
Efficient CNF Simplification based on
Binary Implication Graphs ⋆

Marijn Heule1, Matti Järvisalo2, and Armin Biere3

1 Department of Software Technology, Delft University of Technology, The Netherlands
2 Department of Computer Science, University of Helsinki, Finland

3 Institute for Formal Models and Verification, Johannes Kepler University Linz, Austria

Abstract. This paper develops techniques for efficiently detecting redundancies
in CNF formulas. We introduce the concept ofhidden literals, resulting in the
novel technique ofhidden literal elimination. We develop a practical simplifica-
tion algorithm that enables “Unhiding” various redundancies in a unified frame-
work. Based on time stamping literals in the binary implication graph, the algo-
rithm applies various binary clause based simplifications,including techniques
that, when run repeatedly until fixpoint, can be too costly.Unhidingcan also be
applied during search, taking learnt clauses into account.We show thatUnhiding
gives performance improvements on real-world SAT competition benchmarks.

1 Introduction

Applying reasoning techniques (see e.g. [1,2,3,4,5,6,7])to simplify Boolean satisfia-
bility (SAT) instances both before and during search is important for improving state-
of-the-art SAT solvers. This paper develops techniques forefficiently detecting and
removing redundancies from CNF (conjunctive normal form) formulas based on the
underlyingbinary clause structure(i.e., the binary implication graph) of the formulas.

In addition to considering known simplification techniques(hidden tautology elim-
ination (HTE) [6], hyper binary resolution (HBR) [1,7], failed literal elimination over
binary clauses [8], equivalent literal substitution [8,9,10], and transitive reduction [11]
of the binary implication graph [10]), we introduce the novel technique ofhidden literal
elimination(HLE) that removes so-calledhidden literalsfrom clauses without affect-
ing the set of satisfying assignments. We establish basic properties ofHLE, including
conditions for achieving confluence when combined with equivalent literal substitution.

As the second main contribution, we develop an efficient and practical simplification
algorithm that enables “Unhiding” various redundancies in a unified framework. Based
on time stamping literals via randomized depth-first search(DFS) over the binary impli-
cation graph, the algorithm provides efficient approximations of various binary clause
based simplifications which, when run repeatedly until fixpoint, can be too costly. In
particular, while ourUnhidingalgorithm is linear time in the total number of literals
(with an at most logarithmic factor in the length of the longest clause), notice as an
example that fixpoint computation of failed literals, even just on the binary implication

⋆ The1st author is financially supported by Dutch Organization for Scientific Research (grant
617.023.611), the2nd author by Academy of Finland (grant 132812) and the1st and3rd author
are supported by the Austrian Science Foundation (FWF) NFN Grant S11408-N23 (RiSE).



graph, is conjectured to be at least quadratic in the worst case [8]. Unhiding can be
implemented without occurrence lists, and can hence be applied not only as a prepro-
cessor but alsoduring search, which allows to take learnt clauses into account. Indeed,
we show that, when integrated into the state-of-the-art SATsolver Lingeling [12],Un-
hidinggives performance improvements on real-world SAT competition benchmarks.

On related work, Van Gelder [8] studied exact and approximate DFS-based algo-
rithms for computing equivalent literals, failed literalsover binary clauses, and implied
(transitive) binary clauses. The main differences to this work are: (i)Unhidingapproxi-
mates the additional techniques ofHTE, HLE, andHBR; (ii) the advanced DFS-based
time stamping scheme ofUnhidingdetects failed and equivalent literalson-the-fly, in
addition toremoving(instead of adding as in [8]) transitive edges in the binary im-
plication graph; and (iii)Unhiding is integrated into a clause learning (CDCL) solver,
improving its performance on real application instances (in [8] only random 2-SAT in-
stances were considered). Our advanced stamping scheme canbe seen as an extension
of the BinSATSCC-1 algorithm in [13] which excludes (in addition to cases (i) and
(iii)) transitive reduction. Furthermore, while [13] focuses on simplifing the binary im-
plication graph, we use reachability information obtainedfrom traversing it to simplify
larger clauses, including learnt clauses, in addition to extracting failed literals.

As for more recent developments, CryptoMiniSAT v2.9.0 [14]caches implied liter-
als, and updates the cache after top-level decisions. The cache can serve a similar pur-
pose as our algorithms, removing literals and clauses. Yet,the cache size is quadratic
in the number of literals, which is also the case for using thecache for redundancy re-
moval for the whole CNF. Thus, at least from a complexity point of view, the cache of
CryptoMiniSAT does not improve on the quadratic algorithm [8]. In contrast,Unhiding
requires only a single sweep over the binary implication graph and the other clauses.

After preliminaries (CNF satisfiability and known CNF simplification techniques,
Sect. 2), we introduce hidden literal elimination and establish its basic properties (Sect. 3).
We then explain theUnhidingalgorithm: basic idea (Sect. 4) and integration of simpli-
fication techniques (Sect. 5). Then we develop an advanced version of Unhiding that
can detect further redundancies (Sect. 6), and present experimental results (Sect. 7).

2 Preliminaries
For a Boolean variablex, there are twoliterals, the positive literalx and the nega-
tive literal x̄. A clauseis a disjunction of literals and a CNF formula a conjunction of
clauses. A clause can be seen as a finite set of literals and a CNF formula as a finite set
of clauses. A truth assignment for a CNF formulaF is a functionτ that maps literals in
F to {0, 1}. If τ(x) = v, thenτ(x̄) = 1 − v. A clauseC is satisfied byτ if τ(l) = 1
for some literall ∈ C. An assignmentτ satisfiesF if it satisfies every clause inF .

Two formulas arelogically equivalentif they are satisfied by exactly the same set
of assignments. A clause is atautologyif it contains bothx andx̄ for some variablex.
The length of a clause is the number of literals in the clause.A clause of length one is
a unit clause, and a clause of length two is abinary clause. For a CNF formulaF , we
denote the set of binary clauses inF byF2.

Binary Implication Graphs For any CNF formulaF , we associate a unique directed
binary implication graphBIG(F ) with the edge relation{〈l̄, l′〉, 〈l̄′, l〉 | (l ∨ l′) ∈ F2}.



In other words, for each binary clause(l ∨ l′) in F , the two implications̄l → l′ and
l̄′ → l, represented by the binary clause, occur as edges inBIG(F ). A node inBIG(F )
with no incoming arcs is aroot of BIG(F ) (or, simply, ofF2). In other words, literall
is a root inBIG(F ) if there is no clause of the form(l ∨ l′) in F2. The set of roots of
BIG(F ) is denoted byRTS(F ).

2.1 Known Simplification Techniques

BCP and Failed Literal Elimination ( FLE) For a CNF formulaF , Boolean constraint
propagation(BCP) (or unit propagation) propagates all unit clauses, i.e. repeats the
following until fixpoint: if there is a unit clause(l) ∈ F , remove fromF \ {(l)} all
clauses that contain the literall, and remove the literal̄l from all clauses inF , resulting
in the formulaBCP(F ). A literal l is a failed literal if BCP(F ∪ {(l)}) contains the
empty clause, implying thatF is logically equivalent toBCP(F ∪{(l̄)}).FLE removes
failed literals from a formula, or, equivalently, adds the complements of failed literals
as unit clauses to the formula.

Equivalent Literal Substitution ( ELS) The strongly connected components (SCCs)
of BIG(F ) describe equivalent classes of literals (or simply equivalent literals) inF2.
Equivalent literal substitutionrefers to substituting inF , for each SCCG of BIG(F ),
all occurrences of the literals occurring inG with the representative literal ofG. ELS is
confluent, i.e., has a unique fixpoint, modulo variable renaming.

Hidden Tautology Elimination (HTE) [6] For a given CNF formulaF and clauseC,
(hidden literal addition) HLA(F,C) is theuniqueclause resulting from repeating the
following clause extension steps until fixpoint: if there isa literal l0 ∈ C such that
there is a clause(l0 ∨ l) ∈ F2 \ {C} for some literall, let C := C ∪ {l̄}. Note that
HLA(F,C) = HLA(F2, C). Further, for anyl ∈ HLA(F,C) \ C, there is a path in
BIG(F ) from l to somel0 ∈ C. For any CNF formulaF and clauseC ∈ F , (F \
{C}) ∪ {HLA(F,C)} is logically equivalent toF [6]. Intuitively, each extension step
in computingHLA is an application of self-subsuming resolution [2,15,16] in reverse
order. For a given CNF formulaF , a clauseC ∈ F is ahidden tautologyif and only
if HLA(F,C) is a tautology.Hidden tautology eliminationremoves hidden tautologies
from CNF formulas.

Note thatdistillation [4] is more generic thanHTE [6] (and also more generic than
HLE as defined in this paper). However, it is rather costly to apply, and is in practice
restricted to irredundant/original clauses only.

Transitive reduction of the binary implication graph ( TRD) A directed acyclic
graphG′ is a transitive reduction[11] of the directed graphG provided that (i)G′

has a directed path from nodeu to nodev if and only ifG has a directed path from node
u to nodev, and (ii) there is no graph with fewer edges thanG′ satisfying condition (i).
It is interesting to notice that, by applyingFLE restricted to the literals inF2 before
HTE, HTE achieves a transitive reduction ofBIG(F ) for any CNF formulaF purely
on the clausal level [6].



3 Hidden Literal Elimination

In this section we present a novel redundancy elimination procedure exploiting the bi-
nary clause structure of a CNF formula. We call the techniquehidden literal elimination.

For a given CNF formulaF and literall, we denote byHL(F, l) theuniqueset of
hidden literalsof l w.r.t F . HL(F, l) is defined as follows. First, letL = {l}. Then
repeat the following steps until fixpoint: if there is a literal l0 ∈ L such that there is a
clause(l0∨ l′) ∈ F2 for some literall′, letL := L∪{l̄′}. Now, letHL(F, l) := L \ {l}.
In other words,HL(F, l) contains the complements of all literals that are reachablefrom
l̄ in BIG(F ), or, equivalently, all literals from whichl is reachable inBIG(F ). Notice
thatHL(F, l) = HL(F2, l). Also,HL captures failed literals inF2 in the sense that by
definition, for any literall in F2, there is a path froml to l̄ in BIG(F ) if and only if
l̄ ∈ HL(F, l).

Proposition 1. For any CNF formulaF , a literal l in F2 is failed iff l̄ ∈ HL(F, l).

For a given formulaF , hidden literal elimination(HLE) repeats the following: if
there is a clauseC ∈ F and a literall ∈ C such thatC ∩ HL(F, l) 6= ∅, let F :=
(F \ {C}) ∪ {C \ HL(F, l)}. In fact, the literals inHL(F, l) can be removed from all
clauses that containl.

Proposition 2. For every CNF formulaF , any result of applyingHLE onF is logically
equivalent toF .

Proof. For any CNF formulaF and two literalsl andl′, if l′ ∈ HL(F, l), thenF∪{(l′)}
logically impliesl by the definition ofHL. Hence, for any clauseC ∈ F with l, l′ ∈ C,
for any satisfying assignmentτ for F with τ(l′) = 1 we haveτ(l) = 1, and henceτ
satisfies(F \ {C}) ∪ {C \HL(F, l)}. �

A relevant question is how many literalsHLE eliminates relative to other literal
elimination techniques. One example is self-subsuming resolution (SSR) [2] that re-
places clauses that have a resolvent that subsumes the clause itself with the resolvent
(essentially eliminating from the clause the literal not inthe resolvent).

Proposition 3. There are CNF formulas from whichHLE can remove more literals
from clauses thanSSR.

Proof. Consider the formulaF = (a∨b)∧(b̄∨c)∧(a∨ c̄∨d). SinceHL(F, a) = {b̄, c̄},
HLE can remove literal̄c from the last clause in contrast toSSR. �

HLE can also strengthen formulas by increasing possibilities for unit propagation.

Proposition 4. Removal of hidden literals can increaseBCP.

Proof. Consider the formulaF = (a∨b)∧(b̄∨c)∧(a∨ c̄∨d). SinceHL(F, a) = {b̄, c̄},
HLE removes literal̄c from the last clause. Whend is assigned to0 after eliminating
literal c̄, BCP will infer a. �

In general,HLE does not have a unique fixpoint.

Proposition 5. ApplyingHLE until fixpoint is not confluent.



Proof. Consider the formulaF = (a∨ b)∧ (ā∨ b̄)∧ (a∨ b̄∨ c). SinceHL(F, a) = {b̄}
andHL(F, b̄) = {a}, HLE can remove either̄b or a from (a ∨ b̄ ∨ c). A fixpoint is
reached after removing one of these two literals. �

In the example the non-confluence is due toa and b̄ being equivalent literals. In fact,
assume that all clauses inF2 are kept even in the caseHLE turns a binary clause into a
unit clause (i.e., in such casesHLE will introduce new unit clauses intoF ). ThenHLE
can be made confluent (modulo variable renaming) by substituting equivalent literals.

Theorem 1. For any CNF formulaF , assuming that all clauses in the originalF2

are kept, alternatingELS andHLE (until fixpoint) until fixpoint is confluent modulo
variable renaming.

Proof sketch.ELS is confluent modulo variable renaming. Now considerHLE. Assume
that we do not changeF2. Take any clauseC with l, l′ ∈ C andl′ ∈ HL(F, l). The only
possible source of non-confluence is thatl ∈ HL(F, l′). Then there is a cycle inF2, and
hencel andl̄′ are equivalent literals. This is handled byELS afterwards. Now assume a
binary clause is added toF2 byHLE shortening a clause of length> 2. Newly produced
cycles are handled byELS afterwards. �

4 Unhiding Redundancies based on Time Stamping

In this section we present an efficient algorithm for detecting several kinds of redun-
dancies in CNF formulas, focusing on techniques which exploit binary clauses.

For a given CNF formulaF , our algorithm, referred to asUnhiding (see Fig. 1,
details explained in the following), consists in essence oftwo phases. First, a depth-first
search (DFS) over the binary implication graphBIG(F ) is performed. During the DFS,
each literal inBIG(F ) is assigned a time stamp; we call this processtime stamping.
In the second phase, these time stamps are used for discovering the various kinds of
redundancies inF , which are then removed.

In the following, we will first describe abasic time stamping procedure(Sect. 4.1).
Then we will show how redundancies can be detected and eliminated based on the time
stamps (Sect. 5). After these, in Sect. 6 we describe a moreadvanced time stamping
procedurethat embeds additional simplifications that are capturedduring the actual
depth-first traversal ofBIG(F ).

4.1 Basic Time Stamping

The basic time stamping procedure implements a depth-first search on the binary impli-
cation graphBIG(F ) of a given CNF formulaF . The procedure associates adiscovered-
finished interval(or a time stamp) with each literal inBIG(F ) according to the depth-
first traversal order. For any depth-first traversal of a graph G, a node inG is discov-
ered (resp.finished) the first (resp. last) time it is encountered during search.For a
given depth-first traversal, thediscoveryandfinish timesof a nodev in G, denoted by
dsc(v) andfin(v), respectively, are defined as the number of steps taken at thetime
of discovering and finishing, respectively, the nodev. The important observation here
is that, according to the well-known “parenthesis theorem”, for two nodesu and v
with discovered-finished intervals[dsc(u), fin(u)] and[dsc(v), fin(v)], respectively, we



know thatv is a descendant ofu in the DFS tree if and only ifdsc(u) < dsc(v) and
fin(u) > fin(v), i.e., if the time stamp (interval) ofu containsthe time stamp (interval)
of v. These conditions can be checked in constant time given the time stamps.

Pseudo-code for the main unhiding procedureUnhidingand the time stamping pro-
cedureStampis presented in Fig. 1. The main procedureUnhiding(left) initializes the
attributes and calls the recursive stamping procedure (right) for each root inBIG(F ) in
a random order. When there are no more roots, we pick a literalnot visited yet as the
next starting point until all literals have been visited.4 Stampperforms a DFS inBIG(F )
from the given starting literal, assigns for each literall encountered the discovery and
finish timesdsc(l) andfin(l) according to the traversal order, updatesstamp(initially
0), and for each literall, defines its DFS parentprt(l) and the rootroot(l) of the DFS
tree in whichl was discovered.

In the following, we say that a given time stampingrepresents the implicationl → l′

if the time stamp ofl contains the time stamp ofl′.

Unhiding (formula F )
1 stamp := 0
2 foreach literal l in BIG(F ) do
3 dsc(l) := 0; fin(l) := 0
4 prt(l) := l; root(l) := l

5 foreach r ∈ RTS(F ) do
6 stamp := Stamp(r, stamp)
7 foreach literal l in BIG(F ) do
8 if dsc(l) = 0 then
9 stamp := Stamp(l, stamp)

10 return Simplify(F )

Stamp (literal l, integer stamp)
1 stamp := stamp + 1
2 dsc(l) := stamp

3 foreach (l̄ ∨ l′) ∈ F2 do
4 if dsc(l′) = 0 then
5 prt(l′) := l

6 root(l′) := root(l)
7 stamp := Stamp(l′, stamp)
8 stamp := stamp + 1
9 fin(l) := stamp

10 return stamp

Fig. 1.TheUnhidingalgorithm. Left: the main procedure. Right: the basic stamping procedure.

Example 1.Consider the formula

E = (ā ∨ c) ∧ (ā ∨ d) ∧ (b̄ ∨ d) ∧ (b̄ ∨ e) ∧ (c̄ ∨ f) ∧ (d̄ ∨ f) ∧ (f̄ ∨ h) ∧ (ḡ ∨ f) ∧

(ḡ ∨ h) ∧ (ā ∨ ē ∨ h) ∧ (b̄ ∨ c̄ ∨ h) ∧ (a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ g ∨ h).

The formula contains several redundant clauses and literals. The clauses(ā ∨ ē ∨ h),
(ḡ∨h), and(b̄∨ c̄∨h) are hidden tautologies. In the last clause, all literals excepte and
h are hidden. The binary implication graphBIG(E) of E, as shown in Fig. 2, consists of
two components. A partition ofBIG(E) produced by the basic time stamping procedure
is shown in Fig. 3. The nodes are visited in the following order: g, f , h, ē, b̄, b, e, d,
h̄, ḡ, f̄ , d̄, ā, c̄, a, c. BIG(E) consists of 30 implications including the transitive ones.
However, the trees and time stamps in the figure explicitly represent only 16 of them,
again including transitive edges such ash̄ → ā. The implicationsb → f , f̄ → b̄, b → h,
andh̄ → b̄ are not represented by this time stamping. Note that the implication f̄ → c̄
is represented, and thus implicitlyc → f as well. Using contraposition this way the
four transitive edges mentioned above are not represented,the other 26 edges are.

4 Thus,BIG needs not to be acyclic. Note that eliminating cycles inBIG by substituting variables
might shorten longer clauses to binary clauses, which in turn could introduce new cycles. This
process cannot be bounded to be linear and is not necessary for our algorithms.



a b

c d e

f g

h ā b̄

c̄ d̄ ē

f̄ ḡ

h̄

Fig. 2.BIG(E). The graph has five root nodes:a, b, ē, g, andh̄.

The order in which the trees are traversed has a big impact on the quality, i.e. the
fraction of implications that are represented by the time stamps. The example shows that
randomized stamping may not represent all implications inBIG. Yet, for this formula,
there is a DFS order that produces a stamping that representsall implications: start from
the rooth̄ and stamp the tree starting with literalf̄ . Then, by selectinga as the root of
the second tree, regardless of the order of the other roots and literals, the time stamps
produced by stamping will represent all implications. �

a : [29, 32] b : [11, 16]

c : [30, 31] d : [14, 15] e : [12, 13]

f : [2, 5] g : [1, 6]

h : [3, 4] ā : [22, 23] b̄ : [8, 9]

c̄ : [25, 26] d̄ : [21, 24] ē : [7, 10]

f̄ : [20, 27] ḡ : [18, 19]

h̄ : [17, 28]

Fig. 3. A partition of BIG(E) into a forest with discovered-finished intervals[dsc(v),fin(v)]
assigned by the basic time stamping routine. Dashed lines represent implications inBIG(E)
which are not used to set the time stamps.

5 Capturing Various Simplifications
We now explain how one can remove hidden literals and hidden tautologies, and fur-
thermore perform hyper binary resolution steps based on a forest over the time stamped
literal nodes produced by the main DFS procedure. The main procedureSimplifyfor this
second phase, called by the mainUnhidingprocedure after time stamping, is shown in
Fig. 4. For each clauseC in the input CNF formulaF , SimplifyremovesC from F .
Then, it first checks whether theUHTE procedure detects thatC is a hidden tautology.
If not, literals are (possibly) eliminated fromC by theUHLE procedure (using hidden
literal elimination). The resulting clause is added toF .

Notice that the simplification procedure visits each clauseC ∈ F only once. The
invoked sub-procedures,UHTEandUHLE, exploit the time stamps, and use two sorted
lists: (i) S+(C), list of the literals inC sorted according to increasing discovery time,
and (ii)S−(C), list of the complements of the literals inC, sorted according to increas-
ing discovery time. We will now explain both of these sub-procedures in detail.



Simplify (formula F )
1 foreach C ∈ F

2 F := F \ {C}
3 if UHTE(C) then continue
4 F := F ∪ {UHLE(C)}
5 return F

Fig. 4. Procedure for applyingHTE andHLE based on time stamps.

5.1 Hidden Literals

Once literals are stamped using the unhiding algorithm, onecan cheaply detect (possi-
bly a subset of) hidden literals. In this context, literall ∈ C is hidden if there is (i) an
implication l → l′ with l′ ∈ C that is represented by the time stamping, or (ii) an
implication l̄′ → l̄ with l′ ∈ C that is represented by the time stamping.

We check for such implications as follows using theUHLE procedure shown in
Fig. 5. For each input clauseC, the procedure returns a subset ofC with some hidden
literals removed fromC. For this procedure, we useS+(C) in reverse order, denoted
by S+

rev(C). In essence, we go through the listsS+
rev(C) andS−(C), and compare the

finish times of two successive elements in the lists. In case an implication is found, a
hidden literal is detected and removed.

Lines 1-4 in Fig. 5 detect implications of the forml → l′ with l, l′ ∈ C that are rep-
resented by the time stamping. Recall that inS+

rev(C) literals are ordered with decreas-
ing discovering time. Letl′ be located beforel in S+

rev(C). If fin(l) > fin(l′) we found
the implicationl → l′, and hencel is a hidden literal (in the codefinished = fin(l′)).
Line 3 checks whether the next element inS+

rev(C) is a hidden literal, and if so, the
literal is removed. Lines 5-8 detect implicationsl̄′ → l̄ with l, l′ ∈ C. In S−(C) literals
are ordered with increasing discovering time. Now,l̄′ be located beforēl in S−(C)
andfinished = fin(l̄′). On Line 7 we check thatfin(l̄) < fin(l̄′) or, equivalently,
fin(l̄) < finished . In that casel is a hidden literal and is hence removed.

Example 2.Recall the formulaE from Example 1. All literals excepte andh in the
clauseC = (a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ g ∨ h) ∈ E are hidden. In case the literals in
RTS(E) are stamped with the time stamps shown in Figure 3, theUHLE procedure
can detect them all. Consider first the sequenceS+

rev(C) = (c, a, d, e, b, h, f, g). Since
fin(c) < fin(a), a is removed fromC. Similarly,fin(e) < fin(b) andfin(f) < fin(g),
and henceb andg are removed fromC. Second, consider the complements of the literals
in the reduced clause:S−(C) = (ē, h̄, f̄ , d̄, c̄). Now,fin(h̄) > fin(f̄), fin(d̄), fin(c̄), and
hencef , d, andc are removed. �

UHLE (clause C)
1 finished := finish time of first element in S+

rev(C)
2 foreach l ∈ S+

rev(C) starting at second element
3 if fin(l) > finished then C := C \ {l}
4 else finished := fin(l)
5 finished := finish time of first element in S−(C)
6 foreach l̄ ∈ S−(C) starting at second element
7 if fin(l̄) < finished then C := C \ {l}
8 else finished := fin(l̄)
9 return C

Fig. 5. Eliminating hidden literals using time stamps.



5.2 Hidden Tautologies

Fig. 6 shows the pseudo-code for theUHTE procedure that detects hidden tautologies
based on time stamps. Notice that if a time stamping represents an implication of the
form l̄ → l′, where bothl and l′ occur in a clauseC, then the clauseC is a hidden
tautology.

TheUHTE procedure goes through the sorted listsS+(C) andS−(C) to find two
literalslneg ∈ S−(C) andlpos ∈ S+(C) such that the time stamping represents the im-
plication lneg → lpos, i.e., it checks ifdsc(lneg) < dsc(lpos) andfin(lneg) > fin(lpos).
The procedure starts with the first literalslneg ∈ S−(C) andlpos ∈ S+(C), and loops
through the literals inlpos ∈ S+(C) until dsc(lneg) < dsc(lpos) (Lines 4–6). Once
such alpos is found, iffin(lneg) > fin(lpos) (Line 7), we know thatC is a hidden tau-
tology, and the procedure returns true (Line 10). Otherwise, we loop throughS−(C)
to select a newlneg for which the condition holds (Lines 7–9). Then (Lines 4–6),if
dsc(lneg) < dsc(lpos), C is a hidden tautology. Otherwise, we select a newlpos. Unless
a hidden tautology is detected, the procedure terminates once it has looped through all
literals in eitherS+(C) or S−(C) (Lines 5 and 8).

One has to be careful while removing binary clauses based on time stamps. There
are two exceptions in which time stamping represents an implication lneg → lpos with
lneg ∈ S−(C) and lpos ∈ S+(C) for which C is not a hidden tautology. First, if
lpos = l̄neg, thenlneg is a failed literal. Second, ifprt(lpos) = lneg, thenC was used to
set the time stamp oflpos. Line 7 takes both of these cases into account.

Example 3.Recall again the formulaE from Example 1.E contains three hidden tau-
tologies:(ḡ∨h), (ā∨ ē∨h), and(b̄∨ c̄∨h). In the time stamping in Fig. 3,̄h : [17, 28]
containsḡ : [18, 19]. However,prt(ḡ) = h̄, and hence(ḡ ∨ h) cannot be removed.
On the other hand,̄g : [1, 6] contains̄h : [3, 4], andprt(h) 6= g, and hence(ḡ ∨ h) is
identified as a hidden tautology. We can also identify(ā ∨ ē ∨ h) as a hidden tautology
becausēh : [17, 28] contains̄a : [22, 23]. This is not the case for(b̄∨ c̄∨h) because the
implicationsb → h andh̄ → b̄ are not represented by the time stamping. �

Proposition 6. For any Unhiding time stamping, UHTE detects all hidden tautologies
that are represented by the time stamping.

Proof sketch.For everylneg ∈ S−(C), UHTE checks if time stamping represents the
implication lneg → lpos for the first literal inlpos ∈ S+(C) for which dsc(lneg) <

UHTE (clause C)
1 lpos := first element in S+(C)
2 lneg := first element in S−(C)
3 while true
4 if dsc(lneg) > dsc(lpos) then
5 if lpos is last element in S+(C) then return false
6 lpos := next element in S+(C)
7 else if fin(lneg) < fin(lpos) or (|C| = 2 and (lpos = l̄neg or prt(lpos) = lneg)) then
8 if lneg is last element in S−(C) then return false
9 lneg := next element in S−(C)

10 else return true

Fig. 6. Detecting hidden tautologies using time stamps.



dsc(lpos) holds. The key observation is that if there is alneg ∈ S−(C) and alpos ∈
S+(C) such that time stamping represents the implicationlneg → lpos, then the stamps
also representlneg → l′pos with l′pos being the first literal inS+(C) for whichdsc(lneg) <
dsc(lpos) holds. �

If a clauseC is a hidden tautology, thenHLA(F,C) is a hidden tautology due to
HLA(F,C) ⊇ C. However, it is possible that, for a given clauseC, UHTE(C) returns
true, whileUHTE(UHLE(C)) returns false. In other words,UHLE could in some cases
disruptUHTE. For instance, consider the clause(a ∨ b ∨ c) and the following time
stamps:a : [2, 3], ā : [9, 10], b : [1, 4], b̄ : [5, 8], c : [6, 7], c̄ : [11, 12]. Now UHLE
removes literalb which is required forUHTE to return true. ThereforeUHTEshould be
called beforeUHLE, as is done in ourSimplifyprocedure (recall Fig. 4).

5.3 Adding Hyper Binary Resolution

An additional binary clause based simplification techniquethat can be integrated into
the unhiding procedure ishyper binary resolution[1] (HBR). Given a clause of the
form (l1 ∨ · · · ∨ lk) andk− 1 binary clauses of the form(l′ ∨ l̄i), where2 ≤ i ≤ k, the
hyper binary resolution rule allows to infer the clause(l1 ∨ l′) in one step.

ForHBR in the unhiding algorithm we only need the listS−(C). LetC be a clause
with k literals. We find a hyper binary resolvent if (i) all literalsin S−(C), except the
first onel1, have a common ancestorl′, or (ii) all literals in S−(C), except the last
onelk, have a common ancestorl′′. In case (i) we find(l1 ∨ l̄′), and in case (ii) we find
(lk∨ l̄′′). It is even possible that all literals inS−(C) have a common ancestorl′′′ which
shows thatl′′′ is a failed literal, in which case we can learn the unit clause(l̄′′′).

While UHBR(C) could be called inSimplifyafter Line 4, our experiments show that
applyingUHBR(C) does not give further gains w.r.t. running times, and can in cases
degrade performance. We suspect that this is becauseUHBR(C) may add transitive
edges toBIG(F ). Consider the formulaF = (a∨ b∨ c) ∧ (ā∨ d) ∧ (b̄∨ d) ∧ (c∨ e)∧
(c ∨ f) ∧ (d ∨ ē). Assume that the time stamping DFS visits the literals in the order f̄ ,
c, a, d, d̄, ē, ā, b̄, c̄, f , e, b. UHBR((a∨ b∨ c)) can learn(c∨ d), but it cannot check that
this binary clause adds a transitive edge toBIG(F ).

5.4 Some Limitations of Basic Stamping

As already pointed out, time stamps produced by randomized DFS may not represent
all implications ofF2. In fact, the fraction of implications represented can be very small
in the worst case. Especially, consider the formulaF = (a∨ b∨ c∨ d)∧ (ā∨ b̄)∧ (ā∨
c̄)∧ (ā∨ d̄)∧ (b̄∨ c̄)∧ (b̄∨ d̄)∧ (c̄∨ d̄) that encodes that exactly one ofa, b, c, d must be
true. Due to symmetry, there is only one possible DFS traversal order, and it produces
the time stampsa : [1, 8], b̄ : [2, 3], c̄ : [4, 5], d̄ : [6, 7], b : [9, 12], ā : [10, 11], c :
[13, 14], d : [15, 16]. Only three of the six binary clauses are represented by the time
stamps. This example can be extended ton variables, in which case onlyn − 1 of the
n(n−1)/2 binary clauses are represented. In order to capture as many implications (and
thus simplification opportunities) as possible, in practice we apply multiple repetitions
of Unhidingusing randomized DFS (as detailed in Sect. 7).



6 Advanced Stamping for Capturing Additional Simplifications

In this section we develop an advanced version of the DFS timestamping procedure.
Our algorithm can be seen as an extension of the BinSATSCC-1 algorithm in [13]. The
advanced procedure, presented in Fig. 7, enables performing additional simplifications
on-the-fly duringthe actual time stamping phase: the on-the-fly techniques can perform
some simplifications that cannot be done withSimplify(F ), and, on the other hand,
enlarging the time stamps of literals may allow further simplifications inSimplify(F ).
Although not discussed further in this paper due to the page limit, we note that, addi-
tionally, all simplifications byUHTE, UHLE, andUHBRwhich only use binary clauses
could be performed on-the-fly within the advanced stamping procedure.

Here we introduce the attributeobs(l) that denotes the latest time point of observing
l. The value ofobs(l) can change frequently duringUnhiding. Each line of the advanced
stamping procedure (Fig. 7) is labeled. The line labeled with OBS assignsobs(l) for
literal l. The labelBSC denotes that the line originates from the basic stamping proce-
dure (Fig. 1). Lines with the other labels are techniques that can be performed on-the-
fly: transitive reduction (TRD / Sect. 6.1), failed literal elimination (FLE / Sect. 6.2),
and equivalent literal substitution (ELS / Sect. 6.3). The techniqueTRD depends on
FLE and both techniques use theobs() attribute whileELS is independent ofobs().

Stamp (literal l, integer stamp)
1 BSC stamp := stamp + 1
2 BSC/OBS dsc(l) := stamp; obs(l) := stamp

3 ELS flag := true // l represents a SCC
4 ELS S.push(l) // push l on SCC stack
5 BSC for each (l̄ ∨ l′) ∈ F2

6 TRD if dsc(l) < obs(l′) then F := F \ {(l̄ ∨ l′)}; continue
7 FLE if dsc(root(l)) ≤ obs(l̄′) then
8 FLE lfailed := l

9 FLE while dsc(lfailed) > obs(l̄′) do lfailed := prt(lfailed)
10 FLE F := F ∪ {(l̄failed)}
11 FLE if dsc(l̄′) 6= 0 and fin(l̄′) = 0 then continue
12 BSC if dsc(l′) = 0 then
13 BSC prt(l′) := l

14 BSC root(l′) := root(l)
15 BSC stamp := Stamp(l′, stamp)
16 ELS if fin(l′) = 0 and dsc(l′) < dsc(l) then
17 ELS dsc(l) := dsc(l′); flag := false // l is equivalent to l′

18 OBS obs(l′) := stamp // set last observed time attribute
19 ELS if flag = true then // if l represents a SCC
20 BSC stamp := stamp + 1
21 ELS do
22 ELS l′ := S.pop() // get equivalent literal
23 ELS dsc(l′) := dsc(l) // assign equal discovered time
24 BSC fin(l′) := stamp // assign equal finished time
25 ELS while l′ 6= l

26 BSC return stamp

Fig. 7. Advanced literal time stamping capturing failed and equivalent literals



6.1 Transitive Reduction

Binary clauses that represent transitive edges inBIG are in fact hidden tautologies [6].
Such clauses can already be detected in the stamping phase (i.e., beforeUHTE), as
shown in the advanced stamping procedure on Line 6 with labelTRD.

A binary clause(l̄ ∨ l′) can only be observed as a hidden tautology ifdsc(l′) > 0
duringStamp(l, stamp). Otherwise,prt(l′) := l, which satisfies the last condition on
Line 7 of UHTE. If dsc(l′) > dsc(l) just before callingStamp(l′, stamp), then(l̄ ∨ l′)
is a hidden tautology. When transitive edges are removed on-the-fly,UHTE can focus
on clauses of size≥ 3, making the last check on Line 7 ofUHTE redundant.

Transitive edges inBIG(F ) can hinder the unhiding algorithm by reducing the time
stamp intervals. Hence as many transitive edges as possibleshould be removed. Notice
that in case0 < dsc(l′) < dsc(l), Stamp(l, stamp) cannot detect that(l̄∨ l′) is a hidden
tautology. Yet by usingobs(l′) instead ofdsc(l′) in the check (Line 14 of Fig. 7), we
can detect additional transitive edges. For instance, consider the formulaF = (ā∨ b)∧
(b ∨ c̄) ∧ (b ∨ d̄) ∧ (c̄ ∨ d) where(b ∨ c̄) is a hidden tautology. IfUnhidingvisits the
literals in the ordera, b, c, d, b̄, ā, c̄, d̄, then this hidden tautology is not detected using
dsc(l′). However, while visitingd in advanced stamping, we assignobs(b) := dsc(d).
Now, usingobs(l′), Stamp(c, stamp) can detect that(b ∨ c̄) is a hidden tautology.

6.2 Failed Literal Elimination over F2

Detection of failed literals inF2 can be performed on-the-fly during stamping. If a
literal l in F2 is failed, then all ancestors ofl in BIG(F ) are also failed. Recall that there
is a strong relation betweenHLE restricted toF2 and failed literals inF2 (Prop. 1).

To detect a failed literal, we check for each observed literal l′ whether̄l′ was also
observed in the current tree, ordsc(root(l)) ≤ dsc(l̄′). In that case the lowest com-
mon ancestor in the current tree is a failed literal. Similarto transitive reduction, the
number of detected failed literals can be increased by usingtheobs(l̄′) attribute instead
of dsc(l̄′). We compute the lowest common ancestorlfailed of l′ and l̄′ (Lines 8–9 in
Fig. 7). Afterwards the unit clause(l̄failed) is added to the formula (Line 10).

At the end of on-the-flyFLE (Line 11), the advanced stamping procedure checks
whether to stampl′ after finding a failed literal. In case we learned thatl̄′ is a failed
literal, then we have the unit clause(l′). Then it does not make sense to stampl′, as all
implications ofl′ can be assigned to true byBCP. This check also ensures that binary
clauses currently used in the recursion are not removed by transitive reduction.

6.3 Equivalent Literal Substitution
In caseBIG(F ) contains a cycle, then all literals in that cycle are equivalent. In the basic
stamping procedure all these literals will be assigned a different time stamp. Therefore,
many implications ofF2 will not be represented by any of the resulting time stampings.
To fix this problem, equivalent literals should be assigned the same time stamps.

A cycle in BIG(F ) can be detected after callingStamp(l′, stamp), by checking
whetherfin(l′) still has the initial value0. This check can only return true ifl′ is an
ancestor ofl. We implementedELS on-the-fly using a variant of Tarjan’s SCC de-
composition algorithm [17] which detects all cycles inBIG(F ) using any depth-first
traversal order. We use a local booleanflag that is initialized to true (Line 3). If true,



flag denotes thatl represents a SCC. In case it detects a cycle,flag is set to false (Lines
16–17). Additionally, a global stackS of literals is used, and is initially empty. At each
call of Stamp(l, stamp), l is pushed on the stack (Line 4). At the end of the procedure,
if l is still the representative of a SCC, all literals inS being equivalent tol, all literals
in S are assigned the same time stamp (Lines 19–25).

7 Experiments
We have implementedUnhidingin our state-of-the-art SAT solver Lingeling [12] (ver-
sion 517, source code and experimental data at http://fmv.jku.at/unhiding) as an addi-
tional preprocessing or, more precisely,inprocessingtechnique applied during search.
Batches of randomized unhiding rounds are interleaved withsearch and other already
included inprocessing techniques. The number of unhiding rounds per unhiding phase
and the overall work spent in unhiding is limited in a similarway as is already done in
Lingeling for the other inprocessing. The cost ofUnhidingis measured in the number of
recursive calls to the stamping procedure and the number of clauses traversed. Sorting
clauses (inUHTEandUHLE) incurs an additional penalty. In the experimentsUnhiding
takes on average roughly 7% of the total running time (including search), which is more
than twice as much as standard failed literal probing (2%) and around half of the time
spent on SatElite-style variable elimination (16%).

The cluster machines used for the experiments, with Intel Core 2 Duo Quad Q9550
2.8-GHz processors, 8-GB main memory, running Ubuntu Linuxversion 9.04, are around
twice as fast as the ones used in the first phase of the 2009 SAT competition. For the ex-
periments we used a 900 s timeout and a memory limit of 7 GB. Using the set of all 292
application instances from SAT Competition 2009 (http://satcompetition.org/2009/), a
comparison of the number of solved instances for different configurations ofUnhiding
and the baseline (up-to-date version of Lingeling withoutUnhiding) is presented in Ta-
ble 1. Note that we obtained similar results also for the SAT Race 2010 instances, and
also improved performance on the crafted instances of SAT Competition 2009.

Table 1. Comparison of different configurations ofUnhidingand the baseline solver Lingeling.
The2nd to 4th columns show the number of solved instances (sol), resp. solved satisfiable (sat)
and unsatisfiable (uns) instances. The next three columns contain the average percentage of total
time spent in unhiding (unhd), all simplifications through inprocessing (simp), and variable elim-
ination (elim). Here we also take unsolved instances into account. The rest of the table lists the
number of hidden tautologies (hte) in millions, the number of hidden literal eliminations (hle),
also in millions, and finally the number of unhidden units (unts) in thousands which includes the
number of unhidden failed literals. We also include the average percentage (stp) of hidden tautolo-
gies resp. derived units during stamping, and the average percentage (red) of redundant/learned
hidden tautologies resp. removed literals in redundant/learned clauses. A more detailed analysis
shows that for many instances, the percentage of redundant clauses is very high, actually close to
100%, both for HTE and HLE. Note that “unts” is not precise as the same failed literal might be
found several times during stamping since we propagate units lazily after unhiding.

configuration sol sat uns unhd simp elim hte stp red hle red unts stp

adv.stamp (no uhbr) 188 78 110 7.1%33.0%16.1% 22 64% 59% 291 77.6% 935 57%
adv.stamp (w/uhbr) 184 75 109 7.6%32.8%15.8% 26 67% 70% 278 77.9% 941 58%
basic stamp (no uhbr)183 73 110 6.8%32.3%15.8% 6 0% 52% 296 78.0% 273 0%
basic stamp (w/uhbr)183 73 110 7.4%32.8%15.8% 7 0% 66% 288 76.7% 308 0%
no unhiding 180 74 106 0.0%28.6%17.6% 0 0% 0% 0 0.0% 0 0%

http://fmv.jku.at/unhiding


The three main observations are: (i)Unhidingincreases the number of solved satisfi-
able instances already when using the basic stamping procedure; (ii) using the advanced
stamping scheme, the number of solved instances increases notably for both satisfiable
and unsatisfiable instances; and (iii) theUHBRprocedure actually degrades the perfor-
mance (in-line with the discussion in Sect. 5.3). Hence the main advantages ofUnhiding
are due to the combination of the advanced stamping procedure,UHTE, andUHLE.

8 Conclusions
TheUnhidingalgorithm efficiently (close to linear time) approximates acombination
of binary clause based simplifications that is conjectured to be at least quadratic in
the worst case. In addition to applying known simplificationtechniques, including the
recent hidden tautology elimination, we introduced the novel technique of hidden literal
elimination, and implemented it withinUnhiding. We showed thatUnhiding improves
the performance of a state-of-the-art CDCL SAT solver when integrated into the search
procedure for inprocessing formulas (including learnt clauses) during search.

References

1. Bacchus, F.: Enhancing Davis Putnam with extended binaryclause reasoning. In:
Proc. AAAI, AAAI Press (2002) 613–619

2. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Proc. SAT. Volume 3569 of LNCS., Springer (2005) 61–75

3. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF for-
mulas. In: Proc. SAT. Volume 3569 of LNCS., Springer (2005) 423–429

4. Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In:
Proc. DAC, IEEE (2007) 582–587

5. Järvisalo, M., Biere, A., M. Heule, M.J.H.: Blocked clause elimination. In: Proc. TACAS.
Volume 6015 of LNCS., Springer (2010) 129–144

6. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas.
In: Proc. LPAR-17. Volume 6397 of LNCS., Springer (2010) 357–371

7. Marques Silva, J.P.: Algebraic simplification techniques for propositional satisfiability. In:
Proc. CP. Volume 1894 of LNCS., Springer (2000) 537–542

8. Van Gelder, A.: Toward leaner binary-clause reasoning ina satisfiability solver. Annals of
Mathematics and Artificial Intelligence43(1) (2005) 239–253

9. Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Proc. AAAI.
(2000) 291–296

10. Brafman, R.: A simplifier for propositional formulas with many binary clauses. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B34(1) (2004) 52–59

11. Aho, A., Garey, M., Ullman, J.: The transitive reductionof a directed graph. SIAM Journal
on Computing1(2) (1972) 131–137

12. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSATat SAT Race 2010. FMV Report
Series Technical Report 10/1, Johannes Kepler University,Linz, Austria (2010)

13. del Val, A.: Simplifying binary propositional theoriesinto connected components twice as
fast. In: Proc. LPAR. Volume 2250 of LNCS., Springer (2001) 392–406

14. Soos, M.: Cryptominisat 2.5.0, sat race 2010 solver description (2010)
15. Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic. In: Proc. IJ-

CAR. Volume 5195 of LNCS., Springer (2008) 292–298
16. Groote, J.F., Warners, J.P.: The propositional formulachecker HeerHugo. J. Autom. Rea-

soning24(1/2) (2000) 101–125
17. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Computing1(2) (1972)


	Efficient CNF Simplification based on Binary Implication Graphs

