Efficient CNF Simplification based on
Binary Implication Graphs *

Marijn Heule', Matti Jarvisald, and Armin Bieré

! Department of Software Technology, Delft University of fiaology, The Netherlands
2 Department of Computer Science, University of Helsinki&nd
3 Institute for Formal Models and Verification, Johannes I€eplniversity Linz, Austria

Abstract. This paper develops techniques for efficiently detectimlynelancies
in CNF formulas. We introduce the concepthitiden literals resulting in the
novel technique ohidden literal eliminationWe develop a practical simplifica-
tion algorithm that enabledJnhiding’ various redundancies in a unified frame-
work. Based on time stamping literals in the binary implicatgraph, the algo-
rithm applies various binary clause based simplificatiomsluding techniques
that, when run repeatedly until fixpoint, can be too codtlghiding can also be
applied during search, taking learnt clauses into accaMatshow thatynhiding
gives performance improvements on real-world SAT comipetibenchmarks.

1 Introduction

Applying reasoning techniques (see eld.[1,2,3.4,5,80/implify Boolean satisfia-
bility (SAT) instances both before and during search is irtgoat for improving state-
of-the-art SAT solvers. This paper develops techniquesfficiently detecting and
removing redundancies from CNF (conjunctive normal forotnfulas based on the
underlyingbinary clause structuré.e., the binary implication graph) of the formulas.
In addition to considering known simplification techniqk®lden tautology elim-
ination HTE) [6], hyper binary resolutionHBR) [1]7], failed literal elimination over
binary clauses [8], equivalent literal substitutiori [, and transitive reduction [11]
of the binary implication grapf [10]), we introduce the nideehnique ohidden literal
elimination(HLE) that removes so-calldaidden literalsfrom clauses without affect-
ing the set of satisfying assignments. We establish basiggsties of HLE, including
conditions for achieving confluence when combined with eajent literal substitution.
As the second main contribution, we develop an efficient aadtfral simplification
algorithm that enabledJnhiding’ various redundancies in a unified framework. Based
on time stamping literals via randomized depth-first sefDdts) over the binary impli-
cation graph, the algorithm provides efficient approximsi of various binary clause
based simplifications which, when run repeatedly until fiRpocan be too costly. In
particular, while outUnhiding algorithm is linear time in the total number of literals
(with an at most logarithmic factor in the length of the losgelause), notice as an
example that fixpoint computation of failed literals, evastjon the binary implication

* The 1°* author is financially supported by Dutch Organization foie@tific Research (grant
617.023.611), the™? author by Academy of Finland (grant 132812) andtteand3™ author
are supported by the Austrian Science Foundation (FWF) NFMtz511408-N23 (RiSE).



graph, is conjectured to be at least quadratic in the worst 8]. Unhiding can be
implemented without occurrence lists, and can hence baegppbt only as a prepro-
cessor but alsduring searchwhich allows to take learnt clauses into account. Indeed,
we show that, when integrated into the state-of-the-art S#Ver Lingeling[[12],Un-
hiding gives performance improvements on real-world SAT comipetibenchmarks.

On related work, Van Gelder|[8] studied exact and approxéni#S-based algo-
rithms for computing equivalent literals, failed literalger binary clauses, and implied
(transitive) binary clauses. The main differences to thaskvare: (i)Unhidingapproxi-
mates the additional techniquestdTE, HLE, andHBR; (ii) the advanced DFS-based
time stamping scheme &fnhiding detects failed and equivalent literada-the-fly in
addition toremoving(instead of adding as in|[8]) transitive edges in the binany i
plication graph; and (iiilUnhidingis integrated into a clause learning (CDCL) solver,
improving its performance on real application instancegg] only random 2-SAT in-
stances were considered). Our advanced stamping scherbe caen as an extension
of the BinSATSCC-1 algorithm in_[13] which excludes (in atiloh to cases (i) and
(iiN)) transitive reduction. Furthermore, while [13] foseis on simplifing the binary im-
plication graph, we use reachability information obtaifreen traversing it to simplify
larger clauses, including learnt clauses, in addition teegeting failed literals.

As for more recent developments, CryptoMiniSAT v2.9.0 [@d¢hes implied liter-
als, and updates the cache after top-level decisions. Tdfeaan serve a similar pur-
pose as our algorithms, removing literals and clauses.tifetcache size is quadratic
in the number of literals, which is also the case for usingcthehe for redundancy re-
moval for the whole CNF. Thus, at least from a complexity poiiview, the cache of
CryptoMiniSAT does not improve on the quadratic algoritl8h [n contrastUnhiding
requires only a single sweep over the binary implicatiopgrand the other clauses.

After preliminaries (CNF satisfiability and known CNF sirdigiation techniques,
Sect[2), we introduce hidden literal elimination and elg$hlits basic properties (Sett. 3).
We then explain th&nhidingalgorithm: basic idea (Se€ll 4) and integration of simpli-
fication techniques (Sedtl 5). Then we develop an advanaesibweof Unhiding that
can detect further redundancies (SELt. 6), and presentimqrgal results (Sedi] 7).

2 Preliminaries

For a Boolean variable, there are twditerals, the positive literak: and the nega-
tive literal z. A clauseis a disjunction of literals and a CNF formula a conjunctidn o
clauses. A clause can be seen as a finite set of literals and-dd@Mula as a finite set
of clauses. A truth assignment for a CNF formélas a functionr that maps literals in
Fto{0,1}.If 7(z) = v, thent(Z) = 1 — v. A clauseC is satisfied byr if 7(I) = 1
for some literal € C. An assignment satisfiest' if it satisfies every clause if'.

Two formulas ardogically equivalentf they are satisfied by exactly the same set
of assignments. A clause igautologyif it contains bothr andz for some variabler.
The length of a clause is the number of literals in the claAsdause of length one is
aunit clause and a clause of length two istenary clause For a CNF formulaF’, we
denote the set of binary clauseshnby Fb.

Binary Implication Graphs For any CNF formula”, we associate a unique directed
binary implication graptBIG(F) with the edge relatiod (I, 1), (I',1) | (I V') € F»}.



In other words, for each binary claugev ') in F, the two implicationd — [’ and
I' — 1, represented by the binary clause, occur as edgBEG(F). A node inBIG(F)
with no incoming arcs is eot of BIG(F') (or, simply, of F3). In other words, literal
is a root inBIG(F) if there is no clause of the forifi vV I) in F». The set of roots of
BIG(F') is denoted byRTS(F).

2.1 Known Simplification Techniques

BCP and Failed Literal Elimination ( FLE) For a CNF formula”, Boolean constraint
propagation(BCP) (or unit propagation propagates all unit clauses, i.e. repeats the
following until fixpoint: if there is a unit claus€) € F, remove fromF \ {(1)} all
clauses that contain the liteialand remove the literdlfrom all clauses irF, resulting

in the formulaBCP(F). A literal [ is afailed literal if BCP(F U {(I)}) contains the
empty clause, implying thdt is logically equivalent tGBCP(FU{(l)}). FLE removes
failed literals from a formula, or, equivalently, adds thergplements of failed literals

as unit clauses to the formula.

Equivalent Literal Substitution ( ELS) The strongly connected components (SCCs)
of BIG(F') describe equivalent classes of literals (or simply eqeigliterals) inFx.
Equivalent literal substitutiomefers to substituting i, for each SCQZ of BIG(F),

all occurrences of the literals occurring@hwith the representative literal ¢f. ELS is
confluent, i.e., has a unique fixpoint, modulo variable reingm

Hidden Tautology Elimination (HTE) [6] For a given CNF formuld” and claus&”,
(hidden literal addition HLA(F, C) is theuniqueclause resulting from repeating the
following clause extension steps until fixpoint: if thereaiditeral i, € C such that
there is a claus€ly Vv 1) € I, \ {C} for some literall, let C := C U {I}. Note that
HLA(F,C) = HLA(F3, C). Further, for anyl € HLA(F,C) \ C, there is a path in
BIG(F') from [ to somel, € C. For any CNF formulaF’ and clause” € F, (F \
{C}) U{HLA(F,C)} is logically equivalent taF" [6]. Intuitively, each extension step
in computingHLA is an application of self-subsuming resolution [2,15,16téverse
order. For a given CNF formul&, a clause” € F' is ahidden tautologyf and only
if HLA(F, C) is a tautologyHidden tautology eliminatioremoves hidden tautologies
from CNF formulas.

Note thatdistillation [4] is more generic thafl TE [6] (and also more generic than
HLE as defined in this paper). However, it is rather costly to woid is in practice
restricted to irredundant/original clauses only.

Transitive reduction of the binary implication graph (TRD) A directed acyclic
graphG’ is atransitive reduction11] of the directed graplé; provided that (i))G’
has a directed path from nodeo nodev if and only if G has a directed path from node
u to nodev, and (i) there is no graph with fewer edges th@rsatisfying condition (i).

It is interesting to notice that, by applyifgLE restricted to the literals id% before
HTE, HTE achieves a transitive reduction BfG(F') for any CNF formulaZF’ purely
on the clausal level [6].



3 Hidden Literal Elimination

In this section we present a novel redundancy eliminati@cgadure exploiting the bi-
nary clause structure of a CNF formula. We call the technigdéen literal elimination
For a given CNF formuld’ and literall, we denote byHL(F, ) the uniqueset of
hidden literalsof | w.r.t F. HL(F,!) is defined as follows. First, lek = {i}. Then
repeat the following steps until fixpoint: if there is a l&t, € L such that there is a
clausg(ly V1') € F; for some literal’, let L := LU{l’}. Now, letHL(F, 1) := L\ {I}.
In other wordsHL(F, [) contains the complements of all literals that are reacHatnhe
1'in BIG(F), or, equivalently, all literals from whichis reachable irBIG(F). Notice
thatHL(F, ) = HL(F»,1). Also, HL captures failed literals i#; in the sense that by
definition, for any literall in F, there is a path fronito [ in BIG(F) if and only if
I € HL(F,1).

Proposition 1. For any CNF formulaF’, a literal I in F, is failed iffi € HL(F,1).

For a given formulal’, hidden literal elimination(HLE) repeats the following: if
there is a claus€' € F and a literall € C such thatC' N HL(F,l) # 0, let F :=
(F\{C})uU{C\ HL(F,1)}. In fact, the literals ifIL(F, [) can be removed from all
clauses that contain

Proposition 2. For every CNF formuld”, any result of applyin@ILE on F' is logically
equivalent toF'.

Proof. For any CNF formuld and two literald andl’, if I’ € HL(F, 1), thenFU{(l")}
logically impliesi by the definition ofiL.. Hence, for any claus€ € F with /.1’ € C,
for any satisfying assignmentfor F with 7(I') = 1 we haver(l) = 1, and hence
satisfieg F' \ {C}) U {C \ HL(F,1)}. O

A relevant question is how many literalLE eliminates relative to other literal
elimination technigues. One example is self-subsumingluésn (SSR) [2] that re-
places clauses that have a resolvent that subsumes the disels with the resolvent
(essentially eliminating from the clause the literal nothie resolvent).

Proposition 3. There are CNF formulas from whicHLE can remove more literals
from clauses thaBSR.

Proof. Consider the formul& = (a\Vb)A(bVc)A(avevd). SinceHL(F, a) = {b, ¢},
HLE can remove literat from the last clause in contrast $SRR. O

HLE can also strengthen formulas by increasing possibilibesifiit propagation.

Proposition 4. Removal of hidden literals can increaB&P.

Proof. Consider the formul& = (a\Vb)A(bVc)A(avevd). SinceHL(F, a) = {b, ¢},
HLE removes literak from the last clause. Whetis assigned t@ after eliminating
literal ¢, BCP will infer a. O

In general HLE does not have a unique fixpoint.

Proposition 5. ApplyingHLE until fixpoint is not confluent.



Proof. Consider the formul& = (aVb) A (@ Vb) A(aVbVc). SinceHL(F, a) = {b}
andHL(F,b) = {a}, HLE can remove eitheb or a from (a V b V ¢). A fixpoint is
reached after removing one of these two literals. O

In the example the non-confluence is duextandb being equivalent literals. In fact,
assume that all clauses Iy are kept even in the ca$fLE turns a binary clause into a
unit clause (i.e., in such casH3$.E will introduce new unit clauses intd). ThenHLE
can be made confluent (modulo variable renaming) by subistitequivalent literals.

Theorem 1. For any CNF formulaF', assuming that all clauses in the original,
are kept, alternatingcLS and HLE (until fixpoint) until fixpoint is confluent modulo
variable renaming.

Proof sketchELS is confluent modulo variable renaming. Now consiH&E. Assume
that we do not changg,. Take any claus€ with [,1’ € C' andl’ € HL(F, ). The only
possible source of non-confluence is thatHL(F,’). Then there is a cycle ify, and
hence and!’ are equivalent literals. This is handled BL.S afterwards. Now assume a
binary clause is added 16, by HL.E shortening a clause of length2. Newly produced
cycles are handled byLS afterwards. O

4 Unhiding Redundancies based on Time Stamping

In this section we present an efficient algorithm for deteggeveral kinds of redun-
dancies in CNF formulas, focusing on techniques which ekplpary clauses.

For a given CNF formuld”, our algorithm, referred to adnhiding (see Fig[lL,
details explained in the following), consists in essenavofphases. First, a depth-first
search (DFS) over the binary implication gral@ (F') is performed. During the DFS,
each literal inBIG(F) is assigned a time stamp; we call this proctsse stamping
In the second phase, these time stamps are used for disop¥ke various kinds of
redundancies id’, which are then removed.

In the following, we will first describe hasic time stamping procedu(8ect[4.1).
Then we will show how redundancies can be detected and etedrbased on the time
stamps (Seckl5). After these, in Sédt. 6 we describe a mabranced time stamping
procedurethat embeds additional simplifications that are captutedng the actual
depth-first traversal dBIG(F).

4.1 Basic Time Stamping

The basic time stamping procedure implements a depth-asth on the binary impli-
cation grapiBIG(F') of a given CNF formuld’. The procedure associatediacovered-
finished intervalor atime stampwith each literal inBIG(F’) according to the depth-
first traversal order. For any depth-first traversal of a gr@p a node inG is discov-
ered (resp.finished the first (resp. last) time it is encountered during seaFar. a
given depth-first traversal, thiiscoveryandfinish timesof a nodev in G, denoted by
dsc(v) andfin(v), respectively, are defined as the number of steps taken dintkee
of discovering and finishing, respectively, the nad& he important observation here
is that, according to the well-known “parenthesis theorefof two nodesu and v
with discovered-finished intervaldsc(u), fin(u)] and[dsc(v), fin(v)], respectively, we



know thatv is a descendant af in the DFS tree if and only iflsc(u) < dsc(v) and
fin(u) > fin(v), i.e., if the time stamp (interval) af containsthe time stamp (interval)
of v. These conditions can be checked in constant time giverinteestamps.
Pseudo-code for the main unhiding procedunhidingand the time stamping pro-
cedureStampis presented in Figl1. The main proceduhghiding (left) initializes the
attributes and calls the recursive stamping procedurbtjrfigr each root irBIG(F') in
a random order. When there are no more roots, we pick a litertavisited yet as the
next starting point until all literals have been visiﬂaﬁtammerforms aDFSIiBIG(F)
from the given starting literal, assigns for each litdrahcountered the discovery and
finish timesdsc(l) andfin(l) according to the traversal order, updaséesmp(initially
0), and for each literdl, defines its DFS paremptrt(!) and the rootoot(l) of the DFS
tree in whichl was discovered.
In the following, we say that a given time stampiegresents the implicatiain— [’
if the time stamp of contains the time stamp &f

Unhiding (formula F’) Stamp (literal I, integer stamp)
stamp =0 1 stamp = stamp + 1
foreach literal [ in BIG(F') do 2 dsc(l) := stamp
dsc(l) := 0; fin(l) :== 0 s foreach (Ivl') € F»do
prt(l) :=I; root(l) := 1 4 if dsc(l’) = 0 then
foreach r € RTS(F) do 5 pre(l') :==1
stamp := Stamp(r, stamp) 6 root(l") := root(l)
foreach literal I in BIG(F') do 7 stamp := Stamp(l’, stamp)
if dsc(l) = 0 then 8 stamp = stamp + 1
stamp := Stamp(l, stamp) 9 fin(l) := stamp
return Simplify (F) 10 return stamp

© ® N o O 9~ W N P

[
o

Fig. 1. TheUnhidingalgorithm. Left: the main procedure. Right: the basic stagprocedure.
Example 1.Consider the formula

E=(@ve)r@vd)AbVvd)ADbVe)ANEV HANAVHANFVRAGYF) A
(GVh)A(@VvevVh)ADBVEVh)AlaVbVevdVeV fVgVh).

The formula contains several redundant clauses and 8tefale clausesa V e Vv h),
(gVvh),and(bV eV h) are hidden tautologies. In the last clause, all literalepkeand

h are hidden. The binary implication graphG(E) of F, as shown in Fid.]2, consists of
two components. A partition &IG(E) produced by the basic time stamping procedure
is shown in Fig[B. The nodes are visited in the following orde f, h, &, b, b, e, d,

h, g, f, d, a, ¢, a, c. BIG(E) consists of 30 implications including the transitive ones.
However, the trees and time stamps in the figure explicithyesent only 16 of them,
again including transitive edges suchfass a. The implication$ — f, f — b,b — h,
andh — b are not represented by this time stamping. Note that thedatpn f — ¢

is represented, and thus implicitty— f as well. Using contraposition this way the
four transitive edges mentioned above are not represehtedther 26 edges are.

4 Thus,BIG needs not to be acyclic. Note that eliminating cycleBli& by substituting variables
might shorten longer clauses to binary clauses, which imdould introduce new cycles. This
process cannot be bounded to be linear and is not necessanyrfalgorithms.



SN\ N,
N N
N NSNS

Fig. 2. BIG(E). The graph has five root nodes:b, €, g, andh.

The order in which the trees are traversed has a big impadienguality, i.e. the
fraction of implications that are represented by the tiraengts. The example shows that
randomized stamping may not represent all implicatiorBli&. Yet, for this formula,
there is a DFS order that produces a stamping that represdeimplications: start from
the rooth and stamp the tree starting with literal Then, by selecting as the root of
the second tree, regardless of the order of the other rodttitarals, the time stamps

produced by stamping will represent all implications. |
1 29, 32] b:[11,16] (17, 28]
304 d: ,[14é \12 13] [20 é— —>[18 19]
f [2,';; — 0.9 G [25'£ \[21 24] & [7,10]
> [3,':1; 22 g b: 8 {

Fig. 3. A partition of BIG(E) into a forest with discovered-finished intervasc(v), fin(v)]
assigned by the basic time stamping routine. Dashed lingesent implications irBIG(E)
which are not used to set the time stamps.

5 Capturing Various Simplifications

We now explain how one can remove hidden literals and hiddetologies, and fur-
thermore perform hyper binary resolution steps based oreatfover the time stamped
literal nodes produced by the main DFS procedure. The maireglureSimplifyfor this
second phase, called by the méinhidingprocedure after time stamping, is shown in
Fig.[4. For each claus€ in the input CNF formulaf’, SimplifyremovesC from F'.
Then, it first checks whether tRéHTE procedure detects théatis a hidden tautology.
If not, literals are (possibly) eliminated froni by theUHLE procedure (using hidden
literal elimination). The resulting clause is addedto

Notice that the simplification procedure visits each clatise F' only once. The
invoked sub-procedured HTE andUHLE, exploit the time stamps, and use two sorted
lists: (i) ST(C), list of the literals inC' sorted according to increasing discovery time,
and (i) S~ (C), list of the complements of the literals @, sorted according to increas-
ing discovery time. We will now explain both of these subq&dures in detail.



Simplify (formula F)
foreach C € F
F:=F\{C}
if UHTE(C) then continue
F:= FU{UHLE(C)}
return F

o s W N e

Fig. 4. Procedure for applyingl TE andHLE based on time stamps.

5.1 Hidden Literals

Once literals are stamped using the unhiding algorithm,camecheaply detect (possi-
bly a subset of) hidden literals. In this context, liteka C' is hidden if there is (i) an
implication! — [’ with I’ € C that is represented by the time stamping, or (ii) an
implication!’ — [ with I’ € C that is represented by the time stamping.

We check for such implications as follows using tHelLE procedure shown in
Fig.[8. For each input clausg, the procedure returns a subsetdivith some hidden
literals removed fronC'. For this procedure, we use™(C) in reverse order, denoted
by S;£.(C). In essence, we go through the listg, (C') andS~(C), and compare the
finish times of two successive elements in the lists. In casenglication is found, a
hidden literal is detected and removed.

Lines 1-4 in Fig[h detect implications of the foim- I’ with [, I’ € C that are rep-
resented by the time stamping. Recall thasjp, (C) literals are ordered with decreas-
ing discovering time. Let’ be located beforéin S, (C). If fin(l) > fin(I") we found
the implicationl — !’, and hencé is a hidden literal (in the codgnished = fin(l’)).
Line 3 checks whether the next elementdf, (C) is a hidden literal, and if so, the
literal is removed. Lines 5-8 detect implicatiofis— [ with 1,1’ € C. In S~(C) literals
are ordered with increasing discovering time. Nébe located beforé in S—(C)

and finished = fin(l"). On Line 7 we check thatin(l) < fin(!’) or, equivalently,

fin(l) < finished. In that casé is a hidden literal and is hence removed.

Example 2.Recall the formulat’ from ExampldL. All literals except andh in the
clauseC = (avbVevdVveV fVgVh)e E arehidden. In case the literals in
RTS(E) are stamped with the time stamps shown in Fidgure 3,\thé&E procedure
can detect them all. Consider first the sequesite(C) = (¢, a,d, e, b, h, f, g). Since
fin(e) < fin(a), a is removed fromC'. Similarly, fin(e) < fin(b) andfin(f) < fin(g),
and hencé andg are removed fron®”. Second, consider the complements of the literals
in the reduced claus8:~ (C) = (&, h, f, d, ). Now, fin(h) > fin(f), fin(d), fin(¢), and
hencef, d, andc are removed. [ |

UHLE (clause C)
finished := finish time of first element in Si, (C)
foreach | € S;, (C) starting at second element
if fin(l) > finished then C := C\ {l}
else finished := fin(l)
finished := finish time of first elementin S™(C)
foreach I € S~ (C) starting at second element

if fin(l) < finished then C':= C'\ {{}

else finished := fin(l)
return C

© © N o o A w N P

Fig. 5. Eliminating hidden literals using time stamps.



5.2 Hidden Tautologies

Fig.[8 shows the pseudo-code for tHeITE procedure that detects hidden tautologies
based on time stamps. Notice that if a time stamping reptesanimplication of the
form [ — I’, where bothl and!’ occur in a claus&”, then the claus€ is a hidden
tautology.

The UHTE procedure goes through the sorted liSts(C') andS~(C) to find two
literalsl,eg € S~ (C) andl,os € ST(C) such that the time stamping represents the im-
plicationlpes — lpos, i-€., it checks ifdsc(lneg) < dsc(lpos) aNdfin(lneg) > fin(lpos)-
The procedure starts with the first literdls, € S~ (C) andl,.s € ST(C), and loops
through the literals if,,s € S*(C) until dsc(lneg) < dsc(lpos) (Lines 4—6). Once
such alj,os is found, iffin(lheg) > fin(lpos) (Line 7), we know that' is a hidden tau-
tology, and the procedure returns true (Line 10). Otherwiseloop throughS—(C)
to select a new,, for which the condition holds (Lines 7-9). Then (Lines 4-i6),
dsc(lneg) < dsc(lpos), C is a hidden tautology. Otherwise, we select a g Unless
a hidden tautology is detected, the procedure terminates ibhas looped through all
literals in eitherS*(C) or S~ (C) (Lines 5 and 8).

One has to be careful while removing binary clauses baseamenstamps. There
are two exceptions in which time stamping represents anéatn /.. — lpos With
lheg € S7(C) andl,os € ST(C) for which C is not a hidden tautology. First, if
lpos = Zneg, thenl,.e, is a failed literal. Second, irt(l,05) = lneg, thenC was used to
set the time stamp d@f. Line 7 takes both of these cases into account.

Example 3.Recall again the formul& from Exampld]L.E contains three hidden tau-
tologies:(g v h), (aVeVh),and(bV eV k). Inthe time stamping in Fifl 3; : [17, 28]
containsg : [18,19]. However,prt(g) = h, and hencdg v h) cannot be removed.
On the other handj : [1, 6] containsh : [3, 4], andprt(h) # g, and hencég Vv h) is
identified as a hidden tautology. We can also idertify’ € VV h) as a hidden tautology
because : [17,28] containsa : [22, 23]. This is not the case fdb v ¢ v h) because the
implicationsh — h andh — b are not represented by the time stamping. |

Proposition 6. For any Unhiding time stamping, UHTE detects all hidden ¢dagies
that are represented by the time stamping.

Proof sketchFor everyl,., € S~(C), UHTE checks if time stamping represents the
implicationlnes — Ipos for the first literal inl,os € S*(C) for which dsc(lpes) <

UHTE (clause C)
lpos := first elementin S*(C)
lneg := first element in S~(C)
while true
if dsc(lneg) > dsc(lpos) then
if Ipos is last element in S*(C) then return false
lpos := Next element in ST(C)
else if fin(lneg) < fin(lpos) OF (|C] = 2 and (Ipos = Ineg OF Prt(lpos) = Ineg)) then
if lneg is last elementin S™(C) then return false
lneg := nNext elementin S~ (C)
elsereturn true

© ® N o o 9~ W N P

[
o

Fig. 6. Detecting hidden tautologies using time stamps.



dsc(lp0s) holds. The key observation is that if there i$,a, € S~(C) and alpos €
ST (C) such that time stamping represents the implication — /.05, then the stamps
also represerit., — I, With I, . being the firstliteral ir6* (C') for whichdsc(Ineg) <

dsc(lpos) holds. O

If a clauseC' is a hidden tautology, theHLA (F, C) is a hidden tautology due to
HLA(F,C) D C. However, it is possible that, for a given clauseUHTE(C') returns
true, whiletUHTE(UHLE(C)) returns false. In other wordslHLE could in some cases
disruptUHTE. For instance, consider the claugeV b Vv ¢) and the following time
stampsa : [2,3],a : [9,10], b : [1,4],b : [5,8], ¢ : [6,7], ¢ : [11,12]. Now UHLE
removes literab which is required fotJHTE to return true. TherefordHTE should be
called befordJHLE, as is done in ouimplifyprocedure (recall Fid.4).

5.3 Adding Hyper Binary Resolution

An additional binary clause based simplification technithat can be integrated into
the unhiding procedure isyper binary resolutiorfl] (HBR). Given a clause of the
form (1, v --- Vv ;) andk — 1 binary clauses of the forifi’ v [;), where2 < i < k, the
hyper binary resolution rule allows to infer the claysgeV I’) in one step.

ForHBR in the unhiding algorithm we only need the list (C). LetC be a clause
with & literals. We find a hyper binary resolvent if (i) all literats S~ (C), except the
first onel;, have a common ancestdr or (ii) all literals in S—(C), except the last
onel;,, have a common ancesttr. In case (i) we find/; v I’), and in case (i) we find
(I VI"). Itis even possible that all literals 5~ (C') have a common ancestf which
shows that”” is a failed literal, in which case we can learn the unit clai4$e.

While UHBR(C) could be called irSimplifyafter Line 4, our experiments show that
applyingUHBR(C') does not give further gains w.r.t. running times, and caraises
degrade performance. We suspect that this is becddtd&R(C') may add transitive
edges tdBIG(F). Consider the formul& = (aVbVe)A(aVvd) A(bVd)A(cVe)A
(cV f) A (dV €). Assume that the time stamping DFS visits the literals in ttieof,
c,a,d,d, e a,b,é¢ f,e,b. UHBR(a VbV c)) canlearn(cV d), but it cannot check that
this binary clause adds a transitive edg®&tG(F).

5.4 Some Limitations of Basic Stamping

As already pointed out, time stamps produced by randomiZ€8 Day not represent
all implications ofF». In fact, the fraction of implications represented can ry genall
in the worst case. Especially, consider the formidla: (a VbV eV d)A(aVb)A(aV
e)A(avd)A(bve)A(bvd)A(evd) that encodes that exactly oneab, ¢, d must be
true. Due to symmetry, there is only one possible DFS tralersler, and it produces
the time stamps : [1,8],6 : [2,3],¢ : [4,5],d : [6,7],b : [9,12], @ : [10,11],c :
[13,14],d : [15,16]. Only three of the six binary clauses are represented byirtee t
stamps. This example can be extended t@riables, in which case only — 1 of the
n(n—1)/2binary clauses are represented. In order to capture as mgfigations (and
thus simplification opportunities) as possible, in practiee apply multiple repetitions
of Unhidingusing randomized DFS (as detailed in SEEt. 7).



6 Advanced Stamping for Capturing Additional Simplifications

In this section we develop an advanced version of the DFS sta@ping procedure.
Our algorithm can be seen as an extension of the BinSATSO@etithm in [13]. The
advanced procedure, presented in Eig. 7, enables perfgmiditional simplifications
on-the-fly duringhe actual time stamping phase: the on-the-fly techniguepedorm
some simplifications that cannot be done w&8mplify F'), and, on the other hand,
enlarging the time stamps of literals may allow further difigations in Simplify( F).
Although not discussed further in this paper due to the pagig hwe note that, addi-
tionally, all simplifications byJHTE, UHLE, andUHBRwhich only use binary clauses
could be performed on-the-fly within the advanced stamphnogégdure.

Here we introduce the attribudds(l) that denotes the latest time point of observing
[. The value obbs(!) can change frequently duritgnhiding Each line of the advanced
stamping procedure (Figl 7) is labeled. The line labeledh @BS assignsobs(l) for
literal I. The labelBSC denotes that the line originates from the basic stampingepro
dure (Fig[1). Lines with the other labels are techniquestha be performed on-the-
fly: transitive reduction TRD / Sect[G.11), failed literal eliminatio=_E / Sect[6.R),
and equivalent literal substitutiofel(S / Sect.[6.B). The techniguERD depends on
FLE and both techniques use thiss() attribute whileELS is independent abbs().

Stamp (literal I, integer stamp)

1 BSC stamp = stamp + 1

2 ssaces dsc(l) := stamp; obs(l) := stamp

3 ELS flag := true /Il represents a SCC
4 ELS S.push(l) /I push [ on SCC stack
sesc  foreach (IVI) € %

6 RO if dsc(l) < obs(l’) then F := F\ {(IvI')}; continue

7 FLE if dsc(root (1)) < obs(!’) then

8 FLE ltailed =1

9 FLE while dSC(lfailed) > ObS(l_/) do lfajled = prt(lfai]ed)

10 FLE F = F U {(ltaitea) }

11 FLE if dsc(l’) # 0 and fin(I’) = 0 then continue

12 BSC if dsc(’) = 0 then

13 BSC prt(l’) =1

14 BSC root(l") := root(l)

15 BSC stamp := Stamp(l’, stamp)

16 ELS if fin(!") = 0 and dsc(!") < dsc(l) then

17 ELs dsc(l) := dsc(l'); flag := false /'l is equivalent to I’
18 cBS obs(l') := stamp /I set last observed time attribute
19 ELS if flag = true then I if [ represents a SCC
20 BSC stamp := stamp + 1

21 ELS do

22 ELS " .= S.pop() /I get equivalent literal
23 ELS dsc(l") := dsc(l) /l assign equal discovered time
24 BSC fin(l") := stamp Il assign equal finished time
25 ELS while I’ # 1

26 BSC return stamp

Fig. 7. Advanced literal time stamping capturing failed and eqeitliterals



6.1 Transitive Reduction

Binary clauses that represent transitive edge3l are in fact hidden tautologies|[6].
Such clauses can already be detected in the stamping phasééforeJHTE), as
shown in the advanced stamping procedure on Line 6 with [aRBI

A binary clausg(l v I') can only be observed as a hidden tautologysif(I’) > 0
during Stamygl, stamp). Otherwise prt(l’) := [, which satisfies the last condition on
Line 7 of UHTE. If dsc(I’) > dsc(l) just before callingStamgl’, stamp), then(l v I')
is a hidden tautology. When transitive edges are removetth@+fly, UHTE can focus
on clauses of size: 3, making the last check on Line 7 bfHTE redundant.

Transitive edges iBIG(F") can hinder the unhiding algorithm by reducing the time
stamp intervals. Hence as many transitive edges as poshibldd be removed. Notice
thatin casé < dsc(l') < dsc(l), Stamygl, stamp) cannot detect thdt \VI’) is a hidden
tautology. Yet by usingbs(!’) instead ofdsc(!’) in the check (Line 14 of Fid.17), we
can detect additional transitive edges. For instance jdenthe formulaF’ = (a v b) A
(bve) A (bvd) A(eV d) where(bV ¢) is a hidden tautology. I&nhiding visits the
literals in the ordew, b, ¢, d, b, @, ¢, d, then this hidden tautology is not detected using
dsc(!"). However, while visitingd in advanced stamping, we assigs(b) := dsc(d).
Now, usingobs(l’), Stamgc, stamp) can detect thath V ¢) is a hidden tautology.

6.2 Failed Literal Elimination over F»

Detection of failed literals inF;, can be performed on-the-fly during stamping. If a
literal I in F; is failed, then all ancestors 6fn BIG(F’) are also failed. Recall that there
is a strong relation betwedifiLE restricted toF; and failed literals inF, (Prop[1).

To detect a failed literal, we check for each observed litérashetherl’ was also
observed in the current tree, dsc(root(l)) < dsc(’). In that case the lowest com-
mon ancestor in the current tree is a failed literal. Simi¢atransitive reduction, the
number of detected failed literals can be increased by ubiagbs(l’) attribute instead
of dsc(l’). We compute the lowest common ancesigr.q of I’ and!’ (Lines 8-9 in
Fig.[7). Afterwards the unit claugé.;i.q) is added to the formula (Line 10).

At the end of on-the-flFLE (Line 11), the advanced stamping procedure checks
whether to stamp’ after finding a failed literal. In case we learned tiais a failed
literal, then we have the unit clausg). Then it does not make sense to stalfas all
implications ofl’ can be assigned to true BCP. This check also ensures that binary

clauses currently used in the recursion are not removedabgitive reduction.

6.3 Equivalent Literal Substitution

In caseBIG(F') contains a cycle, then all literals in that cycle are eqeimalin the basic
stamping procedure all these literals will be assignedferdifit time stamp. Therefore,
many implications of; will not be represented by any of the resulting time stamging
To fix this problem, equivalent literals should be assigiesddame time stamps.

A cycle in BIG(F') can be detected after callifgtampl’, stamp), by checking
whetherfin(!’) still has the initial valued. This check can only return true if is an
ancestor ofl. We implementedLS on-the-fly using a variant of Tarjan's SCC de-
composition algorithm[[17] which detects all cyclesBhG(F') using any depth-first
traversal order. We use a local boolegésy that is initialized to true (Line 3). If true,



flag denotes thatrepresents a SCC. In case it detects a cytlg,is set to false (Lines
16-17). Additionally, a global stack of literals is used, and is initially empty. At each
call of Stamygl, stamp), [ is pushed on the stack (Line 4). At the end of the procedure,
if 1 is still the representative of a SCC, all literalsSrbeing equivalent té, all literals

in S are assigned the same time stamp (Lines 19-25).

7 Experiments

We have implementednhidingin our state-of-the-art SAT solver Lingeling [12] (ver-
sion 517, source code and experimental data at http:/kmai/unhiding) as an addi-
tional preprocessing or, more precisahprocessingechnique applied during search.
Batches of randomized unhiding rounds are interleaved satrch and other already
included inprocessing techniques. The number of unhidiugds per unhiding phase
and the overall work spent in unhiding is limited in a simieaty as is already done in
Lingeling for the other inprocessing. The costifhidingis measured in the number of
recursive calls to the stamping procedure and the numbdao$es traversed. Sorting
clauses (iINJHTE andUHLE) incurs an additional penalty. In the experimddtgiding
takes on average roughly 7% of the total running time (inicigdearch), which is more
than twice as much as standard failed literal probing (2%d)aound half of the time
spent on SatElite-style variable elimination (16%).

The cluster machines used for the experiments, with Inteé @duo Quad Q9550
2.8-GHz processors, 8-GB main memory, running Ubuntu Lirargion 9.04, are around
twice as fast as the ones used in the first phase of the 2009 @Apatition. For the ex-
periments we used a 900 s timeout and a memory limit of 7 GBhdJtsie set of all 292
application instances from SAT Competition 2009 (httatésmpetition.org/2009/), a
comparison of the number of solved instances for differenfigurations oUnhiding
and the baseline (up-to-date version of Lingeling withdohiding) is presented in Ta-
ble[d. Note that we obtained similar results also for the SAEd&R2010 instances, and
also improved performance on the crafted instances of SAMp&ition 2009.

Table 1. Comparison of different configurations Bihhiding and the baseline solver Lingeling.
The 2™ to 4** columns show the number of solved instances (sol), respeddatisfiable (sat)
and unsatisfiable (uns) instances. The next three colunmiaindhe average percentage of total
time spent in unhiding (unhd), all simplifications througpiiocessing (simp), and variable elim-
ination (elim). Here we also take unsolved instances intmact. The rest of the table lists the
number of hidden tautologies (hte) in millions, the numbkhidden literal eliminations (hle),
also in millions, and finally the number of unhidden unitst@)rin thousands which includes the
number of unhidden failed literals. We also include the agemercentage (stp) of hidden tautolo-
gies resp. derived units during stamping, and the averagemage (red) of redundant/learned
hidden tautologies resp. removed literals in redundaartiled clauses. A more detailed analysis
shows that for many instances, the percentage of redunidarses is very high, actually close to
100%, both for HTE and HLE. Note that “unts” is not preciselas$ame failed literal might be
found several times during stamping since we propagats lazily after unhiding.

configuration || sol|safung[unhd simp] elim [[hte] stp] red][hle] red [Juntd stp
adv.stamp (no uhbr)|[188 78|110|7.1%933.09416.1%j| 22|64%59%](|29177.6%| 93557%
adv.stamp (w/uhbr) |[184 75/109|7.6%32.89415.8%j| 26|67%70%(|278 77.9%| 94158%
basic stamp (no uhrl83 73|110(|6.89432.3%415.8%| 6| 0%]5294(296/78.0%4| 273 0%
basic stamp (w/uhbr)183 73|110(|7.49432.8%415.8%| 7| 0%]|6694|288/76.7%| 308 0%
no unhiding 180 74{106|0.09428.6%17.6%| 0| 0%| 0%|| O] 0.0%| O] 0%



http://fmv.jku.at/unhiding

The three main observations are:ynhidingincreases the number of solved satisfi-
able instances already when using the basic stamping prosdd) using the advanced
stamping scheme, the number of solved instances increataswnfor both satisfiable
and unsatisfiable instances; and (iii) tHelBRprocedure actually degrades the perfor-
mance (in-line with the discussion in Séct.]5.3). Hence thimradvantages dfnhiding
are due to the combination of the advanced stamping proeddHiTE, andUHLE.

8 Conclusions

The Unhiding algorithm efficiently (close to linear time) approximatesambination
of binary clause based simplifications that is conjectucetid at least quadratic in
the worst case. In addition to applying known simplificattenhniques, including the
recent hidden tautology elimination, we introduced theattechnique of hidden literal
elimination, and implemented it withidnhiding We showed that)nhidingimproves
the performance of a state-of-the-art CDCL SAT solver wiméegrated into the search
procedure for inprocessing formulas (including learntiskss) during search.

References

1. Bacchus, F.: Enhancing Davis Putnam with extended bic#ayse reasoning. In:
Proc. AAAI, AAAI Press (2002) 613-619
2. Eén, N., Biere, A.: Effective preprocessing in SAT tlgbhwariable and clause elimination.
In: Proc. SAT. Volume 3569 of LNCS., Springer (2005) 61-75
3. Gershman, R., Strichman, O.: Cost-effective hyperiotiem for preprocessing CNF for-
mulas. In: Proc. SAT. Volume 3569 of LNCS., Springer (200834429
4. Han, H., Somenzi, F.: Alembic: An efficient algorithm folNE preprocessing. In:
Proc. DAC, IEEE (2007) 582-587
5. Jarvisalo, M., Biere, A., M. Heule, M.J.H.: Blocked ct&uelimination. In: Proc. TACAS.
Volume 6015 of LNCS., Springer (2010) 129-144
6. Heule, M.J.H., Jarvisalo, M., Biere, A.: Clause elintioa procedures for CNF formulas.
In: Proc. LPAR-17. Volume 6397 of LNCS., Springer (2010) 3571
7. Marques Silva, J.P.: Algebraic simplification technigfier propositional satisfiability. In:
Proc. CP. Volume 1894 of LNCS., Springer (2000) 537-542
8. Van Gelder, A.: Toward leaner binary-clause reasonirg satisfiability solver. Annals of
Mathematics and Atrtificial Intelligencé3(1) (2005) 239-253
9. Li, C.M.: Integrating equivalency reasoning into Dafstnam procedure. In: Proc. AAAL.
(2000) 291296
10. Brafman, R.: A simplifier for propositional formulas tvinany binary clauses. IEEE Trans-
actions on Systems, Man, and Cybernetics, P&@4®) (2004) 52-59
11. Aho, A., Garey, M., Ullman, J.: The transitive reductfra directed graph. SIAM Journal
on Computingl(2) (1972) 131-137
12. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSATSAT Race 2010. FMV Report
Series Technical Report 10/1, Johannes Kepler Univetsity, Austria (2010)
13. del Val, A.: Simplifying binary propositional theori@®to connected components twice as
fast. In: Proc. LPAR. Volume 2250 of LNCS., Springer (200923406
14. Soos, M.: Cryptominisat 2.5.0, sat race 2010 solverrgssm (2010)
15. Korovin, K.: iProver - an instantiation-based theoreovpr for first-order logic. In: Proc. 13-
CAR. Volume 5195 of LNCS., Springer (2008) 292—298
16. Groote, J.F., Warners, J.P.: The propositional fornshiecker HeerHugo. J. Autom. Rea-
soning24(1/2) (2000) 101-125
17. Tarjan, R.: Depth-first search and linear graph algosthSIAM J. Computind.(2) (1972)



	Efficient CNF Simplification based on Binary Implication Graphs

