
Steepest Descent Neural Architecture Optimization: Going
Beyond Black Boxes

Qiang Liu
UT Austin

December 20, 2019

Liu et al. December 20, 2019 1 / 30

Neural Architecture Optimization in Deep Learning

� Neural architecture optimization is of critical importance:

◦ Significantly improving the accuracy (beyond parameter optimization).

◦ Enabling automatic machine learning (AutoML).

◦ Search computation/energy-efficient architectures for mobile, IoT
settings.

Liu et al. December 20, 2019 2 / 30

Neural Architecture Optimization in Deep Learning

Parameter learning has been found “easy” via gradient-based
optimization (a.k.a. back-propagation).

But neural architecture optimization is much more difficult...

� Discrete combinatorial optimization:

◦ large search space
◦ expensive evaluation

� Mostly solved by derive-free, brute-force, black-box optimizers:

◦ Evolutionary, genetic algorithms, reinforcement learning, etc.
◦ Requires expensive computational resource to succeed.

� Theoretical / mathematical studies have been largely missing!

Liu et al. December 20, 2019 3 / 30

Question: Can we derive fast “gradient-descent-like” algorithms for
neural architecture optimization?

� This work:

◦ A steepest descent approach for neural architecture optimization.

◦ A practical algorithm that progressively grows networks by “splitting neurons”.

◦ Fast and practical, learns accurate and compact neural architectures.

Liu et al. December 20, 2019 4 / 30

Overall Framework
� Structure of a d-layer DNN is characterized by

the width of each layers

m = [m1,m2, . . . ,md].

� Let Θm be the space of parameters with
structure m.

� the Overall model space is

Θ∞ = ∪m∈Nd Θm.

� Structure-Parameter Co-optimization:

min
θ∈Θ∞

L(θ)

� Yields (infinite dimensional) continuous optimization,
solve it by (functional) steepest descent!

Liu et al. December 20, 2019 5 / 30

Steepest Descent: Parametric Case

Recall parametric steepest descent on Rd :

θt+1 � arg min
θ∈Rd

{
L(θ)− L(θt) s.t. ‖θ − θt‖ ≤ ε

}
,

When ‖·‖ is Euclidean norm and ε→ 0+, reduces to

� gradient descent at non-stationary points.

� “eigen-descent” at saddle points or local maxima.

◦ naturally escaped by stochastic gradient descent.

� convergence at local minima.

source: offconvex.org

Liu et al. December 20, 2019 6 / 30

We Want to Derive Steepest Descent on Θ∞

� Equip Θ∞ with a proper notion of distance D(θ, θ′).

� Derive steepest descent on Θ∞:

θt+1 � arg min
θ∈Θ∞

{
L(θ)− L(θt) s.t. D(θ, θt) ≤ ε

}
,

◦ ε: small step size.
◦ Hope to derive simple update formula when ε→ 0+.

Key Challenge: How to define distance D(·, ·) on Θ∞?

� Measures inherent difference of DNNs with different sizes.

� Yields fast and practical algorithms.

Liu et al. December 20, 2019 7 / 30

Use Wasserstein Metrics!

� Idea: Match the sizes using optimal transport.

� Consider two one-hidden-layer neural networks of different sizes:

f (x ; θ) =
m∑
i=1

wiσ(θi , x), f (x ; θ′) =
m′∑
i=1

w ′i σ(θ′i , x),

where θ = {wi , θi}mi=1 and θ′ = {w ′i , θ′i}m
′

i=1 are of different sizes.

∞-Wasserstein metric:

D∞(θ, θ′) = inf
γ∈Γ

max
ij : γij 6=0

∥∥θi − θ′j∥∥
Γ: the set of m ×m′ matrices with γij ≥ 0,∑

j γij = wi and
∑

i γij = w ′j , for all ∀i , j . Assume∑
i wi = 1 and wi ≥ 0.

Liu et al. December 20, 2019 8 / 30

Geometric of ∞-Wasserstein

ε−ball in Euclidean space ε−ball in ∞-Wasserstein

[θ,w] 7→ [θ′,w] [θ,w] 7→ {[θ′i ,wi]},
∑

i wi = w
Parametric updates Structural updates (by “splitting” neurons)

Liu et al. December 20, 2019 9 / 30

∞-Wasserstein Steepest Descent

∞-Wasserstein Steepest descent on Θ∞ alternates between parametric
updates and structural updates:

Liu et al. December 20, 2019 10 / 30

∞-Wasserstein Steepest Descent

�∞-Wasserstein Steepest descent on Θ∞ alternates between two phases:

� Parametric descent within a fixed structure.
◦ Standard gradient descent.
◦Only update parameters; no structural change.
◦ Stops when local minima (in Euclidean space) is reached

� Structural descent to grow the network
◦ Splitting neurons into multiple copies:

θ,w 7→ {θi ,wi}, with
∑
i

wi = w .

◦ Update both parameters and structures.
◦ Happens only at parametric stationary points

Liu et al. December 20, 2019 11 / 30

Progressive Training by Splitting Neurons

� Starting from a small net, gradually grow the net during training.

� Grow by “splitting” existing neurons into multiple off-springs.

Liu et al. December 20, 2019 12 / 30

∞-Wasserstein Steepest Descent = Optimal Splitting

� What neurons should be split first?

� Does splitting decrease the loss? How much?

� How to split a neuron optimally?

� How many copies to split into?

“splitting unstable”

vs.

“splitting stable”

Liu et al. December 20, 2019 13 / 30

Deriving Optimal Splitting: Simple Case

� Consider the simplest case of a single-neuron network σ(θ, x):

L(θ) = Ex∼D[Φ(σ(θ, x))].

� Split it into m neurons θ := {θi}mi=1 with weights w := {wi}:

 L(θ,w) = Ex∼D

[
Φ

(
m∑
i=1

wiσ(θi , x)

)]
.

� Obviously, L(θ,w) = L(θ) when θi = θ and
∑

i wi = 1.

� Question: How to choose m and {θ, w} optimally

min
m,θ,w

{
 L(θ,w) s.t. ‖θi − θ‖ ≤ ε, wi ≥ 0 ,

m∑
i=1

wi = 1, ∀i
}
.

Liu et al. December 20, 2019 14 / 30

� Let θi = θ + ε(δavg + δi), such that
∑

i wiδi = 0.

◦ δavg is the average displacement;

◦ δi is the splitting direction of θi .

� A key decomposition of the augmented loss:

 L(θ, w) = L(θ + εδavg)︸ ︷︷ ︸
Displacement

+
ε2

2
II (θ, δ,w)︸ ︷︷ ︸
Splitting

+ O(ε3)

where

II (θ, δ,w) =
m∑
i=1

wiδ
>
i S(θ)δi ,

and S(θ) is a “semi-Hessian” matrix called the “splitting matrix”:

S(θ) = E[Φ′(σ(θ, x))∇2
θθσ(θ, x)].

Liu et al. December 20, 2019 15 / 30

 L(θ, w) = L(θ + εδavg)︸ ︷︷ ︸
Displacement

+
ε2

2
II (θ, δ,w)︸ ︷︷ ︸
Splitting

+ O(ε3)

� Optimal splitting:

min
m,δ,w

{
II (θ, δ,w) :=

m∑
i=1

wiδ
>
i S(θ)δi

}

◦When λmin(S(θ)) < 0, the optimal strategy is to split the neuron into
two copies with equal weights, following the minimum eigen direction:

m = 2, δ1 = vmin(S(θ)), δ2 = −vmin(S(θ)), w1 = w2 = 1/2.

◦When λmin(S(θ)) > 0, no splitting can decrease the loss. L(θ) is splitting
stable in this case.

Liu et al. December 20, 2019 16 / 30

� The splitting matrix is a “semi-Hessian” matrix:

S(θ) = E[Φ′(σ(θ, x))∇2
θθσ(θ, x)].

� Hessian matrix:
∇2L(θ) = S(θ) + T (θ),

where
T (θ) = E

[
Φ′′(σ(θ, x))∇θσ(θ, x)⊗2

]
.

� S(θ) is the “easy part” of the Hessian matrix.

Liu et al. December 20, 2019 17 / 30

More general Case

� For neural networks with n (types of) neurons θ[1:n] = {θ[1], . . . , θ[n]},
splitting each θ[`] into m` off-springs θ[`] = {θ[n]

i }
m`
`=1 with weights

w [`] = {w [`]
i },

 L(θ[1:n],w [1:n]) = L(θ[1:n] + εδ
[1:n]
avg)︸ ︷︷ ︸

displacement

+
ε2

2

n∑
`=1

II`(θ
[1:n]; δ[`], w [`])︸ ︷︷ ︸

splitting

+O(ε3).

� The overall splitting effect is the sum of individual splittings; there is no
crossing term in the splitting matrix, unlike Hessian matrix.

� Neurons of different types can be compared using their splitting
matrices.

� Naturally applies to deep neural networks.

Liu et al. December 20, 2019 18 / 30

Overall Algorithm

� Repeat:

◦ Run standard gradient descent to convergence.

◦ Calculate the splitting matrices of all the neurons to be split.

◦ Split the neurons with most negative minimum eigenvalues into two copies
with equal weights, following the eigenvector directions.

Liu et al. December 20, 2019 19 / 30

Overall Algorithm

� Repeat:

◦ Run standard gradient descent to convergence.

◦ Calculate the splitting matrices of all the neurons to be split.

◦ Split the neurons with most negative minimum eigenvalues into two copies
with equal weights, following the eigenvector directions.

Liu et al. December 20, 2019 19 / 30

Overall Algorithm

� Repeat:

◦ Run standard gradient descent to convergence.

◦ Calculate the splitting matrices of all the neurons to be split.

◦ Split the neurons with most negative minimum eigenvalues into two copies
with equal weights, following the eigenvector directions.

� The computational cost of exact eigen-computation is O(nd3).

◦ n: the number of neurons;
◦ d : the number of parameters of each neuron.

Liu et al. December 20, 2019 19 / 30

Fast eigen-calculation w/o expanding splitting matrix

� Minimum eigenvalues by gradient descent on Rayleigh quotient:

λmin = min
v

{
R(v) :=

v>S(θ)v

v>v

}
, vmin = arg min

v
R(v),

Gradient descent:

vt+1 ∝ vt − ε∇vR(vt), ∇vR(v) ∝ S(θ)v − R(v)v

� The matrix-vector product S(θ)v for ∀v ∈ Rd can be calculated with an
automatic differentiation trick:

S(θ)v = ∇yF (0), F (y) = E
[
Φ(σ(θ, x) + y>∇2

θθσ(θ, x)v)
]

Can be done simultaneously for all the neurons.

Liu et al. December 20, 2019 20 / 30

Toy Example

� One-dimensional RBF neural network (with 15 neurons).
� Splitting starting from a single neuron.

L
os

s

0 200k 400k0.0

0.2

0.4

0.6

0.8
Optimal Split (ours)
Random Split
New Initialization
Gradient Boosting
Baseline (scratch)

Iteration of gradient steps

Liu et al. December 20, 2019 21 / 30

Growing Interpretable Network

� Training the interpretable neural network by Li et al. 20181 .

1
Li, Oscar et al. “Deep learning for case-based reasoning320 through prototypes: A neural network that explains its

predictions”. In Thirty-Second AAAI321 Conference on Artificial Intelligence, 2018.

Liu et al. December 20, 2019 22 / 30

Growing Interpretable Network

Eigenvalue Loss decay (splitting + finetune)

Liu et al. December 20, 2019 23 / 30

Result on CIFAR10

� Compare with pruning methods: batch-normalization-based pruning
(Bn-prune) (Liu et al., 20172) and L1-based pruning (L1-prune) (Li et
al., 20173).

MobileNet VGG19

T
es

t
A

cc
u

ra
cy

0.00 0.04 0.08 0.120.83

0.85

0.87

0.89

0.92

0.903

0.00 0.04 0.08 0.12

0.88

0.90

0.92

0.94
0.935

Ours
Bn-prune
L1-prune
Baseline

Parameter Size (ratio) Parameter Size (ratio)

2
Liu, Zhuang et al. ”Learning efficient convolutional networks through network slimming.” In Proceedings of the IEEE

International Conference on Computer Vision, pp. 2736?2744, 2017.
3

Li, Hao et al. “Pruning filters for efficient convnets”. International Conference on Learning Representations, 2017.

Liu et al. December 20, 2019 24 / 30

ImageNet with MobileNetv1 and MobileNetv2

Under review as a conference paper at ICLR 2020

Model MACs (G) Top-1 Accuracy Top-5 Accuracy
MobileNetV1 (1.0x) 0.569 72.93 91.14
Splitting-4 0.561 73.96 91.49
MobileNetV1 (0.75x) 0.317 70.25 89.49
AMC (He et al., 2018) 0.301 70.50 89.30
Splitting-3 0.292 71.47 89.67
MobileNetV1 (0.5x) 0.150 65.20 86.34
Splitting-2 0.140 68.26 87.93
Splitting-1 0.082 64.06 85.30
Splitting-0 (seed) 0.059 59.20 81.82

Table 1: Results of ImageNet classification using MobileNetV1. Splitting-k denotes the model we
discovered at the k-th splitting stage. Our method yields networks with both higher accuracy and
lower number of multiply-and-accumulate (MAC) operations.

Model MACs (G) Top-1 Accuracy Top-5 Accuracy
MobileNetV2 (1.0x) 0.300 72.04 90.57
Splitting-3 0.298 72.84 90.83
MobileNetV2 (0.75x) 0.209 69.80 89.60
AMC (He et al., 2018) 0.210 70.85 89.91
Splitting-2 0.208 71.76 90.07
MobileNetV2 (0.5x) 0.097 65.40 86.40
Splitting-1 0.095 66.53 87.00
Splitting-0 (seed) 0.039 55.61 79.55

Table 2: Results on ImageNet using MobileNetV2. Splitting-k denotes the model we discovered at
the k-th splitting stage. MAC denotes the number of multiply-and-accumulate operations.

splitting. We use Splitting-k to represent the model we discovered at the k-th splitting stage. We
report the single-center-crop validation error of different models.

MobileNetV1 Results In Table 1, we find that our method achieves about 1% top-1 accuracy
improvements in general when targeting similar flops. On low-flops regime (< 0.15G flops), our
method achieves 3.06% higher top-1 accuracy compared with MobileNet (0.5X) (with width mul-
tiper 0.5). Also, the model found by our method is 0.97% higher than a prior art pruning method
(AMC (He et al., 2018)) when comparing with checkpoints with ⇠0.3G flops.

MobileNetV2 Results From table 2, we find that our splitting models yield better performance
compared with prior art expert-designed architectures on all flops-regimes. Specially, out splitting-
3 reaches 72.84 top-1 accuracy; this yields an 0.8% improvement over its corresponding baseline
model. On the low-flops regime, our splitting-2 achieves an 1.96% top-1 accuracy improvement over
MobileNetV2 (0.75x); our splitting-1 is 1.1% higher than MobileNetV2 (0.5x). Our performance is
also about 0.9% higher than AMC when targeting 70% flops.

5.4 ABLATION STUDY

In our algorithm, the growth ratio ↵ controls how many neurons we could split at each splitting
stage. In this section, we perform an in-depth analysis of the effect of different ↵ values. We also
examine the robustness of our splitting method regarding randomness during the network training
and splitting (e.g. parameters initializations, data shuffle).

Impact of growth ratio To find the optimal growth ratio ↵, we ran multiple experiments with
different growth ratio ↵ under the same settings as section 5.2. Figure 6 (a) shows the performance
of various runs. We find that the growth ratio in the range of [0.3, 0.5] tend to perform similarly well.
However, the smaller growth ratio of ↵ = 0.2 tends to give lower accuracy, this may be because with

9

Liu et al. December 20, 2019 25 / 30

Keyword Spotting on Microcontrollers

� Identifying a set of keywords from speech signal

◦ e.g., “wake words” for Alexa or Google Assistant.
◦ highly resource constrained due to the always-on nature.
◦ use benchmark from Zhang et al 20174.

Method Acc Params (K) Ops (M)

DNN 86.94 495.7 1.0
CNN 92.64 476.7 25.3
BasicLSTM 93.62 492.6 47.9
LSTM 94.11 495.8 48.4
GRU 94.72 498.0 48.4
CRNN 94.21 485.0 19.3

DS-CNN 94.85 413.7 56.9
Ours 95.36 282.6 39.2

T
es

t
A

cc
u

ra
cy

0K 200K 400K90

92

94

96

94.85

0M 20M 40M 60M90

92

94

96

94.85

Ours
Prune
DS-CNN

#Params #Ops

4
Zhang, Yundong, et al. ”Hello edge: Keyword spotting on microcontrollers.” arXiv preprint arXiv:1711.07128 (2017).

Liu et al. December 20, 2019 26 / 30

Particle Approximate Inference via Splitting Descent

� Giving a distribution p, find a set of samples {θi} to approximate p.

� Can be framed into optimization:

min
{θi}

D({θi}, p),

where D(·, ·) is a discrepancy measure (e.g., MMD, Stein discrepancy,
etc).

� Splitting descent: gradually grow samples by splitting.

Liu et al. December 20, 2019 27 / 30

Automatic Machine Learning

� Use splitting as a way for automatic neural network structure
optimization across different datasets.

� Compared with neural nets with typical cross validation, and xgboost.

Liu et al. December 20, 2019 28 / 30

Conclusion

� “Gradient-based” algorithm for neural architecture optimization (NAO).

� Progressive training by splitting neurons.

� Simple and fast, promising in practice.

� Opens a new dimension for energy-efficient NAO.

Reference:

� Liu et al. Splitting Steepest Descent for Growing Neural Architectures.

NeurIPS 2019

� Wang et al. Energy-Aware Neural Architecture Optimization with Fast

Splitting Steepest Descent. Arxiv 2019

Liu et al. December 20, 2019 29 / 30

https://arxiv.org/abs/1910.02366
https://arxiv.org/abs/1910.03103
https://arxiv.org/abs/1910.03103

Thanks!

Dilin Wang Lemeng Wu Chengyue Gong

Liu et al. December 20, 2019 30 / 30

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	anm2:

