Steepest Descent Neural Architecture Optimization: Going
Beyond Black Boxes

Qiang Liu
UT Austin

December 20, 2019

e A B 0

Neural Architecture Optimization in Deep Learning

0 Neural architecture optimization is of critical importance:

o Significantly improving the accuracy (beyond parameter optimization).
o Enabling automatic machine learning (AutoML).

o Search computation/energy-efficient architectures for mobile, loT
settings.

e B 2 0

Neural Architecture Optimization in Deep Learning

Parameter learning has been found “easy” via gradient-based
optimization (a.k.a. back-propagation).

But neural architecture optimization is much more difficult...
01 Discrete combinatorial optimization:
o large search space

o expensive evaluation

0 Mostly solved by derive-free, brute-force, black-box optimizers:

o Evolutionary, genetic algorithms, reinforcement learning, etc.
o Requires expensive computational resource to succeed.

01 Theoretical / mathematical studies have been largely missing!

e A S 80

Question: Can we derive fast “gradient-descent-like” algorithms for
neural architecture optimization?

0 This work:
o A steepest descent approach for neural architecture optimization.
o A practical algorithm that progressively grows networks by “splitting neurons” .

o Fast and practical, learns accurate and compact neural architectures.

P

Overall Framework

0 Structure of a d-layer DNN is characterized by
the width of each layers

m = [ml,mg,...,md].

0 Let @, be the space of parameters with
structure m.

O the Overall model space is

G)oo == UmENdem'

0 Structure-Parameter Co-optimization:

o B, -
min L(6)

0cBO

0 Yields (infinite dimensional) continuous optimization,
solve it by (functional) steepest descent!

P B0

Steepest Descent: Parametric Case

Recall parametric steepest descent on RY:

0:.1 = argmin {L(O) —L(6:) s.t. ||60—6: < 6},
6cRd

When ||-|| is Euclidean norm and € — 0T, reduces to
O gradient descent at non-stationary points.
[“eigen-descent” at saddle points or local maxima.

o naturally escaped by stochastic gradient descent.
1 convergence at local minima.

large gradient saddle point

local min

Liu et al.

2

December 20, 2019 6 /30

We Want to Derive Steepest Descent on O,

"1Equip O with a proper notion of distance D(0, €’).

0 Derive steepest descent on @ :

0:+1 =< argmin {L(Q) — L(6:) s.t. DO, 6;) < e},

6cO

o e: small step size.
o Hope to derive simple update formula when € — 0%.

Key Challenge: How to define distance D(-,-) on ©?

0 Measures inherent difference of DNNs with different sizes.

O Yields fast and practical algorithms.

P e

Use Wasserstein Metrics!

0 ldea: Match the sizes using optimal transport.

01 Consider two one-hidden-layer neural networks of different sizes:
Z wio (0;, x), f(x; 0')= Z wio (0}, x
i=1
where 6 = {w;,0;}7, and @' = {w/, 0/}, are of different sizes.

oo-Wasserstein metric: O/.
Dso(8, ') = inf max ||6; — 0]

YET ij: ;70

[: the set of m x m’ matrices with ~;; > 0

> = w; and ;v = w;, for all Vi,_j. Assume
Z,—W,-:land W,'ZO.

J

D e B 0

Geometric of oo-Wasserstein

e—ball in Euclidean space e—ball in co-Wasserstein

O

[9, W] = [915 W] [05 W] = {[915 Wi]}’ Zi wj = w
Parametric updates Structural updates (by “splitting” neurons)

Liu et al. December 20, 2019 9 /30

oo-Wasserstein Steepest Descent

oo-Wasserstein Steepest descent on ©, alternates between parametric

updates and structural updates:

‘e

Error

Parametric Descent

Structural descent
(e.g., splitting)
ny .,

4

Parametric Descent

Time

v

December 20, 2019

10 / 30

-
oo-Wasserstein Steepest Descent

0 oo-Wasserstein Steepest descent on O, alternates between two phases:

0O Parametric descent within a fixed structure.
o Standard gradient descent.
o Only update parameters; no structural change. % %
o Stops when local minima (in Euclidean space) is reached

0 Structural descent to grow the network

o Splitting neurons into multiple copies:
w/3\W/3
0, w— {0;,w;}, with Z W = w.
o Update both parameters and structures

o Happens only at parametric stationary points

e) G kb

Progressive Training by Splitting Neurons

0 Starting from a small net, gradually grow the net during training.

0 Grow by “splitting” existing neurons into multiple off-springs.

TR

|
oo-Wasserstein Steepest Descent = Optimal Splitting

00 What neurons should be split first?
01 Does splitting decrease the loss? How much?
0 How to split a neuron optimally?

00How many copies to split into?

@

“splitting unstable”

VS.

—2h—

“splitting stable”

e G G G

|
Deriving Optimal Splitting: Simple Case

1 Consider the simplest case of a single-neuron network (6, x):

L(Q) = EXND[(D(O'(H, X))]

0 Split it into m neurons 6 := {0;}7 ; with weights w := {w;}:

L0, w) = XND[(ZW, 0,,x>].

0 Obviously, (6, w) = L(0) when 6; =6 and), w; = 1.

1 Question: How to choose m and {6, w} optimally

min {L(G,w) st [10;—6 <e, wi>0 , > wi=1, \1;}.
i=1

m,0,w

v

e e i

Olet §; =0 + €(davs + 0;), such that Y. w;0; = 0.
© 04y is the average displacement;

o ; is the splitting direction of 6;.

01 A key decomposition of the augmented loss:

2
L0, w) = L(0 + cbag) + %//(9,5,14/) + 0(&)

Displacement Splitting

where
1(6,6,w) Z w;6; S(

and S(6) is a “semi-Hessian" matrix called the “splitting matrix”:

S(0) = E[®'(0(8, x)) Ve (8, x)].

ST

15 / 30

2
LB, w) = L(0+ c0ayg) + %ll(@,é,w) + 0()

Displacement Splitting

0 Optimal splitting:
To
m,& {II(Q o, w) ZW,(S }

o When Apin(S(9)) < 0, the optimal strategy is to split the neuron into
two copies with equal weights, following the minimum eigen direction:

m=2, 01 =vmin(500)), 92 =—vmin(5(0)), w1 =wr=1/2.

o When Apmin(S(0)) > 0, no splitting can decrease the loss. L(6) is splitting
stable in this case.

e G G i

01 The splitting matrix is a “semi-Hessian” matrix:
S(6) = E[®'(0(6, x))Vigo (6, x)].

1 Hessian matrix:

V2L(0) = S(0) + T(9),

where
T(0) =E [¢"(o(0, x)) Voo (8, x)¥?] .

115(0) is the “easy part” of the Hessian matrix.

e G G i

More general Case

= For neural networks with n (types of) neurons 91171 = {1 glly,
splitting each 619 into my off-springs 69 = {GI["]}ZZI with weights
wld — {Wim}'

2
L(g[l:n]7 W[l:n]) (9[1 n| + (5‘[9%@”]) E Z //6(9[1:n]; 6[5]’ W[[]) -|—O(e3)
(=1

displacement splitting

0 The overall splitting effect is the sum of individual splittings; there is no
crossing term in the splitting matrix, unlike Hessian matrix.

0 Neurons of different types can be compared using their splitting
matrices.

0 Naturally applies to deep neural networks.

e A G A

-
Overall Algorithm

0 Repeat:

o Run standard gradient descent to convergence.
o Calculate the splitting matrices of all the neurons to be split.

o Split the neurons with most negative minimum eigenvalues into two copies
with equal weights, following the eigenvector directions.

B G G A

-
Overall Algorithm

0 Repeat:

o Run standard gradient descent to convergence.
o Calculate the splitting matrices of all the neurons to be split.

o Split the neurons with most negative minimum eigenvalues into two copies
with equal weights, following the eigenvector directions.

0.9

o
0

1

Test Accuracy

o
3

0.6

= Uniformly Grow
----- Full Model Size

@ Ours
0.1 0.2 0.3 0.4 0.5
#params (M)

December 20, 2019 19 / 30

-
Overall Algorithm

0 Repeat:

o Run standard gradient descent to convergence.
o Calculate the splitting matrices of all the neurons to be split.

o Split the neurons with most negative minimum eigenvalues into two copies
with equal weights, following the eigenvector directions.

1 The computational cost of exact eigen-computation is O(nd®).

o n: the number of neurons;
o d: the number of parameters of each neuron.

B G G A

Fast eigen-calculation w/o expanding splitting matrix

01 Minimum eigenvalues by gradient descent on Rayleigh quotient:

-
Amin = Min {R(V) o= L(G)v} , Vmin = arg min R(v),

viv v
Gradient descent:

Vit1 X v — €VyR(ve), VyR(v) x S(0)v — R(v)v

"1 The matrix-vector product S(#)v for ¥v € R¥ can be calculated with an
automatic differentiation trick:

SOV =V,F(0), F(y)=E|o(a(8,x)+ yTvgga(Q,x)v)}

Can be done simultaneously for all the neurons.

e) G 2l

-
Toy Example

01 One-dimensional RBF neural network (with 15 neurons).
0 Splitting starting from a single neuron.

0.8
— QOptimal Split (ours)
_—-‘| — -+ Random Split
0.6 : — = New Initialization
»=. 4—, —-' Gradient Boosting
. 04 T| ‘ -=- Baseline (scratch)
(72) .
(o]
—
0.2
0.0 0 200k 400k

Iteration of gradient steps

e G G 2l

Growing Interpretable Network

0 Training the interpretable neural network by Li et al. 2018 .

1
predictions”. In Thirty-Second AAAI321 Conference on Artificial Intelligence, 2018.

Li, Oscar et al. “Deep learning for case-based reasoning320 through prototypes: A neural network that explains its

22 / 30

Growing Interpretable Network

() Eigenvalue []Loss decay (splitting + finetune)
0 1 2 3 4
0.00 - - +70.00

—0.02f T H— | F--------n--- 0.05

Alazs

e G G 28

Result on CIFAR10

00 Compare with pruning methods: batch-normalization-based pruning
(Bn-prune) (Liu et al., 20172) and L1-based pruning (L1-prune) (Li et

al., 20173).
MobileNet
0.92
~~ -]
0.903 g e
3 089 e,/’o—-—e
o P
3 il ---
0.87
Q /
-y
+]
$ 0.85 I
~ i
@
0"3(?.00 0.04 0.08 0.12

Parameter Size (ratio)

VGG19
0.94 L ®-—-F=-—-4
0.935 g - pr—]
e
0.92 {e
]
0.90 ?
0.88?
]
1 1
0.00 0.04 0.08 0.12

Parameter Size (ratio)

International Conference on Computer Vision, pp. 273672744, 2017.

Li, Hao et al. “Pruning filters for efficient convnets”.

-©- Ours
=©- Bn-prune
-©- L1-prune

Baseline

2Liu, Zhuang et al. " Learning efficient convolutional networks through network slimming.” In Proceedings of the IEEE

International Conference on Learning Representations, 2017.

December 20, 2019 24 / 30

-
ImageNet with MobileNetvl and MobileNetv2

Model | MACs (G) Top-1 Accuracy Top-5 Accuracy
MobileNetV1 (1.0x) 0.569 7293 91.14
Splitting-4 0.561 73.96 91.49
MobileNetV1 (0.75x) 0.317 70.25 89.49
AMC (He et al., 2018) 0.301 70.50 89.30
Splitting-3 0.292 71.47 89.67
MobileNetV1 (0.5x) 0.150 65.20 86.34
Splitting-2 0.140 68.26 87.93
Splitting-1 0.082 64.06 85.30
Splitting-0 (seed) 0.059 59.20 81.82
Model | MACs (G) Top-1 Accuracy Top-5 Accuracy
MobileNetV2 (1.0x) 0.300 72.04 90.57
Splitting-3 0.298 72.84 90.83
MobileNetV2 (0.75x) 0.209 69.80 89.60
AMC (He et al., 2018) 0.210 70.85 89.91
Splitting-2 0.208 71.76 90.07
MobileNetV2 (0.5x) 0.097 65.40 86.40
Splitting-1 0.095 66.53 87.00
Splitting-0 (seed) [0.039 55.61 79.55

B G G 2

Keyword Spotting on Microcontrollers

0 Identifying a set of keywords from speech signal
oe.g., “wake words" for Alexa or Google Assistant.
o highly resource constrained due to the always-on nature.
o use benchmark from Zhang et al 20174,

©
3

96

Method Acc Params (K) Ops (M) > ° P

DNN 86.94 4957 1.0 g oo o e I IR re

CNN 9264 476.7 25.3 g ?,;e' o4 f,’e'
BasicLSTM|93.62 492.6 47.9 < P e

LSTM 9411 495.8 48.4 B 2ed 208 o

GRU 9472 498.0 48.4 F i D beoan
EENC'\'I\IN gigé i?gs ézg 900!’(’ 200K 400K QOOI;' 20M 40M 60M
Ours 9536 282.6 39.2 #Params #Ops

4Zhang, Yundong, et al. "Hello edge: Keyword spotting on microcontrollers.” arXiv preprint arXiv:1711.07128 (2017).

e A a2

Particle Approximate Inference via Splitting Descent

0 Giving a distribution p, find a set of samples {6;} to approximate p.

0 Can be framed into optimization:
in 9,‘ N ,
I{'Gl,-} D({6:}, p)

where D(+,-) is a discrepancy measure (e.g., MMD, Stein discrepancy,
etc).

0 Splitting descent: gradually grow samples by splitting.

Bemh G G 2

Automatic Machine Learning

01 Use splitting as a way for automatic neural network structure
optimization across different datasets.

(1 Compared with neural nets with typical cross validation, and xgboost.

1.25
@
o
1.20
= XGBoost
@ Tic Tac Toe Endgame
@ lonosphere Radar Returns
1.15 @ lLeaf
Credit Default
=
= @ Car Evaluation
+ 1.10 © Glass
%_ (@O Teaching Assistant Evaluation
n (O Wholesale Customer Region
(O Dermatology
1.05 (@) (O Haberman's Breast Cancer Survival
(O Mice Protein Expression
© Seismic Mining
@© Seed Classification
" Diabetic Retinopathy
1.00
@ Adult incoming
Website Phishin
) 9
0.95 '
095 100 105 1.10 115 120 1.25

Regular NN with cross validation

December 20, 2019

28 / 30

Conclusion

0 “Gradient-based” algorithm for neural architecture optimization (NAO).
01 Progressive training by splitting neurons.
01 Simple and fast, promising in practice.

0 Opens a new dimension for energy-efficient NAO.

Reference:

U Liu et al. Splitting Steepest Descent for Growing Neural Architectures.
NeurlPS 2019

U Wang et al. Energy-Aware Neural Architecture Optimization with Fast
Splitting Steepest Descent. Arxiv 2019

e G G 2

https://arxiv.org/abs/1910.02366
https://arxiv.org/abs/1910.03103
https://arxiv.org/abs/1910.03103

Thanks!

Dilin Wang Lemeng Wu Chengyue Gong
”:.: 2,,
" N’ \P-¥
e

e G G Sl

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	anm2:

