂0|t = x̂0|t(Ẑt), X̂1|t = x̂1|t(Ẑt),
(5.14)

where Ẑt+ε is extracted from the interpolation curve that passes through
the point Ẑt with a slope equal to the RF velocity field vt(Ẑt). Here
ε is the step size, and x̂0|t and x̂1|t are obtained from vt via formula
x̂0|t(x) = (−αtvt(x) + α̇tx)/λt and x̂1|t(x) = (βtvt(x) − β̇tx)/λt with
λt = α̇tβt − αtβ̇t.

To generalize this to the SDE, we need to randomize the update in a
certain way. This can be achieved by introducing randomness into the
noise prediction X̂0|t. Since X̂0|t is the posterior prediction of X0 ∼ ρ0,
we may want to continuously "inject" refreshed noises ξt ∼ ρ0 into X̂0|t to
keep it close to the prior distribution ρ0. We consider the following update

X̂Randomized
0|t = (1− ϑt)X̂0|t +

√
1− (1− ϑt)2 ξt, ξt ∼ ρ0,

where ϑt ∈ [0, 1] specifies the proportion of fresh noise we want to inject.
This update is justified in the following sense: If ρ0 is a zero-mean Gaussian,
and X̂0|t and ξt are independent draws from ρ0, then X̂Randomized

0|t also
follows ρ0.

Now, replacing X̂0|t with X̂Randomized
0|t in (5.14) yields the stochastic

neural Euler update:

Ẑt+ε = αt+εX̂1|t + βt+εX̂
Randomized
0|t

= αt+εX̂1|t + βt+ε(1− ϑt)X̂0|t + βt+ε

√
1− (1− ϑt)2ξt.

(5.15)

As we show in the sequel, if we take ϑt = εet to be proportional to the step
size ε, then (5.15) can serve as an approximation scheme for the SDE in
(5.8) as the step size ε tends to zero.

The SDE Limit

To verify the SDE limit, we need to exam the update (5.15) in the limit of
infinitesimal step size (ε → 0) and show that it approaches to standard
Euler-Maruyama discretization of SDE (5.8).
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We first rewrite (5.15) into

Ẑt+ε = ẐODE
t+ε − βt+εϑtX̂0|t + βt+ε

√
1− (1− ϑt)2ξt.

where ẐODE
t+ε = αt+εX̂1|t + βtX̂0|t. Because ẐODE

t+ε = Ẑt + εvt(Ẑt) + o(ε), and
1− (1− ϑt)

2 = 2ϑt + o(ε), we have

Ẑt+ε ≃ Ẑt + εvt(Ẑt)− βtϑtx̂0|t(Ẑt) + βt
√

2ϑtξt.

Taking ϑt = εet, this is the Euler-Maruyama update of the SDE in (5.8):

dZt = vt(Zt)dt− βt(etx̂0|t(Ẑt) +
√
2etdWt).

To be clear, the derivation above is purely heuristic. Since X̂0|t is
the posterior mean prediction, it does not follow the prior ρ0, and hence
X̂Randomized

0|t does not have the same distribution as X̂0|t. The correctness of
the scheme only holds when ϑt (and the step size) is sufficiently small to
ensure convergence to the SDE limit, as we show below.

Example 16 (Connection to DDPM). Using αtX̂1|t + βtX̂0|t = Ẑt, we
can rewrite the update in (5.15) in terms of x̂0|t(x) = E [X0 | Xt = x]:

Ẑt+ε = αt+ε

Ẑt − βtX̂0|t

αt
+ βt+ε(1− ϑt)X̂0|t + βt+ε

√
1− (1− ϑt)2ξt

=
αt+ε

αt
Ẑt +

(
βt+ε(1− ϑt)−

αt+εβt
αt

)
x̂0|t(Ẑt) + βt+ε

√
1− (1− ϑt)2ξt.

Rearranging the terms gives

Ẑt+ε

αt+ε
=
Ẑt

αt
+

(
βt+ε

αt+ε
(1− ϑt)−

βt
αt

)
x̂0|t(Ẑt) +

βt+ε

αt+ε

√
1− (1− ϑt)2ξt.

(5.16)

Taking ςt = βt+ε

√
1− (1− ϑt)2, we have βt+ε(1− ϑt) =

√
βt+ε − ς2t .

Hence,

Ẑt+ε

αt+ε
=
Ẑt

αt
+


√
β2
t+ε − ς2t

αt+ε
− βt
αt

 x̂0|t(Ẑt) +
ςt
αt+ε

ξt.

In the case of α2
t + β2

t = 1, this coincides with the generalized DDPM
in Equation 12 of Song et al. [2020a].

Remark 28 (Invariance). Similar to the case of deterministic natural
Euler samplers, stochastic natural Euler update in Equation (5.16)
with ϑt on time grid {ti}, is equivalent to the stochastic Euler update
on X ′

t = α′
tX1 + β′

tX0 on time grid {t′i} with ti = τ(t′i) and noise
coefficient ϑ′t′ = ϑt, and noise ξ′t′ = ξt.

To see this, note that the stochastic natural Euler method of X ′
t =
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α′
tX1 + β′

tX0 is

Ẑ ′
t′+ε′

α′
t′+ε′

=
Ẑ ′
t

α′
t′
+

(
β′
t′+ε′

α′
t′+ε′

(1− ϑ′t′)−
β′
t′

α′
t′

)
x̂′0|t′(Ẑ

′
t′) +

β′
t′+ε′

α′
t′+ε′

√
1− (1− ϑ′t′)

2ξ′t′ .

Assume Ẑ ′
t = 1

ωt′
Ẑt with t = τ(t′). By the invariance properties

of Proposition 2, note that all the terms in the update are invari-

ant under the transform, that is, Ẑ′
t′

αt′
= Ẑt

αt
, β′

t′
βt′

= βt

αt
, ϑ′t′ = ϑt,

x̂′0|t′(Ẑ
′
t′) = x̂0|t(Ẑt), ξ′t′ = ξt. Hence the update above is equivalent

to Equation (5.16).

Example 17 (Noise Schedule of DDPM). The noise schedule ϑt is a
parameter that we need to decide at inference time. The follow-
ing choice, which, in the case of α2

t + β2
t = 1, recovers the default

configuration of the original DDPM algorithm:

ϑDDPMt = 1− αt

αt+ε

βt+ε

βt
. (5.17)

To see this, note that DDPM takes ςDDPMt = βt+ε

βt

√
1− α2

t

α2
t+ε

in the case

of α2
t + β2

t = 1 (see Section 4.1 of Song et al. [2020a]).
Using α2

t + β2
t = 1, we have

1

β2
t

− α2
t

α2
t+εβ

2
t

=
α2
t+ε − α2

t

α2
t+εβ

2
t

=
α2
t+ε(α

2
t + β2

t )− α2
t (α

2
t+ε + β2

t+ε)

α2
t+εβ

2
t

= 1−
α2
tβ

2
t+ε

α2
t+εβ

2
t

.

Hence, solving ςDDPMt = βt+ε

√
1− (1− ϑDDPMt )2 yields (5.17).

Remark 29 (Stable Discretization of Langevin Dynamics). Let us consider
a generic Lagevin dynamics dZt = et∇ log ρ(Zt)dt+

√
2etdWt. Time

discretization with the standard Euler-Maruyama method yields

Ẑt+ε = Ẑt + εet∇ log ρ(Ẑt) +
√
2εetξt, ξt ∼ Normal(0, I), (5.18)

where ε > 0 is the step size.
One problem with this scheme is that it causes bias towards

increasing variance. To see this, consider the simplest case when
ρ ∼ Normal(0, I), and hence the update becomes

Ẑt+ε = (1− εet)Ẑt +
√
2εetξt. (5.19)

Calculating the variance yields

Var(Ẑt+1) = (1− εet)
2Var(Ẑt) + 2εet.
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If Var(Ẑt) = 1, then Var(Ẑt+1) = (1− εet)
2 + 2εet = 1 + ε2e2t , which

is larger than 1. In fact, the invariance distribution of (5.19) is

Normal(0, σ2
ex), with σ2

ex = 2εet/(2εet − ε2e2t ) > 1, if ε < 1/(2et).

Further, if εet > 1/2, the update divergence and exists no invariant
distribution.

To correct this bias and instability, we can modify the discretization
in (5.18) into

Ẑt+ε = Ẑt + εet∇ log ρ(Ẑt) +
√

1− (1− εet)2ξt. (5.20)

If ρ ∼ Normal(0, I), it reduces to

Ẑt+ε = (1− εet)Ẑt +
√
1− (1− εet)2ξt.

This can be viewed as “taking out” εet fraction of Ẑt and replace it
with a “refresh noise” ξt with a proper magnitude to ensure the correct
variance. One can easily verify that it converges to the correct invari-
ant distribution ρ ∼ Normal(0, I) for any ε > 0. In addition, (5.20)
approaches to (5.18) as ε→ 0, because by Taylor approximation:

1− (1− εet)
2 = 2εet +O(ε2).
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CHAPTER S IX

Reward Tilting

Assume we have trained a rectified flow dZt = vt(Xt)dt from an interpola-
tion process {Xt} induced from a data distribution X1 ∼ π1. Assume that
we are given a non-negative reward function r(x) at the inference time,
which defines a tilted data distribution πr

1:

πr
1(x) =

π1(x)r(x)

Ar
, Ar =

∫
π1(x)r(x)dx.

Here πr
1(x) is obtained by weighting the density π1(x) by r(x) and then

normalize. The question is how to modify the original rectified flow to
sample from πr

1, preferably without retraining the model.
Ideally, we would like to obtain the rectified flow trained on data

drawn from πr, following the same rectified flow training procedure. One
approach is to first induce an tilted interpolation process and study its
induced rectified flow. Specifically, let {Xr

t } be the reward-tilted variant
of the original interpolation process {Xt}, obtained by reweighing the
probability of each trajectory of {Xt} with the reward r(X1) evaluated on
the terminal state X1. Specifically, let P be the probability measure of the
original process {Xt}, then {Xr

t } is the process with the law Pr satisfying

dPr({xt})
dP({xt})

=
r(x1)

Ar
.

The goal is to study the properties of the rectified flow dZr
t = vrt (Z

r
t ) dt

induced by the tilted process {Xr
t } and to understand how it is related to

and constructed from the rectified flow of the original process {Xt}.

6.1 General Case

Theorem 12. Let dZr = vrt (Z
r
t )dt be the rectified flow induced by the

tilted process {Xr
t }. We have

Marginal Distribution

The shared marginal distribution ρrt of Xr
t and Zr

t satisfies

ρrt (x) = ρt(x)
E [r(X1) | Xt = x]

E [r(X1)]
, (6.1)

77



and hence

∇ log ρrt (x) = ∇ log ρt(x) +∇ logE [r(X1) | Xt = x] . (6.2)

Initial Distribution

In particular, the initial distribution of Zr
t is

ρr0(x) = ρ0(x)
E [r(X1) | X0]

E [r(X1)]
.

If (X0, X1) is the independent coupling of ρ0 and ρ1, we have ρr0 = ρ0,
that is, the tilting does not modify the initial distribution.

Transition Probability

For any s, t ∈ [0, 1], the density of Xr
t given Xr

t satisfies

ρXr
s |Xr

t
(xs | xt) = ρXs|Xt

(xs | xt)
E [r(X1) | Xs = xs, Xt = xt]

E [r(X1) | Xt = xt]
.

In particular, if Xt is a Markov process and s ≥ t, we have

ρXr
s |Xr

t
(xs | xt) = ρXs|Xt

(xs | xt)
E [r(X1) | Xs = xs]

E [r(X1) | Xt = xt]
.

Velocity Field

The velocity field vrt (x) := E[Ẋr
t | Xt = x] of Xr

t is

vrt (x) =
E
[
r(X1)Ẋt | Xt = x

]
E [r(X1) | Xt = x]

. (6.3)

Proof. 1) Let ρXs|Xt
(xs | xt) be the density function of Xs given Xt,

and ρXr
s |Xr

t
that of Xr

s given Xr
t . By the definition of tilting, we have

ρXr
1
(x1) =

ρX1
(x1)r(x1)

E [r(X1)]
,

ρXr
t |Xr

1
(xt | x1) = ρXt|X1

(xt | x1), ∀t ∈ [0, 1],

ρXr
s |Xr

t ,X
r
1
(xs, | xt, x1) = ρXs|Xt,X1

(xs, | xt, x1) ∀t, s ∈ [0, 1],

(6.4)

where the last two equation holds because all probabilities condi-
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tioned on Xt = Xr
t = xt are the same for {Xt} and {Xt}r. Hence

ρrt (xt) =

∫
ρrXr

t | Xr
1
(xt | x1)ρXr

1
(x1)dx1

=
1

E [r(X1)]

∫
ρXt|X1

(xt | x1)ρX1
(x1)r(x1)dx1

=
1

E [r(X1)]

∫
ρX1|Xt

(x1 | xt)ρXt
(xt)r(x1)dx1 //Bayes rule

= ρXt
(xt)

∫
ρX1|Xt

(x1 | xt)r(x1)dx1
E [r(X1)]

= ρXt
(xt)

E [r(X1) | Xt = xt]

E [r(X1)]
.

2) For the transition probabilities, let us start with the case when
s = 1:

ρXr
1 |Xr

t
(x1 | xt) =

ρr1(x1)ρXr
t |Xr

1
(xt | x1)

ρrt (xt)
//Bayes rule pX|Y pY = pXpY |X

=
r(x1)

E [X1|Xt = xt]

ρ1(x1)ρXt|X1
(xt | x1)

ρt(xt)
//By (6.4) and (6.1)

=
r(x1)

E [r(X1) | Xt = xt]
ρX1|Xt

(x1 | xt).

For the more general case,

ρXr
s |Xr

t
(xs | xt) =

∫
ρXr

s |Xr
t ,X

r
1
(xs | xt, x1)ρXr

1 |Xr
t
(x1 | xt)dx1

=

∫
ρXs|Xt,X1

(xs | xt, x1)ρX1|Xt
(x1 |xt)

r(x1)

E [r(X1) | Xt = xt]
dx1

=

∫
ρX1|Xs,Xt

(x1 | xs, xt)ρXs|Xt
(xs | xt)

r(x1)

E [r(X1) | Xt = xt]
dx1

=
ρXs|Xt

(xs | xt)
E [r(X1) | Xt = xt]

∫
ρX1|Xs,Xt

(x1 | xs, xt)r(x1)dx1

= ρXs|Xt
(xs | xt)

E [r(X1) | Xs = xs, Xt = xt]

E [r(X1) | Xt = xt]
.

2) The derivation is similar by noting that ρẊr
t |Xr

t ,X
r
1
= ρẊt|Xt,X1

:

vrt (xt) = E
[
Ẋr

t | Xr
t

]
=

∫
vtρẊr

t |Xr
t ,X

r
1
(vt | xt, x1)ρXr

1 |Xr
t
(x1 | xt)dvtdx1

=

∫
vtρẊt|Xt,X1

(vt | xt, x1)
ρX1|Xt

(x1 | xt)r(x1)
E [r(X1) | Xt = xt]

dvtdx1

=

∫
vtr(x1)ρẊt | Xt,X1

(vt | xt, x1)dvtdx1
E [r(X1) | Xt = xt]

=
E
[
r(X1)Ẋt | Xt = xt

]
E [r(X1) | Xt = xt]

.
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From vrt (x) =
E[r(X1)Ẋt | Xt=xt]

E[r(X1) | Xt=x] in Eq 6.3, the velocity field of the tilted

process is determined by the r-weighted expectation of Ẋt. This does not
seem to provide much insight for post-training tilting, because it is not
available unless it is explicitly trained to do so. Assume we have we have
a set of rewards {rϑ : ϑ ∈ Θ} parameterized by ϑ during training, we can
certainly learn a meta network

vt(x; ϑ) =
E
[
rϑ(X1)Ẋt | Xt = xt

]
E [rϑ(X1) | Xt = x]

.

In the canonical case of Xt = αtX1 + βtX0 with X0 ⊥⊥ X1 and X0 ∼
Normal(0, I). We have

vrt (x) = vt(x) + β2
t

(
α̇t

αt
− β̇t
βt

)
∇ logE [r(X1) | Xt = x] .

AssumeX1 is close to deterministic conditioned onXt, we have E [r(X1)|Xt = x] ≈
r(E [X1 | Xt = x]) = r

(
β̇tx−βtvt(x)

β̇tαt−βtα̇t

)
. Hence,

∇x logE [r(X1)|Xt = x] ≈ β̇tI − βt∇vt(x)
β̇tαt − βtα̇t

∇ log r

(
β̇tx− βtvt(x)

β̇tαt − βtα̇t

)
.

This yields

vrt (x) ≈ vt(x) +
βt
αt

(β̇tI − βt∇vt(x))∇ log r

(
β̇tx− βtvt(x)

β̇tαt − βtα̇t

)
.

If we use this in practice, we need to handle the singularity at t = 0 due to
the 1/αt term.

6.2 Training-Free Gaussian Tilting

Let vt, ρt the velocity and density of the rectified flow induced from
Xt = αtX1 + βtX0 with (X0, X1) ∼ π0 × π1. Let vrt , ρ

r
t corresponding

to (X0, X1) ∼ π0 × πr
1, where

πr
1(x) =

π1(x)r(x)

Zr
, Zr =

∫
π1(x)r(x)dx.

In this case, we can express the rectified flow of the titled process can be
explicitly expressed using the original rectified flow. It turns out it is easy to
state the relation in terms of the expected target x̂1|t(x) = E [X1|Xt = x],
which can be then converted to that of the velocity field vT .

Lemma 20. Consider the Gaussian reward function r(x) = exp(−η ∥x−x∗∥2

2 )

for a reference point x∗ ∈ Rd and magnitude η ∈ R. Define x̂1|t(x) =
E [X1 | Xt = x] and x̂r1|t(x) = E [X1 | Xt = x]. Then,

x̂r1|t(x) = x̂1|t̃(x̃),
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where t̃ and x̃ ∈ Rd are defined by (x, t) via

α2
s

β2
s

=
α2
t

β2
t

+ η, x =
β2
s

αs
(
αt

β2
t

x+ ηx∗).

If αt/βt is monotonically increasing w.r.t. t, then the solution of t̃ is
unique and lies on [t, 1] if η ≥ 0, and lies in [0, t] if 0 ≥ η ≥ −α2

t

β2
t
.

Proof.

x̂1|t̃(x̃) = E
[
Ẋt̃ | Xt̃ = x̃

]
=

∫
π1(x1) exp(−∥y−αsx1∥2

2β2
s

)x1dx1∫
π1(x1) exp(−∥y−αsx1∥2

2β2
s

)dx1

=

∫
π1(x1)r(x1) exp(−∥x−αsx1∥2

2β2
t

)x1dx1∫
π1(x1)r(x1) exp(−∥x−αtx1∥2

2β2
t

)dx1
//Lemma 22.

= x̂r1|t(x).

By Lemma 21, we can convert the formula of x̂r1|t(x) to get the tilted
velocity field vrt (x).

Proposition 5. Under the condition above, we have

vrt (x) =
β̇t
βt
x+ αt(

α̇t

αt
− β̇t
βt

)x̂1|s(y)

=
β̇t
βt
x+

αtκt
αsκs

(vs(y)−
β̇s
βs
y),

where κt = α̇t

αt
− β̇t

βt
.

Proof. By Lemma 21,

vrt (x) =
β̇t
βt
x+ αt(

α̇t

αt
− β̇t
βt

)x̂r1|t(x)

=
β̇t
βt
x+ αtκtx̂1|s(y)

Also note that vs(y) = β̇s

βs
y + αsκsx̂1|s(y). Hence,

vrt (x) =
β̇t
βt
x+

αtκt
αsκs

(vs(y)−
β̇s
βs
y).

Example 18. With the straight interpolation αt = t, βt = 1 − t, the
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Algorithm 2 Gaussian Tilting for Rectified Flow

Input: 1) A pretrained rectified flow vt induced by Xt = αtX1 + βtX0

with X0 ⊥⊥ X1 and X0 ∼ Normal(0, I), and X1 ∼ π1.
2) A Gaussian reward r(x) = exp(−η ∥x− x∗∥2) for a target x∗ ∈ Rd

and magnitude η ∈ R.
Output: A sample from the tilted distribution πr

1(x) ∝ π1(x)r(x).
Algorithm: Get the tilted velocity field vrt using the procedure below,
and solve the rectified flow with vrt initialized from π0 using any RF
samplers.

//The case of straight interpolation (αt = t, βt = 1− t):
Define vrt (x) =get_tilted_velocity_straight(x, t):

0) If η < −t2/(1− t)2: Return vrt (x) = vt(x).

1) Get the tilted time s and position y:

s =

√
t2 + η(1− t)2

1− t+
√
t2 + η(1− t)2

, y =
t(1− s)2

s(1− t)2
x+

(1− s)2

s
ηx∗.

2) Predict the target position x̂1|t from (s, y):

x̂1|t = y + (1− s)vs(y),

3) Get the tilted velocity field at (x, t):

vrt (x) =
x̂1|t − x

1− t
.

Return vrt (x).

//For general αt, βt:
Define vrt (x) =get_tilted_velocity_affine(x, t):

0) If η < −α2
t /β

2
t : Return vrt (x) = vt(x).

1) Get the tilted time s and position y by solving

α2
s

β2
s

=
α2
t

β2
t

+ η, y =
β2
s

αs
(
αt

β2
t

x+ ηx∗).

2) Predict the target position x̂1|t from (s, y):

x̂1|t =
1

αs

(
α̇t

αt
− β̇t
βt

)−1

(vs(y)−
β̇s
βs
y)

3) Get the tilted velocity field at (x, t):

vrt (x) =
β̇t
βt
x+ αt

(
α̇t

αt
− β̇t
βt

)
x̂1|t.

Return vrt (x).
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tilted time and positions are

s =

√
t2 + η(1− t)2

1− t+
√
t2 + η(1− t)2

,

and

y =
t(1− s)2

s(1− t)2
x+

(1− s)2

s
ηx∗

= (1− t+
√
t2 + η(1− t)2)

(
t√

t2 + η(1− t)2
x+ η

(1− t)2√
t2 + η(1− t)2

x∗

)

=
t

s
x+

η(1− t)2

s
x∗.

The resulting tilted velocity field is

vrt (x) =
1− s

1− t
vs(y) +

1

1− t
(y − x).

In particular, at t = 0, s =
√
η

1+
√
η , y = 1

(1+
√
η)

√
ηx

∗, which advances in
time, and move towards x∗. When t ≈ 1, we have s ≈ 1 and y ≈ x.
It is because no tilting is needed in the final stage, if proper tilting is
made during the process.

Remark 30. In practice, we can use a negative η, in which case the
tilting corresponds to introducing a repulsive force against the target
x∗. Although using η < 0 is not entirely theoretically valid, as it leads
to a singularity near t = 0, we can mitigate this issue by applying
a threshold within the singularity regime. This approach still yields
a practical procedure that introduces repulsiveness against x∗. See
Algorithm 2.

Lemma 21. For any Xt satisfying Xt = αtX1 + βtX0, let

vt(x) = E
[
Ẋt | Xt = x

]
, x̂1|t(x) = E [X1 | Xt = x] .

Then

vt(x) =
β̇t
βt
x+ αt(

α̇t

αt
− β̇t
βt

)x̂1|t(x).

Proof.

vt(x) = E
[
Ẋt | Xt = x

]
= E

[
α̇tX1 + β̇tX0 | Xt = x

]
= E

[
α̇tX1 + β̇t

(Xt − αtX1)

βt
| Xt = x

]
=
β̇t
βt
x+ αt(

α̇t

αt
− β̇t
βt

)x̂1|t(x).
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Lemma 22. For t ∈ [0, 1], η ∈ R, and x, x∗ ∈ R, let s and y solve

α2
s

β2
s

=
α2
t

β2
t

+ η, y =
β2
s

αs
(
αt

β2
t

x+ ηx∗).

Then for any x1 ∈ Rd,

−∥x− αtx1∥2

2β2
t

− η
∥x1 − x∗∥2

2
= −∥y − αsx1∥2

2β2
s

+ const,

where const = ∥y∥2

2β2
s
− ∥x∥2

2β2
t
− η

2 ∥x
∗∥2 is a constant w.r.t. x1.

Proof. We have

∥x− αtx1∥2

β2
t

+η∥x1 − x∗∥2 = (
α2
t

β2
t

+η) ∥x1∥2−2x⊤1 (
αt

β2
t

x+ηx∗)+
∥x∥2

β2
t

+η ∥x∗∥2 .

Set s and y such that

α2
t

β2
t

+ η =
α2
s

β2
s

,
αt

β2
t

x+ ηx∗ =
αs

β2
s

y.

Then we have

∥x− αtx1∥2

β2
t

+ η∥x1 − x∗∥2 =
α2
s

β2
s

∥x1∥2 − 2
αs

β2
s

y⊤x1 +
∥y∥2

β2
s

− ∥y∥2

β2
s

+
∥x∥2

β2
t

+ η ∥x∗∥2

=
∥y − αsx1∥2

β2
s

− ∥y∥2

β2
s

+
∥x∥2

β2
t

+ η ∥x∗∥2 .

CHAPTER 6. REWARD TILTING 84



Bibliography

Scipy rk45 function. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.integrate.RK45.html. Accessed: 2022-08-19.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic
interpolants: A unifying framework for flows and diffusions. arXiv
preprint arXiv:2303.08797, 2023.

Luigi Ambrosio and Gianluca Crippa. Existence, uniqueness, stability and
differentiability properties of the flow associated to weakly differentiable
vector fields. In Transport equations and multi-D hyperbolic conservation
laws, pages 3–57. Springer, 2008.

Luigi Ambrosio, Elia Brué, and Daniele Semola. Lectures on optimal trans-
port. Springer, 2021.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic
Processes and their Applications, 12(3):313–326, 1982.

Abdul Fatir Ansari, Ming Liang Ang, and Harold Soh. Refining deep
generative models via discriminator gradient flow. In International
Conference on Learning Representations, 2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gen-
erative adversarial networks. In International conference on machine
learning, pages 214–223. PMLR, 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne
van den Berg. Structured denoising diffusion models in discrete state-
spaces. Advances in Neural Information Processing Systems, 34:17981–
17993, 2021.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and
John Lafferty. Clustering with bregman divergences. Journal of machine
learning research, 6(10), 2005.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic
estimate of the optimal reverse variance in diffusion probabilistic models.
arXiv preprint arXiv:2201.06503, 2022.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and
Gabriel Taubin. The ball-pivoting algorithm for surface reconstruction.
IEEE transactions on visualization and computer graphics, 5(4):349–359,
1999.

85

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK45.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK45.html


Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN
training for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, and Andreas Krause. Re-
covering stochastic dynamics via gaussian Schrödinger bridges. arXiv
preprint arXiv:2202.05722, 2022.

Yuri Burda, Roger B Grosse, and Ruslan Salakhutdinov. Importance
weighted autoencoders. In ICLR (Poster), 2016.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan,
Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song,
Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012, 2015.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and
William Chan. Wavegrad: Estimating gradients for waveform generation.
In International Conference on Learning Representations, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. Advances in neural information
processing systems, 31, 2018.

Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood
training of Schrödinger bridge using forward-backward sdes theory. arXiv
preprint arXiv:2110.11291, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long
sequences with sparse transformers. arXiv preprint arXiv:1904.10509,
2019.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and
Sungroh Yoon. Ilvr: Conditioning method for denoising diffusion proba-
bilistic models. arXiv preprint arXiv:2108.02938, 2021.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN v2:
Diverse image synthesis for multiple domains. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages
8188–8197, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt
Schiele. The cityscapes dataset for semantic urban scene understanding.
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural
networks for large-scale optimal transport. Advances in neural informa-
tion processing systems, 34:12955–12965, 2021.

Valentin De Bortoli, Arnaud Doucet, Jeremy Heng, and James Thorn-
ton. Simulating diffusion bridges with score matching. arXiv preprint
arXiv:2111.07243, 2021a.

BIBLIOGRAPHY 86



Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet.
Diffusion Schrödinger bridge with applications to score-based generative
modeling. Advances in Neural Information Processing Systems, 34, 2021b.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likeli-
hood from incomplete data via the em algorithm. Journal of the Royal
Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on
image synthesis. Advances in Neural Information Processing Systems, 34,
2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803, 2016.

Joseph L Doob and JI Doob. Classical potential theory and its probabilistic
counterpart, volume 549. Springer, 1984.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy
based models. Advances in Neural Information Processing Systems, 32,
2019.

Conor Durkan and Yang Song. On maximum likelihood training of score-
based generative models. arXiv e-prints, pages arXiv–2101, 2021.

Alessio Figalli and Federico Glaudo. An Invitation to Optimal Transport,
Wasserstein Distances, and Gradient Flows. 2021.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Ober-
man. How to train your neural ode. arXiv preprint arXiv:2002.02798,
2020.

R Flamary, N Courty, D Tuia, and A Rakotomamonjy. Optimal transport for
domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell, 1, 2016.

Hans Föllmer. An entropy approach to the time reversal of diffusion
processes. In Stochastic Differential Systems Filtering and Control, pages
156–163. Springer, 1985.

Giulio Franzese, Simone Rossi, Lixuan Yang, Alessandro Finamore, Dario
Rossi, Maurizio Filippone, and Pietro Michiardi. How much is enough? a
study on diffusion times in score-based generative models. arXiv preprint
arXiv:2206.05173, 2022.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P.
Murphy, and Tim Salimans. Diffusion meets flow matching: Two sides
of the same coin. 2024. URL https://diffusionflow.github.io/.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. Advances in neural information processing systems, 27,
2014.

BIBLIOGRAPHY 87

https://diffusionflow.github.io/


Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud,
Mohammad Norouzi, and Kevin Swersky. Your classifier is secretly an
energy based model and you should treat it like one. arXiv preprint
arXiv:1912.03263, 2019.

C. G. Gray and E. F. Taylor. When action is not least. American Journal of
Physics, 75:434–458, 2007.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generaliza-
tion. arXiv preprint arXiv:2007.01434, 2020.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach,
and Frank Wood. Flexible diffusion modeling of long videos. arXiv
preprint arXiv:2205.11495, 2022.

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The
Annals of Probability, pages 1188–1205, 1986.

Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative α-(de) blend-
ing: A minimalist deterministic diffusion model. In ACM SIGGRAPH
2023 Conference Proceedings, pages 1–8, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. GANs trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel.
Flow++: Improving flow-based generative models with variational
dequantization and architecture design. In International Conference on
Machine Learning, pages 2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems, 33:6840–
6851, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad
Norouzi, and Tim Salimans. Cascaded diffusion models for high fidelity
image generation. Journal of Machine Learning Research, 23(47):1–33,
2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad
Norouzi, and David J Fleet. Video diffusion models. arXiv preprint
arXiv:2204.03458, 2022b.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max
Welling. Argmax flows and multinomial diffusion: Learning categorical
distributions. Advances in Neural Information Processing Systems, 34,
2021.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
1125–1134, 2017.

BIBLIOGRAPHY 88



Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN: Two pure
transformers can make one strong GAN, and that can scale up. Advances
in Neural Information Processing Systems, 34, 2021.

Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola.
Subspace diffusion generative models. arXiv preprint arXiv:2205.01490,
2022.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of GANs for improved quality, stability, and variation. In Inter-
national Conference on Learning Representations, 2018.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen,
and Timo Aila. Training generative adversarial networks with limited
data. Advances in Neural Information Processing Systems, 33:12104–
12114, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating
the design space of diffusion-based generative models. arXiv preprint
arXiv:2206.00364, 2022a.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating
the design space of diffusion-based generative models. arXiv preprint
arXiv:2206.00364, 2022b.

Valentin Khrulkov and Ivan Oseledets. Understanding DDPM latent codes
through optimal transport. arXiv preprint arXiv:2202.07477, 2022.

Young-Heon Kim and Emanuel Milman. A generalization of caffarelli’s
contraction theorem via (reverse) heat flow. Mathematische Annalen,
354(3):827–862, 2012.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational
diffusion models. Advances in neural information processing systems, 34:
21696–21707, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invert-
ible 1x1 convolutions. Advances in neural information processing systems,
31, 2018.

Peter E Kloeden and Eckhard Platen. Numerical Solution of Stochastic
Differential Equations. Springer, 1992.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic
models. In ICML Workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models, 2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro.
Diffwave: A versatile diffusion model for audio synthesis. In International
Conference on Learning Representations, 2020.

BIBLIOGRAPHY 89



Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexan-
der Filippov, and Evgeny Burnaev. Do neural optimal transport solvers
work? a continuous wasserstein-2 benchmark. Advances in Neural Infor-
mation Processing Systems, 34:14593–14605, 2021.

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural
optimal transport. arXiv preprint arXiv:2201.12220, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

Thomas G Kurtz. Equivalence of stochastic equations and martingale
problems. In Stochastic analysis 2010, pages 113–130. Springer, 2011.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. Improved precision and recall metric for assessing generative
models. Advances in Neural Information Processing Systems, 32, 2019.

Hugo Lavenant and Filippo Santambrogio. The flow map of the fokker–
planck equation does not provide optimal transport. Applied Mathematics
Letters, page 108225, 2022.

Junhyeok Lee and Seungu Han. Nu-wave: A diffusion probabilistic model
for neural audio upsampling. arXiv preprint arXiv:2104.02321, 2021.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified
flows. arXiv preprint arXiv:2405.20320, 2024.

Antoine Lejay. The girsanov theorem without (so much) stochastic analysis.
In Séminaire de Probabilités XLIX, pages 329–361. Springer, 2018.

Christian Léonard, Sylvie Rœlly, and Jean-Claude Zambrini. Reciprocal
processes. a measure-theoretical point of view. Probability Surveys, 11:
237–269, 2014.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tat-
sunori B Hashimoto. Diffusion-lm improves controllable text generation.
arXiv preprint arXiv:2205.14217, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and
Matt Le. Flow matching for generative modeling. arXiv preprint
arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le,
Brian Karrer, Ricky T. Q. Chen, David Lopez-Paz, Heli Ben-Hamu, and
Itai Gat. Flow matching guide and code. arXiv preprint arXiv:2412.06264,
2024. URL https://doi.org/10.48550/arXiv.2412.06264.

Qiang Liu. On rectified flow and optimal coupling. preprint, 2022.

Xingchao Liu, Chengyue Gong, Lemeng Wu, Shujian Zhang, Hao Su, and
Qiang Liu. Fusedream: Training-free text-to-image generation with
improved clip+ gan space optimization. arXiv preprint arXiv:2112.01573,
2021.

BIBLIOGRAPHY 90

https://doi.org/10.48550/arXiv.2412.06264


Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast:
Learning to generate and transfer data with rectified flow. arXiv preprint
arXiv:2209.03003, 2022a.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges:
Understanding and extending diffusion generative models. arXiv preprint
arXiv:2208.14699, 2022b.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges:
Understanding and extending diffusion generative models. arXiv preprint
arXiv:2208.14699, 2022c.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
DPM-solver: A fast ODE solver for diffusion probabilistic model sampling
in around 10 steps. arXiv preprint arXiv:2206.00927, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative
generative models for improved sampling speed. arXiv preprint
arXiv:2101.02388, 2021.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2837–2845, 2021a.

Shitong Luo and Wei Hu. Score-based point cloud denoising. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4583–
4592, 2021b.

Zhaoyang Lyu, Xudong Xu, Ceyuan Yang, Dahua Lin, and Bo Dai. Accel-
erating diffusion models via early stop of the diffusion process. arXiv
preprint arXiv:2205.12524, 2022.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Opti-
mal transport mapping via input convex neural networks. In International
Conference on Machine Learning, pages 6672–6681. PMLR, 2020.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and
Stefano Ermon. Sdedit: Image synthesis and editing with stochastic
differential equations. arXiv preprint arXiv:2108.01073, 2021.

Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic
music generation with diffusion models. arXiv preprint arXiv:2103.16091,
2021.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
Spectral normalization for generative adversarial networks. In Interna-
tional Conference on Learning Representations, 2018.

Marco Moriconi. Condition for minimal harmonic oscillator action. Ameri-
can Journal of Physics, 85(8):633–634, 2017.

BIBLIOGRAPHY 91



Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani.
Action matching: Learning stochastic dynamics from samples. In In-
ternational conference on machine learning, pages 25858–25889. PMLR,
2023.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela
Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards
photorealistic image generation and editing with text-guided diffusion
models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising dif-
fusion probabilistic models. In International Conference on Machine
Learning, pages 8162–8171. PMLR, 2021.

Bernt Oksendal. Stochastic differential equations: an introduction with
applications. Springer Science & Business Media, 2013.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow:
Fast and accurate continuous normalizing flows via optimal transport.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 9223–9232, 2021.

George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir
Mohamed, and Balaji Lakshminarayanan. Normalizing flows for prob-
abilistic modeling and inference. J. Mach. Learn. Res., 22(57):1–64,
2021.

Stefano Peluchetti. Non-denoising forward-time diffusions. 2021.

Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge
problems and generative modeling. Journal of Machine Learning Research,
24(374):1–51, 2023.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and
Bo Wang. Moment matching for multi-source domain adaptation. In
Proceedings of the IEEE/CVF international conference on computer vision,
pages 1406–1415, 2019.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport:
With applications to data science. Foundations and Trends® in Machine
Learning, 11(5-6):355–607, 2019.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and
Mikhail Kudinov. Grad-tts: A diffusion probabilistic model for text-to-
speech. In International Conference on Machine Learning, pages 8599–
8608. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125, 2022a.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125, 2022b.

BIBLIOGRAPHY 92



Danilo Rezende and Shakir Mohamed. Variational inference with nor-
malizing flows. In International conference on machine learning, pages
1530–1538. PMLR, 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference
on Medical image computing and computer-assisted intervention, pages
234–241. Springer, 2015.

Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling
with optimal transport maps. arXiv preprint arXiv:2110.02999, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang,
Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan,
S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training GANs. Advances
in neural information processing systems, 29, 2016.

Filippo Santambrogio. Optimal transport for applied mathematicians.
Birkäuser, NY, 55(58-63):94, 2015.

Simo Särkkä and Arno Solin. Applied stochastic differential equations,
volume 10. Cambridge University Press, 2019.

Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-XL: Scaling
StyleGAN to large diverse datasets. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Proceedings, pages 1–10,
2022.

Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty,
Antoine Rolet, and Mathieu Blondel. Large-scale optimal transport and
mapping estimation. arXiv preprint arXiv:1711.02283, 2017.

Neta Shaul, Juan Perez, Ricky TQ Chen, Ali Thabet, Albert Pumarola, and
Yaron Lipman. Bespoke solvers for generative flow models. arXiv preprint
arXiv:2310.19075, 2023.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet.
Diffusion schrödinger bridge matching. In Advances in Neural Information
Processing Systems, volume 36, 2024.

Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2C:
Diffusion-decoding models for few-shot conditional generation. Advances
in Neural Information Processing Systems, 34:12533–12548, 2021.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training
of neural networks using large learning rates. In Artificial intelligence
and machine learning for multi-domain operations applications, volume
11006, pages 369–386. SPIE, 2019.

BIBLIOGRAPHY 93



Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Gan-
guli. Deep unsupervised learning using nonequilibrium thermodynam-
ics. In International Conference on Machine Learning, pages 2256–2265.
PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion
implicit models. In International Conference on Learning Representations,
2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradi-
ents of the data distribution. Advances in Neural Information Processing
Systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-
based generative models. Advances in neural information processing
systems, 33:12438–12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. Score-based generative modeling through
stochastic differential equations. In International Conference on Learning
Representations, 2020b.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum
likelihood training of score-based diffusion models. Advances in Neural
Information Processing Systems, 34, 2021.

Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual dif-
fusion implicit bridges for image-to-image translation. arXiv preprint
arXiv:2203.08382, 2022.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep
domain adaptation. In European conference on computer vision, pages
443–450. Springer, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine
learning, pages 6105–6114. PMLR, 2019.

Anastasiya Tanana. Comparison of transport map generated by heat flow
interpolation and the optimal transport brenier map. Communications in
Contemporary Mathematics, 23(06):2050025, 2021.

Giulio Trigila and Esteban G Tabak. Data-driven optimal transport. Com-
munications on Pure and Applied Mathematics, 69(4):613–648, 2016.

Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling
and inference in generative models with latent diffusions. In Conference
on Learning Theory, pages 3084–3114. PMLR, 2019.

Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued
neural autoregressive density-estimator. Advances in Neural Information
Processing Systems, 26, 2013.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative mod-
eling in latent space. Advances in Neural Information Processing Systems,
34:11287–11302, 2021.

BIBLIOGRAPHY 94



Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university
press, 2000.

David A Van Dyk and Xiao-Li Meng. The art of data augmentation. Journal
of Computational and Graphical Statistics, 10(1):1–50, 2001.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence.
Solving Schrödinger bridges via maximum likelihood. Entropy, 23(9):
1134, 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethura-
man Panchanathan. Deep hashing network for unsupervised domain
adaptation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5018–5027, 2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer,
2009.

Cédric Villani. Topics in optimal transportation, volume 58. American
Mathematical Soc., 2021.

Pascal Vincent. A connection between score matching and denoising
autoencoders. Neural computation, 23(7):1661–1674, 2011.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
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