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Abstract

We introduce a new class of lower bounds
on the log partition function of a Markov
random field which makes use of a re-
versed Jensen’s inequality. In particular, our
method approximates the intractable distri-
bution using a linear combination of span-
ning trees with negative weights. This tech-
nique is a lower-bound counterpart to the
tree-reweighted belief propagation algorithm,
which uses a convex combination of span-
ning trees with positive weights to provide
corresponding upper bounds. We develop al-
gorithms to optimize and tighten the lower
bounds over the non-convex set of valid
parameter values. Our algorithm general-
izes mean field approaches (including naive
and structured mean field approximations),
which it includes as a limiting case.

1 INTRODUCTION

Probabilistic graphical models provide powerful tools
for representing and reasoning about uncertainty. A
common difficulty in many learning and inference tasks
is calculating the log partition function, or normal-
ization constant of the distribution. This task cor-
responds to computing the probability of evidence
in Bayes nets, and is an often critical component of
learning a distribution from observed data. For tree-
structured graphical models (i.e., those without cy-
cles), the partition function can be calculated effi-
ciently by variable elimination. However, for graph-
ical models with cycles this calculation is exponential
in the tree width of the graph, and is thus often compu-
tationally infeasible (Wainwright and Jordan, 2008).

Variational methods for approximate inference pro-
vide approximations, often bounds, of the log parti-
tion function. Of these, perhaps the most popular is
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loopy belief propagation (LBP), which provides exact
results for tree-structured graphical models and often
results in excellent approximations in graphs with cy-
cles. The fixed points of LBP yield stationary points
of the Bethe free energy approximation to the log par-
tition function (Yedidia et al., 2004); however, this ap-
proximation has few guarantees on quality or whether
it under- or over-estimates the partition function, ex-
cept in certain special cases (Sudderth et al., 2008).

In contrast, the mean field approach provides a guar-
anteed lower bound on the log partition function.
Lower bounds are very attractive in learning algo-
rithms (such as expectation-maximization) which at-
tempt to maximize the data likelihood, since optimiz-
ing a lower bound on likelihood provides some as-
surance of the learned model’s quality (Zhang, 1992;
Saul and Jordan, 1999; Wainwright and Jordan, 2008).
Naive mean field approximates the original model us-
ing a fully factored distribution, while structured mean
field (Saul and Jordan, 1995) generalizes this approach
to include some dependence among variables.

In the other direction, the tree-reweighted belief prop-
agation (TRBP) algorithm provides a class of up-
per bounds on the log partition function by exploit-
ing convexity (Wainwright et al., 2005). The view-
point of convex duality can be used to unify many of
these approaches as optimizations of exact or approxi-
mate entropies on subsets (lower bounds) or supersets
(upper bounds) of the set of valid marginal distribu-
tions, or marginal polytope (Wainwright and Jordan,
2008). However, TRBP is generally considered sep-
arate and comparatively unrelated to mean field ap-
proaches. The two methods have very different prop-
erties; for example, TRBP is a convex optimization,
while mean field is in general non-convex.

In this paper, we unify and extend these perspec-
tives by proposing a class of lower bounds of the log
partition function using a reversed Jensen’s inequal-
ity. This results in a non-convex optimization prob-
lem which provides a lower bound on the log parti-



tion function, but whose structure and analysis are
closely connected to TRBP. Moreover, this framework
encompasses mean field and structured mean field ap-
proaches as special, limiting cases, and enables opti-
mizing the approximating structure during inference.

The paper is organized as follows. Section 2 pro-
vides notation and briefly reviews tree reweighted be-
lief propagation. In section 3 we establish a reverse
Jensen’s inequality and propose our lower bound on
the log partition function using negative weights. Sec-
tions 4-5 derive a counterpart message passing algo-
rithm for our lower bound, then propose an algorithm
to improve the bound by optimizing its weights in sec-
tion 6. We describe connections to mean field and
other related work in section 7. Finally, we illustrate
the method experimentally in section 8, and conclude
with section 9.

2 BACKGROUND

Let G = (V, E) be an undirected graph, where V is
the set of nodes and FE is the set of edges. We define
an undirected graphical model over G by placing at
each node ¢ € V a random variable z; taking values
in the discrete space X; = {0,1,--- ;m; — 1}, and let
x = {x;|i € V} be a random vector in the product
space XN = X x Xy---X,. The exponential repre-
sentation of the graphical model is written in terms of
the parameter vector 8 and sufficient statistics ¢(x):

p(el6) = exp {Z o) — @(9)} ,
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where 7 is the index set of the parameters and suffi-
cient statistics. The quantity ®(0) is the log partition
function, which serves to normalize the distribution. A
well known property of ®(0) is its convexity. However,
calculation of ®(6) requires summing over an expo-
nential number of terms, and is a major challenge for
learning and inference tasks in graphical models.

For simplicity of presentation, here we consider only
pairwise MRFs. We follow Wainwright et al. (2005)
and use the overcomplete exponential representation,
where the statistics are defined as indicator functions:

bis(x) =0(x;=5s) , Qist(x) =0(x; =s,2; =1)

and ¢ is the Kroneker delta function, equal to one iff
the argument equalities hold. Then, the index set is
the union of Z(V) = {(i,s)]i € V,s € X} and edge
indices Z(E) = {(ij, st)|(i,j) € E,s,t € X}. We also
define 0;(z;) = 0;;2, and 0;5(z;,7;) = 0ij.z, o, for con-
venience.

2.1 TREE REWEIGHTED BP

Wainwright et al. (2005) introduces a class of upper
bound on ®(f) that arise immediately from the prop-
erty of convexity. The idea is to split the parameter
vector into a linear combination of parameter vectors
of tractable distributions (such as spanning trees), and
then apply Jensen’s inequality.

Let 7 = {T,}E |, with T, = (V, E,) be a collection
of spanning trees of G. In principle, we could include
arbitrary subtrees T;., but spanning trees are sufficient
to provide optimal bounds (Wainwright et al., 2005).
However, we will relax 7 to include arbitrary subtrees,
including the fully disconnected subgraph, when we

draw our connections to mean field.

We decompose the exponential parameter vector 6 into
a collection § = {#"}[*_,, such that > 6" = 6 and for
each r, 6, is an exponential parameter vector that re-
spects the structure of T,.. More formally, this requires
that 0;; = 0 if (i,7) ¢ E,. For convenience, we let
T(i,7) = {r|(i,j) € E,} be the collection of spanning
trees that include edge (3, j).

Suppose we also have a set of weights w = w1, -+ , wg)
over the spanning trees, such that ) w, = 1. Follow-
ing the convention of Wainwright et al. (2005), we call
Mij = ZTET(Z', ) Wr the edge appearance probability of
edge (i,7), although in the sequel we will not require
that w, > 0 and thus p;; is not interpretable as an
actual “probability” in our framework.

If w, > 0, we apply Jensen’s inequality:

0" 0" -
D)= — | < D — ) £ U(0,w).
0-0(TwE) sTue(Z) v
A natural question is then how to choose 6" and w,

to obtain the tightest upper bound. This question is
divided into two parts in Wainwright et al. (2005):

For fizxed w, define the optimal bound by

+ A : ) — r
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This is a convex optimization problem with linear
constraints. Although the number of possible span-
ning trees is extremely large, this difficulty can be
sidestepped using Lagrangian duality, by observing
that there are only a few constraints. Wainwright et al.
(2005) shows that this dual optimization can be in-
terpreted as minimizing a free energy Frrpp, which
is closely related to the Bethe free energy. A simple
“message passing” fixed-point algorithm is developed,
similar to that of loopy belief propagation.

To optimize w, it is shown that the free energy Frrpp
depends only on the edge appearance probabilities ji;;.



A conditional gradient method can be used to optimize
the p;;; this is equivalent to a maximum-weight span-
ning tree problem, in which the mutual information
between nodes ¢ and j serves as the weight on edge
(i,7). An advantage of TRBP is that one can opti-
mize the parameters without explicitly keeping track
of the w, and 0" for each spanning tree.

3 REVERSING JENSEN’S

Jensen’s inequality yields an upper bound of the con-
vex function ®(0). Here, we establish a reversed
Jensen’s inequality, which instead gives a lower bound:

Lemma 3.1. Suppose f(0) is a convex function on
R™. Let §; € R™, i = 1,2,...,n be points in R™,
and w = [wy, - ,wy] be a set of weights satisfying
Yo, w; = 1. If all weights w; except one are negative,
e.g.,w; >1, w; <0 fori=2,...,n, then

Zwif(@‘) < f(Z w;t;). (1)

Sketch of proof. Let w1 > 0 and define a = >, w;0;
and b = ﬁ > is1 wibh, then note 6; = (a + (w1 —

1)b)/w1, apply Jensen’s inequality to 6, then again to
b, and rearrange terms. O

A one-dimensional version of this inequality and some
extensions are discussed in Mitrinovic et al. (1993).
If more than one weight w; is positive, the inequality
does not hold in general. In fact, we show in Section 7
that loopy belief propagation can be interpreted as
corresponding to multiple positive and some negative
weights, giving an interpretation as to why loopy BP
provides neither an upper nor lower bound of the log
partition function in general.

With the reversed Jensen’s inequality, it is straightfor-
ward to get a lower bound of the log partition function:

D) =P (Z wr:i:> > w,® (Z) 29(0,w).

T

Note that ¥ is identical to its definition for TRBP,
but within a different domain of weights. We define
D = {w|) , w, = 1} to be the domain of normalized
weights, DT the domain of weights in which Jensen’s
inequality holds, and D~ the domain in which the re-
versed Jensen’s inequality holds. Note that DT is a
convex set (the probability simplex), while D~ is a
union of R disjoint convex sets: D~ = U, D, , where
D, = {w|w € D,w, > 1w <0 for ' # r} and each
subdomain D, corresponds to a spanning tree T;.. See
Fig. 1 for a sketch of the domains. Each D, is a infi-
nite convex set, but their union D~ is not convex.

DZ
neg TRBP

Figure 1: An illustration of the weight domains on
a graph with three nodes and edges. The plane rep-
resents the domain D = {w|>  w, = 1}, where the
w; are the weights of the three possible spanning trees
(see Fig. 2 for more detail). All-positive weights form
the probability simplex DT = {wjw € D,w, > 0 Vr},
while D, = {w|w € D,w, > 0,w,» <0 for v’ # r} are
subdomains of negative weights. The negative domain
is D~ = U, D, , a union of three disjoint infinite sets.

Again, a natural question is how to choose the optimal
6 and w to obtain the tightest bound. However, for
negative weights this optimization is non-convex. One
obvious difficulty is the non-convexity of the domain
D~ . In fact, searching for the optimal weights requires
not only a local search inside any given subdomain D,
but also global moves between the subdomains (see
Fig. 1). The latter task is particularly challenging,
since the number of subdomains is very large (equal
to the number of possible spanning trees).

Another difficulty is that W(f,w) is neither a con-
vex nor concave function of § for w € D~. To see
this, one need only notice that ¥(f,w) is convex in
0! if w; > 0, and is concave in 0" for r = 2,..., R
if w, < 0. The original TRBP algorithm derives a
message-passing representation using strong duality of
the upper bound, but for negative weights this argu-
ment will not hold. Instead, as with mean field we
search for a local optimum, and if desired we can al-
ways perform multiple restarts and select the tightest.

4 TREE MATCHING CONDITIONS

To facilitate further discussion, we establish some
properties of the stationary points of W(#,w). This
process proceeds similarly to the derivation of BP from
the Bethe free energy given by Yedidia et al. (2004),
and our resulting conditions are identical to those in
Wainwright et al. (2005), derived using the convex dual
function. However, we establish them directly as prop-
erties of any stationary point in order to apply them
to our non-convex ¥ (6, w) and find local maxima.

Let p, (2]07) = exp(g 3, 060 — D(5-)) be the dis-



tribution over the spanning tree T,. We let 77 (z;)
(i € V) and 7;(zi,75), (i,7) € E,, be the single and
pairwise marginals of p,.(x|0").

The gradient of ¥(#, w) w.r.t. § is given by

oV (0, w) "
897‘ Zp”’ x|9 d)a )

For the overcomplete representation, the ¢(x) are indi-
cator functions, and the gradients are the correspond-
ing marginals of p,(x]0"):

v (0, w)

oV (0, w) o
- 067 (ws, ;)

W i (xt) and

= 7 (®i, 5).

Adding the equality constraint ) 6, = 6 as a La-
grange multiplier, we find the conditions

71 (x) = 1i(®;) Vr

T (i, ;) = Ti5(2i, x5) Vr e T(i,j)

where 7;(x;) and 7;;(x;, ;) are the Lagrange multi-
pliers. Thus at any stationary point, the single and
pairwise marginals of every spanning tree are matched,
with common marginals 7;, 7.

Similarly, we take the derivative of (6, w) w.r.t. w:

U (9, w) , ,
" ow, = —%:pr(fﬂw ) log pr(x[6") = H,
where H, is the entropy of p,.(z|0"). Again adding the
constraint ) w, = 1 using a Lagrange multiplier, the
stationary condition for w is

H.=H Y

where H is the Lagrange mulitplier, showing that at
the stationary point, the entropies of each the span-
ning tree should match with each other, with H repre-
senting the common entropy of all the spanning trees.

5 MESSAGE PASSING UPDATES

Based on the insight that the stationary points of ¥
satisfy marginal matching conditions, we can derive
a message passing fixed point algorithm to optimize
the bound. Again, our results will closely mirror the
update scheme of Wainwright et al. (2005), but do
not rely on strong duality and are applicable to our
negative weight regime.

We begin by writing the factorization of tree r as

I i)

(i,J)EE,

r(2]07) o H Vi (i)

Subject to the constraint ) 6" = it is easy to see

[Teir =vite) and [ @i =i

T reT(,5)

Since p,(x|07) is tree-structured, its marginals can be
found by forward-backward message passing; the up-
date on T, is

m,;
0 D i@ i (i) 5
Z; m ?

where m7;(2;) = [len, i) Mk,i(2i) is the product of
the messages sending to node 4 from its neighborhood
N, (2) in T,.. The marginals of T, are

7oy (zi)m, (24)
Liwa)ml ()

mN
Tz'rj o8 7/)1',7‘(xi)wj,r(xj)wij,r(mi,:L'j) rl

my; (z;)mf; ()

for (i,j) € E,.. At any stationary point, the marginals
must be matched, 7;(x;) o< ¥, »(x;)m?;(z;), so that

o=@ = wule) [T Imi@)) (2)

.
We define “overall messages”

mi; = H (m;”j)w"‘ and m.; = H mpi. (3)

reT(i,j) kEN (4)

Multiplying together the pairwise marginals, we have
i 1—pij5 1—pij5
’57 7( #.7),7_]( #.7): H H T T
re€T(i,j)  r&T(i,5)

o ) o oy ) ot I )

mij(@)myi(ai)

1/#«1 MMy
= Ty X i Pyt e (4)
My ji

Applying > . 7i;(zi, x;) = 7;(z;) and (2)—(4) gives

Hij
Vpiy M)
mis (@) Zd}l i) (@0, ) J7"nji(36i)1/mj
(5)
Substituting m;; = mzj/ Hi3 yields the same message

passing algorithm as that in Wainwright et al. (2005).
We use the form (5) as it does not diverge even for
pi; — £0 or p;; — Foo, and is also convenient to
draw connections to mean field in Section 7.

Finally, since p,(x|0") is a tree-structured distribution
with marginals 7; and 7;;, its log-partition function



can be written as a sum of single-node entropies and
pairwise mutual informations:

@(%) ST H(T) = DD I(r

eV (i,7)EE,
where H;(7) = — ) Ti;s log 7,5 is the single-node en-
tropy, and I;;(7) = Zs + Tijsst 10g ]77; is the mutual
information. The corresponding upper or lower bound

at a stationary point with weights w is
0"
- Ze)
Wy
(r0)+ > Hi= Y7 pily £ =F(r,p). (6)
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F(7, p) is introduced in Wainwright et al. (2005) as the
dual function of the upper bound and interpreted as a
free energy. Here we derive it directly, and do not re-
quire convexity as is necessary for strong duality. Since
the fixed point of the message passing algorithm (5) is
a stationary point of ¥(6,w), (5) can be used to search
for local maxima even when W¥(#,w) is non-convex.
Conversely, Wainwright et al. (2005) shows that the
fixed point with respect to 7; and 7;; of the free energy
(6) satisfies the message update equation (5). Thus,
message passing via (5) corresponds to the stationary
points of both (0, w) and F(7, 1). We use these two
points of view interchangably in the sequel. It is worth
emphasizing that ¥(6,w) and —F(7, 1) only coincide
at stationary points, and can be very different else-
where. For example, ¥ (0, w) is always upper bounded
by ®(0) but —F (7, 1) with negative weights has no up-
per bound, and local maxima of ¥ (6, w) can be saddle
points of —F (7, 1) (see Section 7).

6 OPTIMIZING OVER WEIGHTS

Wainwright et al. (2005) optimizes the (positive)
weights using conditional gradient descent, which they
show is equivalent to solving a maximum-weight span-
ning tree problem at each iteration. Unfortunately,
this method is not immediately applicable to nega-
tive weights, since the domain D~ is not convex. A
search strategy on D~ requires a combination of local
and global optimization. By choosing a representation
carefully, we are able to optimize over the positive and
negative trees separately, and use the same optimiza-
tion techniques of TRBP on the negative weights.

Let T = T, be the spanning tree with positive weight
wt = B+ 1, where 3 > 0, and 7- = {T,7} be
a collection of spanning trees with negative weights
w~ = {—Pv,}, where )~ v, =1 and 0 < v, < 1. Let
H™ be the entropy of T and H, the entropy of 7).
For convenience, we also include T as a negative tree,

so that the feasible range of v, is in fact DT, the same
as that in regular TRBP. It is then easy to see that

ov _ ov
i H Z:UTHT and =

v, —PH,

For fixed T'F, the optimization of 8 and v, corresponds
to a local search inside each subdomain, and can be
updated using the gradient. More formally, let 50
and vfnn) be the values at iteration n. Because we re-
quire § > 0, we use log-gradient ascent to update 3:
defining v = log 3, we update v with stepsize eg > 0,
producing a corresponding update rule for 3:

Z v.H) ™). (7)

The negative weights v = {v,} can be updated via
conditional gradient:

6(n+1 ﬁ(n) exp 6[3

H(n+1) _ )
oY) = arg max {— ZH )}
’U(n+1) — " + 6v<v(n+1) _ ,U(n)) (8)

As in Wainwright et al. (2005), H,~ can be written as

,
a sum of entropy and mutual information terms,

Hr =Y H(r)— Y I;();

i€V (4,§)EE

the first term is constant for all r, and computing
(1) s solved as a maximal spanning tree problem
using mutual information as the edge weights.

Choosing the positive tree T now corresponds to
“jumping” between the different subdomains of D~
a combinatorial optimization problem for which the
local gradient may not be helpful. Since the num-
ber of subdomains of D~ equals the (possibly super-
exponential) number of spanning trees, it is challeng-
ing to find an optimal TF. Instead, we employ a
heuristic for re-selecting T that appears to work well
in practice. Analysis connecting our method to mean
field shows that T can be interpreted as the skeleton
of GG, along which the original variable dependencies
are more closely maintained. From this viewpoint, it
makes sense to choose Tt to match the distribution as
closely as possible, and an obvious heuristic to use is
again to employ the Chow-Liu algorithm (Chow and
Liu, 1968) — we choose T via a maximum spanning
tree problem in which the mutual information of the
previous iteration serves as the weight on each edge:

Tt = arg max{ Z I;}. (9)

(i,5)eE+

Our experiments (Section 8) suggest that the updates
Eqn. (9) can significantly improve the lower bound.



7 OTHER RELATED WORK

Structured mean field is a variational inference algo-
rithm that approximates the original graphical model
using a tractable subgraph. It is a extension of naive
mean field, in which the tractable subgraph is fully
disconnected. Bouchard-Cote and Jordan (2009) show
that the computational complexity of optimizing the
structured mean field objective depends on the type of
tractable subgraph chosen. Formally, they define:

Definition 7.1. An acyclic subgraph with edges E' C
E is called v-acyclic (very acyclic) if for all (i,7) € E,
E" U (i,7) is still acyclic. Otherwise, it is called b-
acyclic (barely acyclic).

Bouchard-Cote and Jordan (2009) go on to show that
structured mean field with a v-acyclic subgraph is eas-
ier to solve, compared to a b-acyclic subgraph. We
now show that structured mean field using a v-acyclic
subgraph is a special case of our algorithm.

Theorem 7.1. Let T, be a v-acyclic subgraph of the
original graph G. Let us construct a negative TRBP
approximation by taking positive tree Tt = T, with
weight 3 + 1, and negative trees which all include TT
as a subtree, T— = {T, U (i,7) : (i,j) € E\ Ey},
with weights {—pv,}. Then when  — +00, negative
TRBP is equivalent to structured mean field with T, .

Proof. We first note that by the definition of a v-
acyclic subgraph, 7~ is a collection of subtrees. As
B — oo, the edge appearance probabilities p;; — —oo
for all edges not in T, and p;; = 1 for edges in T, (as
every negative tree also includes them). Now consider
the message passing algorithm (5) as the stationary
point of the free energy (6), when p;; approaches in-
finity. The derivative of F(1,u) w.r.t. 7; is
OF (1, 1) Tij (23, 5)

rstory = o (s TS 1)

which equals zero iff ;; = 7;7;. Thus the mutual
information term I;; = 0 for the corresponding edge
(i,7) € E\ E,. It then is easy to show that F(r, u)
exactly corresponds to the free energy minimized by
structured mean field (Bouchard-Cote and Jordan,
2009, Equation (6)). O

A consequence of Theorem 7.1 is that naive mean field
is a special case of our algorithm with T+ = (G,0)
and 8 — +oo, in which case all the edge appearance
probabilities are infinite, i.e., y;; — —oo for (i,j) €
E. 1t is also straightforward to directly derive naive
mean field updates as a special case of algorithm (5)
as u;j — —o0, by applying the fact that the geometric
mean is the limit of the power mean as the power (in
this case, i) approaches zero.

Interestingly, loopy BP can also be viewed as nega-
tive tree weights. Wainwright et al. (2005) notes that
the Bethe free energy is obtained from (6) when all
wi; = 1. While not achieved in either Dt or D™,
this can be achieved using weights that includes mul-
tiple positive weights and some negative weights; see
Fig. 2 for an illustrative example. Notionally, loopy BP
can be thought of as corresponding to some subspace
of D in Fig. 1 between the negative sub-domains (al-
though technically it requires non-spanning trees and
thus cannot be visualized in only the two dimensions
pictured). This view reinforces why loopy BP guaran-
tees neither an upper nor lower bound in general.

Our method is also closely related to the framework of
fractional belief propagation (Wiegerinck and Heskes,
2003). While the fractional BP framework also high-
lights connections to mean field and TRBP, it does
not give intuition on how to choose the weights so as
to guarantee upper or lower bounds on the log parti-
tion function, nor does it consider the use of negative
valued weights or the connections to structured mean
field. Our framework clearly delineates the regimes in
which upper and lower bounds are guaranteed, extend-
ing and connecting these algorithms more precisely.

Another way of relating TRBP and mean field is
through the variational dual viewpoint (Wainwright
and Jordan, 2008), which writes the log-partition ®
as the supremum of the negative free energy over the
marginal polytope M. TRBP approximates M by a
convex outer bound M, and replaces the free energy
by a convex lower bound, yielding an upper bound of
®; mean field minimizes the true free energy over an
non-convex inner bound Myr C M, yielding a lower
bound. As shown in Section 5, negative TRBP instead
finds a stationary point of a non-convex approximate
free energy (6) over the outer bound M, which per-
haps surprisingly still yields a lower bound on ®. This
inherent non-convexity makes it difficult to understand
negative TRBP directly from the dual polytope view.

Additionally, we note that the stationary points of neg-
ative TRBP often correspond to a saddle point of the
approximate free energy. To illustrate this point, con-
sider the case when T = (V,0), making all u;; nega-
tive. The free energy (6) is then

—F(r,p) =(1,0) + ZHi - Z piglij.

icV (i,J)EE

As p;; — —oo, the stationary point 7* of negative
TRBP approaches a fixed point of mean field, and
hence is a local minimum of F(7, u) in Mpsp (in which
the marginals satisfy 7,; = 7;7;). In contrast, outside
Mrr we have I;; > 0, yielding F/(7, 1) = Y pijli; —
—o0, and hence 7* is a local maximum of F(7,u) in
this subspace. Thus, 7* is a saddle point.
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Figure 2: (a) The contour of ¥,, in a triangle graph (parameters given in the text). The black contours indicate
regions in which ¥,, is larger than the true log partition function ®(6), and red lines regions in which ¥,, is
smaller than ®(0). The circle denotes the optimal weight of TRBP, and the square denotes the optimal weights
of negative TRBP. (b) An illustration of how different algorithms are understood as a combination of subtrees
with different weights. The original graph (top left) is 3 nodes and fully connected; there are 3 spanning trees
and we include one fully disconnected subgraph listed to its right. In all cases, the subtree weights sum to one.

8 EXAMPLES AND EXPERIMENTS

We first illustrate the properties of positive and neg-
ative TRBP on a small example in which the space
of approximations can be directly visualized. We then
show the algorithm’s behavior and improvement over
mean field on attractive and mixed-sign Ising models.

8.1 TRIANGLE GRAPH

To visualize the algorithm’s bounds, we examine a sim-
ple triangle graph G in Fig. 2b. G has three spanning
trees T,., r = 1...3, also listed in the figure. To make
the connection to naive mean field and loopy belief
propagation, we also include a non-spanning tree (the
disconnected graph). The parameters of the original
distribution are ¢; = [1,1]T for i = 1,2,3 and

1 08 1 05
W:[O.S 1] and 1”13:%3:[0.5 1}

Different algorithms then correspond to different re-
gions of the weights; the table in Fig. 2b gives some
illustrative examples of valid weight values for each
algorithm. The general concept of the relationship
between these domains is also illustrated in Fig. 1,
although again it does not include the dimension of
non-spanning tree weight required to express the do-
main of mean field or loopy BP.

For this small example, we can illustrate the behavior
of the bound for values of the w, (now using only the
spanning trees). For each fixed value of w € D, we use
the message passing algorithm to optimize (finding a
stationary point of) ¥(f,w), and denote this quantity
¥,,. We plot the contour of ¥,, in Fig. 2, indicating
contours above the true partition function in black and
those below in red (best viewed in color).

As can be seen, the positive domain DT guarantees

an upper bound and the negative domain D~ guar-
antees a lower bound, consequences of Jensen’s and
the reversed Jensen’s inequality. The other regions
guarantee neither an upper nor a lower bound. No-
tice that although ¥, is convex in DT, it is generally
non-convex and even discontinuous outside D, with
saddle points and singularities visible in the figure.

The optimal weights of TRBP and negative TRBP are
labeled with a black circle and a square, respectively.
Notice in particular that the optimal point of negative
TRBP lies near the interior in this example, with the
bound decreasing outward. Since the infinity point
corresponds to mean field, this shows a simple con-
crete example in which negative TRBP improves on
the mean field bound.

8.2 ISING MODELS

We also verify our method using simulations on 2D,
10 x 10 Ising models (on which the exact partition
function can still be computed tractably). Let G =
(V,E) be a square lattice, with nodes corresponding
to binary variables x = {z;}, z; € {—1,1}, and

fexp(ZleJr Z 0ijzx; — (9))

eV (i,J)EE

We follow Wainwright et al. (2005) and generate
the parameter vector 6 randomly. We draw 6; ~
U(—0.05,0.05) for each node i € V, and for each edge
(,j) € E, we sample 0;; independently using either

1) for attractive interactions, 6;; ~ U(0, c);

2) for mixed interactions, 60;; ~ U(—c,c).

We vary ¢ from 0 to 2, and perform 20 simulations
at each value. Results are shown relative to the exact

partition function, computed by junction tree. Lower
bounds are calculated using both negative TRBP and
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Figure 3: (a)-(b) Comparisons of TRBP, negative TRBP and naive mean field on the Ising model with (a) mixed
coupling strength and (b) attractive coupling strength. The curves represent the median error over 20 trials,
and the error bars are 25% and 75% percentiles. (c¢) Lower bound found by negative TRBP as a function of
iteration for a fixed positive tree, and when the positive tree is updated using the Chow-Liu heuristic. Updating
the choice of positive tree yields a much tighter lower bound.

naive mean field; for comparison, we also calculate the
upper bound found using TRBP. For mean field, we re-
run the algorithm starting from uniform marginals and
ten random initializations, and select the best lower
bound. Negative TRBP is run only once, with initial
B = 10, a randomly selected positive tree, and p;;
created by drawing spanning trees until all edges are
covered. Step sizes used were eg = 1 and €, = 0.05.

Fig. 3a-b show the results of these experiments (me-
dian values, with interquartile range shown as error
bars). Negative TRBP gives a significant improvement
over naive mean field (typically about a factor of two)
on most of the domain.

To see the effect of our choice of positive spanning tree,
we compare the bound obtained using a fixed positive
spanning tree to that obtained using our Chow-Liu
heuristic, as a function of iteration on an attractive
model with ¢ = .6; the results are shown in Fig. 3c. Al-
though in some domains there may be a natural struc-
ture to emphasize, one advantage of our approach is
its ability to adaptively search for the best structure
during inference, as the importance of dependencies
becomes evident. This can be seen in the figure, as
adapting the structure greatly tightens the bound.

9 CONCLUSION

In this paper, we have established a reversed Jensen’s
inequality and applied it to develop a lower bound of
the log partition function. Our algorithm mirrors the
update equations of TRBP, showing that upper and
lower bounds are obtained via the same algorithm un-
der different weight conditions. We also have shown
that structured mean field on any v-acyclic subgraph
is a limiting case of our algorithm. Our algorithm im-
proves significantly on naive mean field, and further-

more can use its current results to modify the struc-
ture of the underlying approximation, improving on
bounds using a single fixed structure. Open questions
include improving the optimization, particularly the
combinatorial choice of positive tree, and whether the
bounds can be further tightened, such as exploring the
relationship of b-acyclic structured mean field.
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