Effective Incorporation of
Double Look-Ahead Procedures

Marijn Heule* and Hans van Maaren

Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Sciences
Delft University of Technology
marijn@heule.nl, h.vanmaaren@tudelft.nl

Abstract. We introduce an adaptive algorithm to control the use of
the double look-ahead procedure. This procedure sometimes enhances
the performance of look-ahead based satisfiability solvers. Current use
of this procedure is driven by static heuristics. Experiments show that
over a wide variety of instances, different parameter settings result in
optimal performance. Moreover, a strategy that yields fast performance
on one particular class of instances may cause a significant slowdown on
other families. Using a single adaptive strategy, we accomplish perfor-
mances close to the optimal performances reached by the various static
settings. On some families, we clearly outperform even the fastest perfor-
mance based on static heuristics. This paper provides a description of the
algorithm and a comparison with the static strategies. This method is
incorporated in march_dl, satz, and kenfs. Also, the dynamic behavior of
the algorithm is illustrated by adaptation plots on various benchmarks.

1 Introduction

Nowadays state-of-the-art satisfiability (SAT) solving shows two main solving ar-
chitectures: conflict-driven and look-ahead driven. As tuned by the SAT compe-
titions over the last years these two architectures seem to perform in an almost
complementary way. The conflict-driven solvers dominate the so called indus-
trial flavored problems (industrial category) while the look-ahead architecture
dominates on random problems and problems with an intrinsic combinatorial
hardness (part of crafted category). This paper deals with an engineering type
of solver optimization with respect to one of the ingredients of look-ahead SAT
solving.

The look-ahead architecture of (SAT) solvers has two important features: (1)
It selects branching variables that result in a balanced search-tree; and (2) it
detects failed literals to reduce the size of the search-tree. Many enhancements
have been proposed for this architecture in recent years. One of the enhance-
ments for look-ahead SAT solvers is the DOUBLELOOK procedure, which was

* Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.306

introduced by Li [7]. The usefulness of this procedure is straight forward: By
also performing look-ahead on a second level of propagation, more failed literals
could be detected, resulting in an even smaller search-tree.

By always performing additional look-aheads on the reduced formula, the
computational costs rise drastically. One would like to restrict this enhance-
ment in such a way that the overall computational time will decrease. Early
implementations rely on restrictions based on static heuristics. Although these
implementations significantly reduce the time to solve random 3-SAT formulas,
they yield a clear performance slowdown on many structured instances.

We designed an algorithm for the DOUBLELOOK procedure that adapts to-
wards the (reduced) CNF formula. Our algorithm has some key advantages: 1)
Existing DOUBLELOOK implementations require only minor changes; 2) only
one magic constant is used, which makes it easy to optimize the algorithm for a
specific solver; and 3) this algorithm appears to outperform existing approaches.

In this paper, section 2 provides a general overview of the look-ahead archi-
tecture and zooms in on the DOUBLELOOK procedure. Section 3 deals with static
heuristics for this procedure and their effect on the performance. Our algorithm
is introduced in section 4 together with an alternative by Li. It offers detailed
descriptions and motivates the decisions made regarding its design. Section 5
illustrates the usefulness and the behavior of the algorithm by experimental
results and adaptation plots. Finally, we draw some conclusions in section 6.

2 Preliminaries

The look-ahead SAT architecture (introduced in [5]) consists of a DPLL search-
tree [3] using a LOOKAHEAD procedure to reduce the formula and to determine
a branch variable Zpyanch (see algorithm 1). We refer to a look-ahead on literal
[as assigning [to true and performing iterative unit propagation. If a conflict
occurs during this unit propagation (the empty clause is generated), then [is
called a failed literal - forcing [to be fixed on false. The resulting formula after
a look-ahead on [is denoted by F(I =1).

Algorithm 1 DPLL(F)
: if F = 0 then
return satisfiable
: else if empty clause € F then

1

2

3

4: return unsatisfiable
5: end if
6

7

8

< f, Tbranch > = LOOKAHEAD(.7‘-)
: if empty clause € F then
: return unsatisfiable
9: else if DPLL(F(Zbranch = 1)) = satisfiable then
10: return satisfiable
11: end if
12: return DPLL(F(Zbranch = 0))

The effectiveness of the LOOKAHEAD procedure (see algorithm 2) depends
heavily on the LOOKAHEADEVALUATION function which should favor variables
that yield a small and balanced search-tree. Detection of failed literals could
further reduce the size of the search-tree. Additionally, several enhancements are
developed to boost the performance of SAT solvers based on this architecture.

One of these enhancements is the PRESELECT procedure, which preselects
a subset of the variables (denoted by P) to enter the look-ahead phase. By
performing look-ahead only on variables in P the computational costs of the
LOOKAHEAD procedure are reduced. However, this may result in less effective
branching variables and less detected failed literals. All three solvers discussed
in this paper, march_dl, satz, and kcnfs, use a PRESELECT procedure. Yet, their
implementation of this procedure is different.

Another enhancement is the DOUBLELOOK procedure (see algorithm 3),
which was introduced by Li [7]. This procedure checks whether a formula re-
sulting from a look-ahead on [is unsatisfiable - it detects [as a failed literal
by performing additional look-aheads on the reduced formula. Since the compu-
tational costs of these extra unit-propagations are high, this procedure should
not be performed on each reduced formula. In the ideal case, one would want to
apply it only when the reduced formula could be detected to be unsatisfiable.
This requires an indicator expressing the likelihood to observe a conflict.

Let F5 denote the set of binary clauses of formula F. Li [7] suggests that the
number of newly created binary clauses (denoted by |Fy \ Fi|, with F; referring
to the set of binary clauses before the reduction) in the reduced formula is an
effective indicator whether or not to perform additional look-aheads: If many
new binary clauses are created during the look-ahead on a literal, the resulting
formula is often unsatisfiable. In algorithm 3 the additional look-aheads are
triggered when the number of newly created binary clauses exceeds the value of
Atrigger- The optimal value of this parameter is the main topic of this paper.

Algorithm 2 LOOKAHEAD(F)

1: P := PRESELECT(F)
2: for all variables z; € P do

3: F' := DouBLELOOK(F(z; = 0), F)

4: F" := DOUBLELOOK(F(z; = 1), F)

5. if empty clause € F’' and empty clause € 7’ then
6: return < F; x>

7: else if empty clause € F' then

8: Fi=F"

9: else if empty clause € 7" then

10: Fi=F

11: else

12: H(z;) = LookAHEADEvVALUATION(F, F', F")
13: end if

14: end for

15: return < F; z; with greatest H(z;) >

Algorithm 3 DOUBLELOOK(F, F*)

1: if empty clause € F then
2: return F

3: end if

4: if |Jf2 \ .7'-2*‘ > Atrigger then

5: for all variables z; € P do

6: F' = F(zi =0)

T: F' = F(x; =1)

8: if empty clause € F' and empty clause € F” then
9: return F’

10: else if empty clause € F’ then
11: F=F"

12: else if empty clause € F” then
13: F=F

14: end if

15: end for

16: end if

17: return F

3 Static Heuristics

The DOUBLELOOK procedure has been implemented in two look-ahead SAT
solvers. Initially, Li proposed a static value for Agigger [7]: In the first implemen-
tation in satz the DOUBLELOOK procedure was triggered using Ayigger := 65.
(The latest version of satz uses a dynamic algorithm which will be discussed in
the next section.) Dubois and Dequen use a variation in their solver kenfs [4]:
In their implementation, the DOUBLELOOK procedure is triggered depending on
the original number of variables (denoted by #vars): Agigger := 0.18#vars.

Both settings of Ayigger Tesult from optimizing this parameter towards the
performance on random 3-SAT formulas. On these instances they appear quite
effective. However, on structured formulas - industrial and crafted - these settings
are far from optimal: On some families, practically none of the look-aheads gen-
erate enough new binary clauses to trigger additional look-aheads. Even worse,
on many other instances both Ay igger settings result in a pandemonium of ad-
ditional look-aheads, which come down hard on the computational costs.

We selected a set of benchmarks from a wide range of families to illustrate
these effects. We generated 20 random 3-SAT formulas with 350 variables with
1491 clauses (10 satisfiable and 10 unsatisfiable formulas) and used 10 random
3color instances from the SAT02 competition [9]. Additionally, we added some
crafted and structured instances from various families:

— the connamacher family (generic uniquely extendible CSPs) contributed by
Connamacher to SAT 2004 [2]. We selected those with n = 600 and d = 0.04;

— the ezfact family (factoring problems) contributed by Pehoushek. We se-
lected the first three benchmarks of 48 bits from SAT 2002 [9];

— the lksat family, subfamily 15k3 (random [-clustered k-SAT instances) con-
tributed by Anton. SAT 2004 [10]. We selected all unsatisfiable instances;

— the longmult family (bounded model checking) contributed by Biere [1]. We
used the instances of size 8, 10 and 12;

— the philips family (multiplier circuit) contributed by Heule to SAT 2004 [10];

— a pigeon hole problem (pholel0) from www.satlib.org;

— the pyhala braun family (factoring problems) contributed by Pyhala Braun
to SAT 2002 [9]. We selected the unsat-35-4-03 and unsat-35-4-04, the
two smallest instances from this family not solved during SAT 2002;

— the stanion/hwb family (equivalence checking problems) contributed by
Stanion. We selected all three benchmarks of size 24 from SAT 2003 [6];

— SaT-encodings of quasigroup instances contributed by Zhang [11] We se-
lected the harder unsatisfiable instances - qg3-9, qgb-13, qg6-12, and qg7-12.

Besides the random instances, all selected benchmarks are unsatisfiable to
realize relatively stable performances. On most these families, the performance
of look-ahead SAT solvers is strong! (compared to conflict-driven SAT solvers).
We performed two tests: One that used constant numbers for Ayggeer - analogue
to early satz - and another used values depending on the original number of
variables - analogue to kenfs. For both tests we used the march_dl SAT solver?.
All experiments were performed on a system with an Intel 3.0 GHz CPU and 1
Gb of memory running on Fedora Core 4. The results of the first test are shown
in table 1 and 2, for the low and high values of Aigger, respectively.

Recall that satz uses Agigger 1= 65 - as a result of experiments on random
3-SAT instances. As expected, setting Aigger := 65 boosts performances on this
family. However, instances from the pyhala-braun and quasigroup are hard to
solve with this parameter setting: On these families the computational time can
be reduced by 80% by changing the setting to Agyigger := 1500. In general, we
observe that a parameter setting which results in optimal performance for a
specific family, yields far-from-optimal performances on other families.

Table 3 offers the results of the second test. On random 3-SAT optimal per-
formance is realized by Agrigger := .20#vars: Indeed close to the setting used
in kenfs. However, none of the parameter settings result in close-to-optimal per-
formances on all families. Moreover, the optimal performances on the families
3color, connamacher, and quasigroup measured during the first test are about
twice as fast as the optimal performances of the second test. So, all parameter
settings used in the second test are far from optimal - at least for these families.

4 Adaptive DoubleLook

We developed an adaptive algorithm to control the DOUBLELOOK procedure.
This algorithm updates Ayigger after each look-ahead in such fashion, that it
adapts towards the characteristics of the (reduced) formula. This section deals
with the decisions made regarding the algorithm. First and foremost - for reasons
of elegance and practical testing - we focused on using only one magic constant.

! based on the results of the SAT competitions, see http://www.satcompetition.org
2 available from http://www.st.ewi.tudelft.nl/sat/

www.satlib.org
http://www.satcompetition.org
http://www.st.ewi.tudelft.nl/sat/

6

Table 1. Performance of march_dl using various static (low) values for Agigger-

[family [0 [10 [3 [65 [100 | 150 |
3color (10) 118.69 39.91 31.50 62.87 67.96 70.42
anton (5) 276.74 | 269.00 | 184.73 | 119.99 80.31 62.39
connamacher (3) || 5352.55 | 5407.50 | 4426.95 | 4373.89 | 4559.49 | 4852.63
ezfact4s (3) 650.01 | 451.55 | 287.67 | 321.70 | 264.79 | 187.93
longmult (3) 886.51 | 578.08 | 452.34 | 278.93 | 219.35 | 255.99
philips (1) 595.43 | 547.54 | 391.43 | 323.97 | 273.99 | 306.71
pigeon(1) 246.62 | 140.05 | 141.65 | 141.45 | 140.53 | 140.37

pyhala-braun(2)|| 4000.0 3024.49 | 2415.46 | 2019.37 | 1481.09 1224.92
quasigroup (4) 2351.98 | 2102.62 1649.78 1437.39 | 1362.80 1327.79
stanion (3) 2102.21 1661.80 941.59 971.29 964.34 972.18
random-sat (10) 157.12 136.95 96.04 71.01 75.44 86.09
random-uns (10) 322.68 285.80 199.03 143.04 156.70 178.00

Table 2. Performance of march_dl using various static (high) values for A¢yigger-

[family [250 | 400 | 600 | 850 | 1150 [1500 |
3color (10) 6726 | 7026 | 7024 | 7049 | 7221 73.52
anton (5) 64.09 | 7328 | 7502 75.07 | 77.22 | 78.98
connamacher (3) || 4353.03 | 2633.67 | 2642.37 | 2861.83 | 4258.05 | 4099.12
ezfact4s (3) 69.87 | 4754 | 5578 | 5716 | 54.56 | 51.91
longmult (3) 272.15 | 291.85 | 249.99 | 243.81 | 278.86 | 303.99
philips (1) 313.98 | 317.23 | 320.84 | 32541 | 32831 | 336.90
pigeon(1) 140.61 | 141.01 | 140.86 | 141.38 | 142.36 | 142.73

pyhala-braun(2)|| 1145.64 941.32 607.76 577.75 449.59 428.26
quasigroup (4) 1225.14 1011.26 849.64 507.18 455.84 358.97
stanion (3) 968.60 963.49 985.46 983.51 988.12 997.59
random-sat (10) 92.53 92.24 93.55 93.20 92.33 91.71
random-uns (10) 186.74 187.64 187.72 189.34 190.04 190.43

The algorithm has three components: (i) The Aprigger initial value, (1) an
increment strategy TRIGGERINCREASE and (#i¢) a decrement strategy TRIG-
GERDECREASE to update Agugeer. Both strategies consist of two parts: The
location within the DOUBLELOOK procedure and the size of the update value.

Regarding the first component: An effective initial value for A¢yigger is prob-
ably as hard to determine as an effective global value for this parameter. There-
fore, the algorithm should work on many initial values - even on zero, the most
costly value at the root node. Hence our decision to initialize A¢yigger := 0.

The first aspect of the increment strategy is rather straight-forward: As-
suming a strong correlation between the value of Agyigger and the detection of
a conflict by the DOUBLELOOK procedure, Agigger should always be increased
when the procedure fails to meet this objective. Algorithm 4 shows an adaptive
variant of the DOUBLELOOK procedure with the increment strategy located at
line 17, the first position following a failure.

7

Table 3. Performance of march_dl using various static values for A igger. These
static values are based on the original number of variables (denoted by #wvars).

| family H.OS #vars[.lO #vars[‘15 #Uars[.QO #vars[.25 #Uars[.SO #varsl
3color (10) 59.08 67.98 70.19 67.08 68.06 65.87
anton (5) 146.13 83.24 62.67 59.40 64.19 67.15
connamacher (3) || 4627.01 | 4387.70 | 4392.15 5078.09 4841.21 4807.81
ezfact48 (3) 324.14 202.17 61.19 50.75 43.85 47.64
longmult (3) 205.46 247.89 308.71 285.71 265.31 267.09
philips (1) 288.72 285.43 311.09 312.46 323.28 311.15
pigeon(1) 158.59 147.60 142.02 142.99 143.96 142.15

pyhala-braun(2)|| 1173.64 1095.74 753.08 590.00 546.79 484.66
quasigroup (4) 1473.65 1201.45 1035.91 1069.18 951.36 837.54
stanion (3) 1885.25 1110.04 938.94 949.83 956.62 973.57
random-sat (10) 118.50 88.57 72.86 70.61 71.55 75.97
random-uns (10) 254.60 185.96 155.18 142.56 150.69 165.46

The largest reasonable increment of Ayyigger appears to make this parameter
equal to the number of newly created binary clauses: Since no conflict was ob-
served, Agyigger should be at least the number of new binary clauses (|F2 \ Fs|)
- which would have prevented the additional computational costs. The smallest
value of the increment is a value close to zero and would result in a slow adap-
tation. The optimal value will probably be somewhere in between. We prefer a
radical adaptation. For this reason we use the largest reasonable value:

TRIGGERINCREASE() : Agigger == |F2 \ F5l (1)

Algorithm 4 ADAPTIVEDOUBLELOOK(F, F*)

1: if empty clause € F then
2: return F

3: end if

4. if |.7:2 \]'—2*‘ > Anigger then

5. for all variables z; € P do

6: F' = F(x; =0)

T F' = F(z; = 1)

8: if empty clause € ' and empty clause € F” then
9: TRIGGERSUCCESS()

10: return F’

11: else if empty clause € F’ then
12: F=F"

13: else if empty clause € 7’ then
14: F=F

15: end if

16: end for

17: TRIGGERINCREASE()

18: else

19: TRIGGERDECREASE()

20: end if

21: return F

Within the DOUBLELOOK procedure, two events could suggest that Agyigger
should be decreased® : (1) The detection of a conflict and (2) the number of
newly created binary clauses is less than Ayrigger. The first event seems the
most logical: If the DOUBLELOOK procedure detects a conflict, this is a strong
indication that a slightly decreased Ay;igger could increase the number of detected
failed literals by this procedure. However, this may result in a deadlock situation:
The increment strategy could update Agigger Such that no additional look-ahead
will be executed, thereby making it impossible to decrease this parameter.

Placing the decrement strategy after the second event would guarantee that
additional look-aheads will be executed every once in a while. Assuming that
the computational time could diminish on all benchmarks by the DOUBLELOOK
procedure, then this location (algorithm 4 line 19) seems a more appealing choice.

How much should Agigeer be decreased if after a look-ahead the number
of newly created binary clauses is less than this parameter? It seems hard to
provide a motivated answer for this question. Therefore, we decided to obtain
an effective value for the decrement using experiments.

These experiments were based on two considerations: First, the tests on static
heuristics (see section 3) showed that effective parameter settings for A¢yigger
ranged from 10 to 1500. Therefore, the decrement should not be absolute but
relative. So, it should be of the form Ayyigger 1= ¢ X Agrigger for some ¢ € [0, 1].

Second, the size of preselected set P could vary significantly over different
nodes. Therefore, the maximum decrement of Ay,igger in each node depends on
the size of P. We believe this dependency is not favorable, so we decided to
“neutralize” it. Notice that at most 2|P| times in each node Ayyigger could be
decreased. Now, let parameter DLgecrease denote the maximum relative decre-
ment of Agigger in & certain node. Then, combining these considerations, the
decrement strategy could be formulated as follows:

P
TRIGGERDECREASE() : Agrigger := v/ DLdecrease X Atrigger (2)

The “optimal” value for parameter DLgecrease is discussed in section 5.1.

The latest version of satz (2.15.2) also uses an adaptive algorithm: () It
initializes Agyigger = .167#vars; (ii) it increases the Agyigger using the same
TRIGGERINCREASE() placed at the same location. The important difference lies
in the location and size of (iii) the decreasing strategy: The algorithm realized
the decrement at line 9 instead of line 19 of algorithm 4 - so Agyigger is only
reduced after a successful DOUBLELOOK call instead of slowly decrease after
each look-ahead.

TRIGGERSUCCESS() : Agrigger := -167#vars (3)

A drawback of this approach is that A¢yigger could never be reduced to a value
smaller than .167#wvars - although we noticed from the experiments on static
heuristics that significant smaller values are optimal in some cases (see table 3).

3 Avrigger could also be decreased after lines 12 and 14 of algorithm 4: Each new forced
literal on a second level of propagation increases the chance of hitting a conflict.

When a high value of Agyigger is optimal this approach might frequently alter

between a relative low value (Agrigger 1= .167#vars) and a relative high value
(Atrigger 1= |F2 \ F5|) or result in the deadlock situation mentioned above.
5 Results

The adaptive algorithm as described above has been implemented in all look-
ahead SAT solvers that contain a DOUBLELOOK procedure: march_dl, satz, and
kenfs. First, we show the effect of parameter DLgecrease On the computational
time. For this purpose, we use the modified march_dl. Second, the performance
is compared between the original versions and the modified variants of satz and
kenfs. Third, the behavior of the algorithm is illustrated by adaptation plots.
During the experiments we used the benchmarks as described in section 3.

5.1 The magic constant

The only undetermined parameter of the adaptive algorithm is DLgecrease- The
computational times resulting from various settings for this parameter are shown
in table 4. The data shows the effectiveness of the adaptive algorithm:

— Different settings for DLgecrease result in comparable performances - gener-
ally close to the optimal values from the experiments using static heuristics.

— We observe that, for DLgecrease := 0.85, performances are realized for the
anton and philips family that are nearly optimal, while on all the other
families this setting outperforms all results using static heuristics.

— The optimal performances achieved by the adaptive heuristics are, on aver-
age, about 20% faster than those that are the result of static heuristics.

Table 4. Influence of parameter DLgecrease On the computational time.

[family [75 [8 [8 | 90 [95 [99
3color (10) 25.77 25.39 25.60 28.98 32.79 44.36
anton (5) 69.22 67.66 64.99 63.26 63.60 66.41
connamacher (3) || 2258.59 | 2723.14 | 1742.62 | 3038.68 | 2872.84 | 4431.91
ezfact4s (3) 39.00 35.18 37.87 38.66 38.68 46.08
longmult (3) 197.29 | 197.70 | 203.03 | 21012 | 241.75 | 258.90
philips (1) 307.22 | 288.10 | 286.31 | 267.17 | 280.81 | 299.71
pigeon(1) 99.31 99.77 | 103.47 | 11091 | 113.81 | 115.28

pyhala-braun(2) 369.49 365.51 372.98 366.89 376.89 405.05
quasigroup (4) 162.38 161.95 157.24 154.59 150.63 162.01
stanion (3) 941.94 946.38 950.44 965.30 984.20 1010.71
random-sat (10) 70.04 70.71 69.21 69.95 69.74 74.32
random-uns (10) 147.40 147.19 145.95 148.30 149.17 159.90

Table 5 shows the average values of Ay,igger for various settings of DLgecrease-
The average for each family is the mean of the averages of its instances, while

10

for each instance the average is the mean of the averages over all nodes. Because
these values are not very accurate, we present only rounded integers.

Parameter DLgecrease Seems to have little impact on these average values.
Note that - except for pyhala-braun and quasigroup instances - the average
values of Ayigger are very close to the optimal values shown in tables 1 and 2.
In section 5.3 we provide a possible explanation for the two exceptions.

Table 5. Influence of parameter DLgecrease On the average value of A igger-

[family [7 | 80 | & [90 [9 | 99
3color (10) 23 2 % 28 33 12
anton (5) 129 134 141 162 176 220
connamacher (3) 538 575 589 527 462 292
ezfact4s (3) 324 332 357 370 420 538
longmult (3) 76 78 80 90 100 127
philips (1) 99 102 107 110 117 142
pigeon 7 7 8 8 9 9
pyhala-braun(2) 105 108 112 117 127 148
quasigroup (4) 537 530 516 489 529 664
stanion (3) 21 22 23 25 29 36
random-sat (10) 57 58 62 67 7 98
random-uns (10) 57 59 62 67 78 98

5.2 Comparison

To test the general application of the adaptive algorithm, we also implemented it
in both other SAT solvers that use a DOUBLELOOK procedure: satz and kecnfs. We
modified the latest version of the source codes?. All three components were made
according to the proposed adaptive algorithm: First, initialization is changed to
Avtrigger := 0. Second - only for kenfs - a line is added to increase Ayigger When
no conflict is detected. Analogue to the march_dl and satz, Agigger = |F2 \ F3 .

The third modification is implemented slightly differently, because in satz
and kenfs the size of the pre-selected set P is computed “on the fly”. Therefore,
2T/ DLgecrease Would not be a constant value in each LOOKAHEAD procedure. As
a workaround, we decided to use the average value of march_dl for *i/DLgccrease
instead. Additionally, from satz the decrement strategy TRIGGERSUCCESS is
removed. While using DLgecrease := 0.85, this average appeared approximately
0.9985, which was used for an alternative decrement strategy:

TRIGGERDECREASE() : Agigger := 0.9985 X Agrigger (4)

Notice that using value 1.0 instead of 0.9985 would drastically reduce the number
of additional look-aheads, because Ayigger would never be decreased.

* For satz we used version 215.2 (with the adaptive algorithm) which is available at
http://www.laria.u-picardie.fr/~cli/satz215.2.c and for kenfs we used the
version available at http://www.laria.u-picardie.fr/~dequen/sat/kcnfs.zip

http://www.laria.u-picardie.fr/~cli/satz215.2.c
http://www.laria.u-picardie.fr/~dequen/sat/kcnfs.zip

11

Table 6. Comparison between performances of the original and the modified
versions of satz, kenfs and march_dl.

satz kenfs march_d|
l family ‘ original ‘ modified | original ‘ modified | prelim ‘ final
3color (10) 52.71 36.91 37.89 27.88 72.51 25.60
anton (5) 183.97 123.16 | 3433.39 | 2382.96 80.75 64.99
connamacher (3) > 6000 > 6000 4707.51 | 4705.23 | 4134.85 | 1742.62
ezfact48 (3) 39.96 32.98 > 6000 > 6000 54.22 37.87
longmult (3) 2411.36 | 1582.85 440.34 413.19 265.88 203.03
philips (1) 1126.38 710.75 750.75 443.27 428.52 286.31
pigeon(1) 23.72 24.12 43.39 40.25 145.38 103.47
pyhala-braun(2)|| 1247.46 | 881.91 | 644.84 | 466.92 | 380.57 | 372.98
quasigroup (4) 172.40 171.54 230.59 173.86 351.85 157.24
stanion (3) 3657.49 | 3810.53 | 3834.31 | 3863.13 993.89 950.44
random-sat (10) 93.82 92.56 79.63 80.33 91.63 69.21
random-uns (10) 260.13 266.81 139.67 138.22 189.75 145.95

The performances of the original and the modified versions of satz, kenfs, and
march_dl are shown in table 6. The proposed adaptive algorithm generally out-
performs the one in satz: On most instances from our test, the performance was
improved up to 30%, while on the others only small losses were measured. Signif-
icant performance boosts are also observed in kenfs, although the stanion/hwb
instances are solved slightly slower. Since we did not optimize the magic con-
stant, additional progress could probably be made.

The double look-ahead is the latest feature of march resulting in version
march_dl. The preliminary version used has all features except the DOUBLELOOK-
AHEAD procedure. The addition of this feature - using the proposed adaptive
algorithm - boost the performance on the complete test set.

5.3 Adaptation plots

We selected four benchmarks (due to space limitations) to illustrate the behavior
of the adaptive algorithm. For each benchmark, the first 10.000 (non-leaf) nodes
of the DPLL-tree - using march_dl with A¢,igger := .85 - are plotted with a colored
dot. Nodes are numbered in the (depth-first) order they are visited - so for the
first few nodes their number equals their depth. The color is based on the depth
of the node in the DPLL-tree. The horizontal axis shows the number of a certain
node and the vertical axis shows the average value of parameter A¢ygger in this
node. These so-called adaptation plots are shown in figures 1, 2, 3 and 4.

In general, we observed that each family has its own kind of adaptation
plot, while strong similarities between instances from different families were rare.
For none of the tested instances Ayigger converged to a certain value, which is
probably due to the design of the algorithm.

average Atrigger

average Atrigger

12

350

300 =

250

200

150

100

50

2000 4000 6000 8000

node number

Fig. 1. Adaptation plot of philips.cnf

10000

250

200 — .

150

100

50

2000 4000 6000 8000

node number

10000

depth

depth
30

25

20

15

10

Fig. 2. Adaptation plot of a random 3-SAT instance with 350 variables and 1491

clauses.

average Agrigger

average Agrigger

1400
1200
1000
800
600
400

200

Fig

1200

1000

800

600

400

200

13

depth
25

20

15

10

I I I I 0

0 2000 4000 6000 8000 10000

node number

. 3. Adaptation plot of connm-ue-csp-sat-n600-d0.04-s1211252026. cnf

depth
25

20

15

10

0 2000 4000 6000 8000 10000

node number

Fig. 4. Adaptation plot of pyhala-braun-unsat-35-4-03.cnf

14

For half of the families, the value of Ayigger tends to be above average at
nodes near the root of the search-tree and / or tends to be below average at
nodes near the leafs (see figure 1 and 4). For the other half of the families the
opposite trend was noticed (see figure 2 and 3).

Recall that for pyhala-braun and quasigroup instances the average value
for A¢yigger was much lower than the optimum based on static heuristics. Figure 4
offers a possible explanation: Notice that nodes near the root use A¢yigger = 1100
while on average nodes use Agrigger ~ 100. Adaptation plots for quasigroup
instances showed a similar gap. A low static value for Ayigger Will probably
result in many additional look-aheads at the nodes near the root which could
ruin the overall performance.

6 Conclusions

We presented an adaptive algorithm to control the DOUBLELOOK procedure,
which uses - like the static heuristic - only one magic constant. The algorithm has
been implemented in all look-ahead SAT solvers that use a DOUBLELOOK pro-
cedure. As a result of this modification, all three solvers showed a performance
improvement on a wide selection of benchmarks. On macro level we observed
that for most instances this algorithm approximates the family specific “opti-
mal” static strategy, while on micro level the algorithm adapts to the (reduced)
formula in each node of the search-tree.

References

1. A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic model checking without BDDs.
in Proc. Int. Conf. TACAS, Springer Verlag, LNCS 1579 (1999), 193—-207.
2. H. Connamacher, A random constraint satisfaction problem that seems hard for
DPLL. In the Proceedings of SAT 2004.
3. M. Davis, G. Logemann, and D. Loveland, A machine program for theorem proving.
Communications of the ACM 5 (1962), 394-397.
4. O. Dubois and G. Dequen, source code of the kenfs solver. Available at
http://www.laria.u-picardie.fr/~dequen/sat/.
5. JJW. Freeman, Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. thesis, University of Pennsylvania, Philadelphia (1995).
6. D. Le Berre and L. Simon, The essentials of the SAT’038 Competition. Springer-
Verlag, LNCS 2919 (2004), 452—-467.
7. C.M. Li, A constraint-based approach to narrow search trees for satisfiability. In-
formation processing letters 71 (1999), 75-80.
8. C.M. Li and Anbulagan. Heuristics Based on Unit Propagation for Satisfiability
Problems. In Proc. of Fifteenth IJCAI (1997), 366-371.
9. L. Simon, D. Le Berre, and E. Hirsch, The SAT 2002 competition. Annals of Math-
ematics and Artificial Intelligence (AMAI) 43 (2005), 343-378.
10. L. Simon, Sat’04 competition homepage. http://www.satcompetition.org/2004
11. H. Zhang and M.E. Stickel, Implementing the Davis-Putnam Method. SAT2000
(2000), 309-326.

http://www.laria.u-picardie.fr/~dequen/sat/
http://www.satcompetition.org/2004

	Effective Incorporation ofDouble Look-Ahead Procedures
	Marijn Heule and Hans van Maaren
	Introduction
	Preliminaries
	Static Heuristics
	Adaptive DoubleLook
	Results
	The magic constant
	Comparison
	Adaptation plots

	Conclusions

