
1/35

Proofs of Unsatisfiability

Marijn J.H. Heule

SAT 2016 Industry Day

July 9, 2016

2/35

Outline

Introduction

Proof Checking

Proof Systems and Formats

Media and Applications

Conclusions

3/35

Introduction

4/35

Satisfiability (SAT) solving has many applications

formal verification

planning

graph theory

number theory

bioinformatics

cryptography

train safety

rewrite termination

encode decodeSAT solver

5/35

A Small Satisfiability (SAT) Problem

(x5 ∨ x8 ∨ x̄2) ∧ (x2 ∨ x̄1 ∨ x̄3) ∧ (x̄8 ∨ x̄3 ∨ x̄7) ∧ (x̄5 ∨ x3 ∨ x8) ∧
(x̄6 ∨ x̄1 ∨ x̄5) ∧ (x8 ∨ x̄9 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x̄1 ∨ x8 ∨ x4) ∧
(x̄9 ∨ x̄6 ∨ x8) ∧ (x8 ∨ x3 ∨ x̄9) ∧ (x9 ∨ x̄3 ∨ x8) ∧ (x6 ∨ x̄9 ∨ x5) ∧
(x2 ∨ x̄3 ∨ x̄8) ∧ (x8 ∨ x̄6 ∨ x̄3) ∧ (x8 ∨ x̄3 ∨ x̄1) ∧ (x̄8 ∨ x6 ∨ x̄2) ∧
(x7 ∨ x9 ∨ x̄2) ∧ (x8 ∨ x̄9 ∨ x2) ∧ (x̄1 ∨ x̄9 ∨ x4) ∧ (x8 ∨ x1 ∨ x̄2) ∧
(x3 ∨ x̄4 ∨ x̄6) ∧ (x̄1 ∨ x̄7 ∨ x5) ∧ (x̄7 ∨ x1 ∨ x6) ∧ (x̄5 ∨ x4 ∨ x̄6) ∧
(x̄4 ∨ x9 ∨ x̄8) ∧ (x2 ∨ x9 ∨ x1) ∧ (x5 ∨ x̄7 ∨ x1) ∧ (x̄7 ∨ x̄9 ∨ x̄6) ∧
(x2 ∨ x5 ∨ x4) ∧ (x8 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x̄5 ∨ x̄7 ∨ x9) ∧
(x2 ∨ x̄8 ∨ x1) ∧ (x̄7 ∨ x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3) ∧ (x1 ∨ x̄9 ∨ x̄4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x̄6 ∨ x3 ∨ x̄9) ∧ (x̄7 ∨ x5 ∨ x9) ∧ (x7 ∨ x̄5 ∨ x̄2) ∧
(x4 ∨ x7 ∨ x3) ∧ (x4 ∨ x̄9 ∨ x̄7) ∧ (x5 ∨ x̄1 ∨ x7) ∧ (x5 ∨ x̄1 ∨ x7) ∧
(x6 ∨ x7 ∨ x̄3) ∧ (x̄8 ∨ x̄6 ∨ x̄7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x̄8 ∨ x2 ∨ x5)

Does there exist an assignment satisfying all clauses?

6/35

Search for a satisfying assignment (or proof none exists)

(x5 ∨ x8 ∨ x̄2) ∧ (x2 ∨ x̄1 ∨ x̄3) ∧ (x̄8 ∨ x̄3 ∨ x̄7) ∧ (x̄5 ∨ x3 ∨ x8) ∧
(x̄6 ∨ x̄1 ∨ x̄5) ∧ (x8 ∨ x̄9 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x̄1 ∨ x8 ∨ x4) ∧
(x̄9 ∨ x̄6 ∨ x8) ∧ (x8 ∨ x3 ∨ x̄9) ∧ (x9 ∨ x̄3 ∨ x8) ∧ (x6 ∨ x̄9 ∨ x5) ∧
(x2 ∨ x̄3 ∨ x̄8) ∧ (x8 ∨ x̄6 ∨ x̄3) ∧ (x8 ∨ x̄3 ∨ x̄1) ∧ (x̄8 ∨ x6 ∨ x̄2) ∧
(x7 ∨ x9 ∨ x̄2) ∧ (x8 ∨ x̄9 ∨ x2) ∧ (x̄1 ∨ x̄9 ∨ x4) ∧ (x8 ∨ x1 ∨ x̄2) ∧
(x3 ∨ x̄4 ∨ x̄6) ∧ (x̄1 ∨ x̄7 ∨ x5) ∧ (x̄7 ∨ x1 ∨ x6) ∧ (x̄5 ∨ x4 ∨ x̄6) ∧
(x̄4 ∨ x9 ∨ x̄8) ∧ (x2 ∨ x9 ∨ x1) ∧ (x5 ∨ x̄7 ∨ x1) ∧ (x̄7 ∨ x̄9 ∨ x̄6) ∧
(x2 ∨ x5 ∨ x4) ∧ (x8 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x̄5 ∨ x̄7 ∨ x9) ∧
(x2 ∨ x̄8 ∨ x1) ∧ (x̄7 ∨ x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3) ∧ (x1 ∨ x̄9 ∨ x̄4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x̄6 ∨ x3 ∨ x̄9) ∧ (x̄7 ∨ x5 ∨ x9) ∧ (x7 ∨ x̄5 ∨ x̄2) ∧
(x4 ∨ x7 ∨ x3) ∧ (x4 ∨ x̄9 ∨ x̄7) ∧ (x5 ∨ x̄1 ∨ x7) ∧ (x5 ∨ x̄1 ∨ x7) ∧
(x6 ∨ x7 ∨ x̄3) ∧ (x̄8 ∨ x̄6 ∨ x̄7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x̄8 ∨ x2 ∨ x5)

Solutions are easy to verify, but what about unsatisfiability?

7/35

Original motivation for validating unsatisfiability proofs

Satisfiability solvers are used in amazing ways...
I Hardware and software verification (Intel and Microsoft)
I Hard-Combinatorial problems:

I van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors and only return yes/no.
I Documented bugs in SAT, SMT, and QBF solvers

[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors
I Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be checkable.

8/35

Demo: Validating Solver Output

9/35

Proof Checking

10/35

Resolution Rule and Resolution Chains

Resolution Rule

(x ∨ a1 ∨ . . . ∨ ai) (x̄ ∨ b1 ∨ . . . ∨ bj)

(a1 ∨ . . . ∨ ai ∨ b1 ∨ . . . ∨ bj)

I Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
I (c) := (ā ∨ b̄ ∨ c) � (ā ∨ b) � (a ∨ c)

I (ā ∨ c) := (ā ∨ b) � (a ∨ c) � (ā ∨ b̄ ∨ c)

I The order of the clauses in the chain matter

10/35

Resolution Rule and Resolution Chains

Resolution Rule

(x ∨ a1 ∨ . . . ∨ ai) (x̄ ∨ b1 ∨ . . . ∨ bj)

(a1 ∨ . . . ∨ ai ∨ b1 ∨ . . . ∨ bj)

I Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
I (c) := (ā ∨ b̄ ∨ c) � (ā ∨ b) � (a ∨ c)

I (ā ∨ c) := (ā ∨ b) � (a ∨ c) � (ā ∨ b̄ ∨ c)

I The order of the clauses in the chain matter

11/35

Resolution Proofs versus Clausal Proofs
Consider the formula F := (b̄∨c)∧ (a∨c)∧ (ā∨b)∧ (ā∨b̄)∧ (a∨b̄)∧ (b∨c̄)

A resolution graph of F is:

b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

A resolution proof consists of all nodes and edges of the resolution graph
I Graphs from SAT solvers have ∼ 400 incoming edges per node
I Resolution proof logging can heavily increase memory usage (×100)

A clausal proof is a list of all nodes sorted by topological order
I Clausal proofs are easy to emit and relatively small
I Clausal proof checking requires to reconstruct the edges (costly)

12/35

Clausal Proof: Checker has to reconstruct resolution edges

c

b̄

ā

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

12/35

Clausal Proof: Checker has to reconstruct resolution edges

c

b̄

ā

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

12/35

Clausal Proof: Checker has to reconstruct resolution edges

c

b̄

ā

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

12/35

Clausal Proof: Checker has to reconstruct resolution edges

c

b̄

ā

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

12/35

Clausal Proof: Checker has to reconstruct resolution edges

c

b̄

ā

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

13/35

Improvement I: Backwards Checking

Goldberg and Novikov proposed checking the
refutation backwards [DATE 2003]:

I start by validating the empty clause;
I mark all lemmas using conflict analysis;
I only validate marked lemmas.

Advantage: validate fewer lemmas.

Disadvantage: more complex.

We provide a fast open source
implementation of this procedure.

c

b̄

ā

ε

14/35

Improvement II: Clause Deletion

We proposed to extend clausal proofs with
deletion information [STVR 2014]:

I clause deletion is crucial for efficient solving;
I emit learning and deletion information;
I proof size might double;
I checking speed can be reduced significantly.

Clause deletion can be combined with backwards
checking [FMCAD 2013]:

I ignore deleted clauses earlier in the proof;
I optimize clause deletion for trimmed proofs.

b̄

b̄∨c

ā

ā∨b

c

ε

15/35

Improvement III: Core-first Unit Propagation

We propose a new unit propagation variant:
1. propagate using clauses already in the core;
2. examine non-core clauses only at fixpoint;
3. if a non-core unit clause is found, goto 1);
4. otherwise terminate.

Our variant, called Core-first Unit Propagation,
can reduce checking costs considerably.

Fast propagation in a checker is different
than fast propagation in a SAT solver. ā∨b̄ a∨b̄ b∨c̄

b̄

ε

Also, the resulting core and proof are smaller

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε a∨c ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε a∨c ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε a∨c ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion

b̄

b̄∨c

ā

ā∨b

c

ε b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄

ā

ε

Core-first unit propagation results in smaller cores and proofs

17/35

Proof Systems Formats

18/35

Clausal Proof System [Järvisalo, Heule, and Biere 2012]

F

Learn: add a clause
* Preserve satisfiability

Forget: remove a clause
* Preserve unsatisfiablity

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init

19/35

Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

19/35

Ideal Properties of a Proof System for SAT Solvers

Easy to Emit

Compact

Checked Efficiently

Expressive

Verified

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

20/35

Proof Formats: The Input Format DIMACS

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

The input format of SAT solvers is known as DIMACS

I header starts with p cnf followed by
the number of variables (n) and the
number of clauses (m)

I the next m lines represent the clauses
I positive literals are positive numbers
I negative literals are negative numbers
I clauses are terminated with a 0

p cnf 3 6
-2 3 0
1 3 0
-1 2 0
-1 -2 0
1 -2 0
2 -3 0

Most proof formats use a similar syntax.

21/35

Proof Formats: TraceCheck Overview

TraceCheck is the most popular resolution-style format.

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

TraceCheck is readable and resolution chains make it relatively compact

〈trace〉 = {〈clause〉}
〈clause〉 = 〈pos〉〈literals〉〈antecedents〉
〈literals〉 = “ ∗ ” | {〈lit〉}“0”

〈antecedents〉 = {〈pos〉}“0”

〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | · · · | 〈max−idx〉
〈neg〉 = “− ”〈pos〉

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

22/35

Proof Formats: TraceCheck Examples

TraceCheck is the most popular resolution-style format.

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

TraceCheck is readable and resolution chains make it relatively compact

The clauses 1 to 6 are input clauses
Clause 7 is the resolvent 4 and 5:

I (b̄) := (ā ∨ b̄) � (a ∨ b̄)

Clause 8 is the resolvent 1, 2 and 3:
I (c) := (b̄ ∨ c) � (ā ∨ b) � (a ∨ c)

I NB: the antecedents are swapped!
Clause 9 is the resolvent 6, 7 and 8:

I ε := (b ∨ c̄) � (b̄) � (c)

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

23/35

Proof Formats: TraceCheck Don’t Cares

Support for unsorted clauses, unsorted antecedents and omitted literals.

I Clauses are not required to be sorted based on the clause index

8 3 0 1 2 3 0
7 -2 0 4 5 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

I The antecedents of a clause can be in arbitrary order

7 -2 0 5 4 0
8 3 0 3 1 2 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

I For learned clauses, the literals can be omitted using *

7 * 5 4 0
8 * 3 1 2 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

24/35

Demo: Clausal Proof to
TraceCheck

25/35

Proof Formats: Reverse Unit Propagation (RUP)

Unit Propagation
Given an assignment ϕ, extend it by making unit clauses true
— until fixpoint or a clause becomes false

Reverse Unit Propagation (RUP)
A clause C = (l1 ∨ l2 ∨ · · · ∨ lk) has reverse unit propagation
w.r.t. formula F if unit propagation of the assignment
ϕ = C̄ = (l̄1 ∧ l̄2 ∧ . . . ∧ l̄k) on F results in a conflict.
We write: F ∧ C̄ `1 ε

A clause sequence C1, . . . ,Cm is a RUP proof for formula F

I F ∧ C1 ∧ · · · ∧ Ci−1 ∧ C̄i `1 ε

I Cm = ε

26/35

Proof Formats: RUP, DRUP, RAT, and DRAT

RUP and extensions is the most popular clausal-style format.

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

RUP is much more compact than TraceCheck because it does not
includes the resolution steps.

〈proof〉 = {〈lemma〉}
〈lemma〉 = 〈delete〉{〈lit〉}“0”

〈delete〉 = “” | “d”

〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | · · · | 〈max− idx〉
〈neg〉 = “− ”〈pos〉

-2 0
3 0
0

E ∧ (b) `1 ε

E ∧ (b̄) ∧ (c̄) `1 ε

E ∧ (b̄) ∧ (c) `1 ε

27/35

Proof Formats: Open Issues and Challenges

How get useful information from a proof?
I Clausal or variable core
I Resolution proof from a clausal proof
I Interpolant
I Proof minimization
I Inside the SAT solver or using an external tool?
I What would be a good API to manipulate proofs?

How to store proofs compactly?
I Question is important for resolution and clausal proofs
I Current formats are "readable" and hence large
I Recently we proposed a binary format, reducing size by a
factor of three.

28/35

Media and Applications

29/35

Media: The Largest Math Proof Ever

30/35

Applications: Erdős Discrepancy Conjecture

Erdős Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d , k holds that (xi ∈ {−1,+1}):∣∣∣∣∣

k∑
i=1

xid

∣∣∣∣∣ ≤ 2

The DRAT proof was 13Gb and checked
with our tool DRAT-trim [SAT14]

30/35

Applications: Erdős Discrepancy Conjecture

Erdős Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d , k holds that (xi ∈ {−1,+1}):∣∣∣∣∣

k∑
i=1

xid

∣∣∣∣∣ ≤ 2
The DRAT proof was 13Gb and checked

with our tool DRAT-trim [SAT14]

31/35

Applications: SAT Competitions (mandatory proof logging)

DRAT proof logging supported by all the top-tier solvers:
I e.g. Lingeling, MiniSAT, Glucose, and CryptoMiniSAT

DRAT-trim validates proofs in a time similar to solving time.
I computes also unsatisfiable core;
I optimizes the proof for possible later validations; and
I can emit a resolution proof (typically huge).

Example run of DRAT-trim on Erdős Discrepancy Proof

fud$./DRAT-trim EDP2_1161.cnf EDP2_1161.drat
c finished parsing
c detected empty clause; start verification via backward checking
c 23090 of 25142 clauses in core
c 5757105 of 6812396 lemmas in core using 469808891 resolution steps
c 16023 RAT lemmas in core; 5267754 redundant literals in core lemmas
s VERIFIED

32/35

Applications: Ramsey Numbers

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

Symmetry breaking can be validated using DRAT [CADE’15]

32/35

Applications: Ramsey Numbers

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

Symmetry breaking can be validated using DRAT [CADE’15]

32/35

Applications: Ramsey Numbers

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

Symmetry breaking can be validated using DRAT [CADE’15]

33/35

Conclusions

34/35

Conclusions

Proofs of unsatisfiability useful for several applications:
I Validate results of SAT solvers;
I Extracting minimal unsatisfiable cores;
I Computing Interpolants;
I Tools that use SAT solvers, such as theorem provers.

Challenges:
I Reduce size of proofs on disk and in memory;
I Reduce the cost to validate clausal proofs;
I How to deal with Gaussian elimination, cardinality
resolution, and pseudo-Boolean reasoning?

35/35

Thanks!

	Introduction
	Proof Checking
	Proof Systems and Formats
	Media and Applications
	Conclusions

