Proofs of Unsatisfiability

Marijn J.H. Heule

THE UNIVERSITY OF

TEXAS

—— AT AUSTIN ——

SAT 2016 Industry Day
July 9, 2016

1/35

Outline

Introduction

Proof Checking

Proof Systems and Formats
Media and Applications

Conclusions

2/35

Introduction

3/35

Satisfiability (SAT) solving has many applications

(] 1

Vo e,

6

formal verification graph theory bioinformatics train safety
00—~ 00
00 - 00
[I B0l]
planning number theory cryptography rewrite termination

encode SAT solver /decode

4/35

A Small Satisfiability (SAT) Problem

X5\/X8\/)_(2
X5V X1V X
j?g vV 5@5 V Xg
XQ\/)_<3\/)_(8 Xg\/)?ﬁ\/)_(g,
X7\/Xg\/)_(2 Xg\/)_(g\/XQ

() A (
() A (
() A (
() A (
() A (
(X3 vV)_(4 V)_(6) ()_(1 vV)_(7 V X5
() A (
() A (
() A (
() A (
() A (
() A (

X2\/)_(1\/)_(3
Xg V 5&; V X3
Xg V X3V 5?9

Xs V X3 V Xy
Xo VX1V X3
Xo V 5?3 V Xg
Xg\/)_<3\/)_(1
)_(1\/)_(9\/X4
537 Vx3V X6
X5\/)_(7\/X1
X5 V Xo V X3
X1V XqV X3
)_(7\/X5\/Xg
X5 V 5?1 V X7
X V X0 V X3

()_(5\/X3\/Xg)
()_(1\/X8\/X4)
()Q5 vV 5&; V)Q;)
()_(8\/X6\/)_(2)
(Xg\/Xl\/)_(Q)
()_(5\/X4\/)_(6)
)_(4\/Xg\/)_(8 X2VX9\/X1 ()
X V X5 V Xg xg V X3 V X5 ()
X2\/)_(8\/X1)_(7\/X1\/X5 ()
X3V X5 V Xg)_(6\/X3\/)_(9 ()
Xa V X7V X3 Xa V 5&9 V 567 ()
Xs V X7V X3 Xs V Xe V X7)

X7V Xo V X
)_(5\/)_(7\/X9
Xl\/)_(g\/)_(4
X7\/)_(5\/)_(2
X5\/)_<1\/X7
()_(8\/X2\/X5

>>>>>>>>> > >

) A (
) A (
) A (
) A (
) A (
) A (
) A
) A (
) A (
) A (
) A (
) A (

A\
A
A
A
A
A
A\
A\
A\
A\
A
A

N N e e e e e e e e e

Does there exist an assignment satisfying all clauses?

5/35

Search for a satisfying assignment (or proof none exists)

(X5\/X8\/)_(2
(X V X1 V %
()_(9\/)_(6\/X8
()62 V 523 V 528
(X7\/X9\/)_(2 Xg\/)_(g\/XQ
(x5 V34 V X XV X7V Xs
(
(
(
(
(
(

YA (2 V3V X
) A (
) A (
) A (
) A (
) A (
)_<4VX9\/)_(8)/\(X2\/X9\/X1
) A (
) A (
) A (
) A (
) A (

Xg V Xg V X3
Xg\/X3\/)_(9
Xg vV 5@3 V 523

X5 V X3 V %
Xo V x1V X3
Xg\/)_(3\/X8
Xg\/)_(3\/)_(1)_(8\/X6\/)_(2
)_(1\/)_(9\/X4 Xg\/Xl\/)_(g

) A ()
) A ()
) A ()
) A ()
) A ()
5V xa Vxs) A (X5 V xg V Xe)
) A ()
) A ()
) A ()
) A ()
) A ()
) A ()

)_(5\/X3\/X8
)_(1\/X8\/X4
X6\/)_(9\/X5

X5\/)_(7\/X1)_(7\/)_(9\/)_(6
X5V Xo V X3 X5 V X7 V Xg
X1\/X4\/X3 Xl\/)_(g\/)_(4
)_(7\/X5\/X9 X7\/)_(5\/)_(2
X5\/)_(1\/X7 X5\/)_<1\/X7
X6\/X2\/X3)?8\/X2\/X5

Xo V X5 V Xy xXg V Xz V Xg
XQ\/)_(g\/Xl)_(7\/X1\/X5
X3V X5 V Xg)_(6\/X3\/)_(9
Xa V X7V X3 X4\/)_(g\/)_(7
X6\/X7\/)_(3)?8\/)_(6\/)_(7

) A (
) A (
) A (
) A (
) A (
) A (
) A (
) A (
) A (
) A (
) A (
) A (

Solutions are easy to verify, but what about unsatisfiability?

>>>>>>>>> > >

6/35

Original motivation for validating unsatisfiability proofs

Satisfiability solvers are used in amazing ways...
» Hardware and software verification (Intel and Microsoft)

» Hard-Combinatorial problems:

» van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]
» Gardens of Eden in Conway's Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]
» Erdés Discrepancy Problem [Konev and Lisitsa, 2014]

.., but satisfiability solvers have errors and only return yes/no.

» Documented bugs in SAT, SMT, and QBF solvers
[Brummayer and Biere, 2009; Brummayer et al., 2010]

» Implementation errors often imply conceptual errors

» Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be checkable.

7/35

Demo: Validating Solver Output

Proot Checking

Resolution Rule and Resolution Chains

Resolution Rule

(x\/al\/...\/a,-) ()_(\/bl\/...\/bj)
(alv...\/a,-vblv...\/bj)

» Many SAT techniques can be simulated by resolution.

10/35

Resolution Rule and Resolution Chains

Resolution Rule

(x\/alv...\/a,-) ()_(\/bl\/...\/bj)
(alv...\/a,-vbl\/...\/bj)

» Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
» (¢) = (5\/5\/c)<>(§\/b)<>(av5)
» (AVe):=(aVvb)o(avec)o(aVvbVe)

» The order of the clauses in the chain matter

10/35

Resolution Proofs versus Clausal Proofs
Consider the formula F := (bVc) A(avec) A(aVb) A (aVb) A (avb) A (bVE)

A resolution graph of F is:

{wwﬁzﬁ

A resolution proof consists of all nodes and edges of the resolution graph
» Graphs from SAT solvers have ~ 400 incoming edges per node

» Resolution proof logging can heavily increase memory usage (x100)

A clausal proof is a list of all nodes sorted by topological order
» Clausal proofs are easy to emit and relatively small
» Clausal proof checking requires to reconstruct the edges (costly)

11/35

Clausal Proof: Checker has to reconstruct resolution edges

| B I R O O B

12/35

Clausal Proof: Checker has to reconstruct resolution edges

| B I N O B

12/35

Clausal Proof: Checker has to reconstruct resolution edges

-0

| B o O O O B

12/35

Clausal Proof: Checker has to reconstruct resolution edges

| B B O O B

12/35

Clausal Proof: Checker has to reconstruct resolution edges

,nmnnmm

12/35

Improvement |: Backwards Checking

Goldberg and Novikov proposed checking the
refutation backwards [DATE 2003]:

» start by validating the empty clause;
» mark all lemmas using conflict analysis;
» only validate marked lemmas.

Advantage: validate fewer lemmas.
Disadvantage: more complex.

We provide a fast open source
implementation of this procedure.

13/35

Improvement Il: Clause Deletion

We proposed to extend clausal proofs with
deletion information [STVR 2014]:

clause deletion is crucial for efficient solving;

|©
>

oy
<
)

v

v

emit learning and deletion information;
» proof size might double;

v

checking speed can be reduced significantly.

Clause deletion can be combined with backwards
checking [FMCAD 2013]:

» ignore deleted clauses earlier in the proof;

» optimize clause deletion for trimmed proofs.

8]}
OOHO
O

-

14/35

Improvement Ill: Core-first Unit Propagation

We propose a new unit propagation variant:
propagate using clauses already in the core;

G

examine non-core clauses only at fixpoint;
if a non-core unit clause is found, goto 1);

=

otherwise terminate.

Our variant, called Core-first Unit Propagation,
can reduce checking costs considerably.

Fast propagation in a checker is different
than fast propagation in a SAT solver. avbjaVvb

Also, the resulting core and proof are smaller

15/35

Checking: Backwards + Core-first + Deletion
01 ©
2 o

oy

B B O O B O

Core-first unit propagation results in smaller cores and proofs

o8]
O0HO
(on

16/35

Checking: Backwards + Core-first + Deletion
O &
® o

Core-first unit propagation results in smaller cores and proofs

o8]
00HO
(on

16/35

Checking: Backwards + Core-first + Deletion

A €/€
5

oy

o8]
OO0HO
(on

- .

Core-first unit propagation results in smaller cores and proofs

16/35

Checking: Backwards + Core-first + Deletion
o1 &
2 ¢

A \ﬁ

- .

Core-first unit propagation results in smaller cores and proofs

oy

o8]
OO0HO
(on

16/35

Checking: Backwards + Core-first + Deletion
o1 &
® ¢

b BT B M O

Core-first unit propagation results in smaller cores and proofs

o8]
00HO
(on

16/35

Checking: Backwards + Core-first + Deletion
o1 &
E ¢

o
M e I I O

Core-first unit propagation results in smaller cores and proofs

oy

o8]
O0HO
(on

16/35

Checking: Backwards + Core-first + Deletion
O &
E ¢

o f 4 of o

Core-first unit propagation results in smaller cores and proofs

o8]
O0HO
(on

16/35

Checking: Backwards + Core-first + Deletion
o) &
E ¢

oy

o
G I I O O

Core-first unit propagation results in smaller cores and proofs

o8]
O0HO
(on

16/35

Proot Systems Formats

Clausal Proof System [Jarvisalo, Heule, and Biere 2012]

Iy < Learn: add a clause
-\ [~ * Preserve satisfiability

Unsatisfiable
* Learn empty clause

Satisfiable
* Forget last clause

@) Forget: remove a clause
” * Preserve unsatisfiablity

18/35

|deal Properties of a Proof System for SAT Solvers

-DI.

i
Checked Efficiently I

Expressive I

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

19/35

|deal Properties of a Proof System for SAT Solvers

Resolution Proofs
Zhang and Malik, 2003

Easy to Emit -DI. Van Gelder, 2008; Biere, 2008
] Clausal Proofs
Goldberg and Novikov, 2003
L -. Van Gelder, 2008

Clausal proofs + clause deletion
.. Heule, Hunt, Jr., and Wetzler [STVR 2014]

I. Optimized clausal proof checker

Checked Efficiently :
I Heule, Hunt, Jr., and Wetzler [FMCAD 2013]
.
I I Clausal RAT proofs
[|

Heule, Hunt, Jr., and Wetzler [CADE 2013]

I |

Wetzler, Heule, and Hunt, Jr. [SAT 2014]

19/35

Proof Formats: The Input Format DIMACS

E:=(bVvc)A(ave)A(aVb)A(aVvb)A(aVvb)A(bVE)

The input format of SAT solvers is known as DIMACS

» header starts with p cnf followed by

] p cnf 3 6
the number of variables (n) and the 52 30
number of clauses (m) 1 30
» the next m lines represent the clauses -1 20
» positive literals are positive numbers -1 -2 0
» negative literals are negative numbers 1 -20
» clauses are terminated with a 0 230

Most proof formats use a similar syntax.

20/35

Proof Formats: TraceCheck Overview

TraceCheck is the most popular resolution-style format.

E =

(bvc)A(aVe)A(avb)A(aV

A(aVb)A

(bVv)

TraceCheck is readable and resolution chains make it relatively compact

(trace
(clause
(literals

)
)
)
<antecedents)
lit)
)
)

{{(clause)}

(pos)(literals) (antecedents)
(lit)} 0"
{(pos)} 0"
{pos) | (neg)
S
“— (pos)

| (max—idx)

WooJdo Ul WNR

-2 3
1 3
-1 2
-1 -2
1 -2
2 -3
-2 0
3 0
0 6

NRkP B OO OO OO

©ONUGIOOOOOoOOo

o Wwo
o

21/35

Proof Formats: TraceCheck Examples

TraceCheck is the most popular resolution-style format.
E:=(bvc)r(ave)an(avb)a(avb)a(aVvb)A(bVE)

TraceCheck is readable and resolution chains make it relatively compact

The clauses 1 to 6 are input clauses

1 -2 300
Clause 7 is the resolvent 4 and 5: 2 1 300
» (b):=(avh)o(aVh) 3-1 200
; . 4 -1 -2 00
Clause 8 is the resolvent 1, 2 and 3:
_ B 5 1 -200
> (c):=(bVc)o(avb)o(aVe) 6 2 -3 00
» NB: the antecedents are swapped! 7 -2 0450
Clause 9 is the resolvent 6, 7 and 8: 8 3 01230
> e:=(bVE)o(b)o(c) 9 0 6780

22/35

Proof Formats: TraceCheck Don't Cares

Support for unsorted clauses, unsorted antecedents and omitted literals.

» Clauses are not required to be sorted based on the clause index

8 3 01230 7-2 0450
7-2 0450 8 3 01230

» The antecedents of a clause can be in arbitrary order

~

7-2 0 -2 0
8 3 0 0

40 4 5
120 8 3 12

5 0
3 30

» For learned clauses, the literals can be omitted using *

7 x5 40 7-2 0450
8 x3120 8 3 01230

23/35

Demo: Clausal Proof to
TraceCheck

22222

Proof Formats: Reverse Unit Propagation (RUP)

Unit Propagation
Given an assignment ¢, extend it by making unit clauses true
— until fixpoint or a clause becomes false

Reverse Unit Propagation (RUP)

A clause C = (L V bV -V Ix) has reverse unit propagation
w.r.t. formula F if unit propagat|on of the assignment
o=C=(LANhLNA...NI)on F results in a conflict.

We write: F A C |—1 €

A clause sequence Gy, ..., C,, is a RUP proof for formula F
» FA (:i VANCERIVAN (:}4,1 A (f} F‘l €
» C,, =

25/35

Proof Formats: RUP, DRUP, RAT, and DRAT

RUP and extensions is the most popular clausal-style format.

E:=(bvc)r(ave)an(avb)a(avb)a(aVvb)A(bVE)

RUP is much more compact than TraceCheck because it does not
includes the resolution steps.

(proof
(lemma,
(delete

)
)
)
(lit)
)
)

{(lemma)}

(delete){(lit) } “0"

{pos) | (neg)

uln | u2n | .

w_n <pOS>

| (max — idx)

-2 0
3.0
0

E/\(b)|—1€
EA(B)A(E)Fre
EAN(b)A(c)Fre

26/35

Proof Formats: Open Issues and Challenges

How get useful information from a proof?
» Clausal or variable core
» Resolution proof from a clausal proof

v

Interpolant
Proof minimization

v

v

Inside the SAT solver or using an external tool?

v

What would be a good API to manipulate proofs?

How to store proofs compactly?
» Question is important for resolution and clausal proofs
» Current formats are "readable" and hence large

» Recently we proposed a binary format, reducing size by a
factor of three.

27/35

Media and Applications

Media: The Largest Math Proof Ever

engodget

senewrepprr tom's HARDWARE

THE AUTHORITY ON TECH

other discussions (5)

Current Issue | Archive | Audio & Video

Two-hundred-terabyte
18 days ago by CryptoBear .< B

265 comments share

TP I ™ Two-hundred-terabyte maths proof is largest ever
Devices Build Entertainment Technology OpenSource Science YRO

&6 Become a fan of Slashdot on Facebook

Computer Generates Largest Math Proof Ever At 200TB of Data (phy=.om)

a Posted by BeauHD on Monday May 30, 2016 @08:10PM from the red-pill-and-blue-pill dept,

THEQQNVERSAT'ON SPIEGEL ONLINE

Collgteral May 27 2016 +2
200 Terabytes. Thats about 400 PS4s.

29/35

Applications: Erdés Discrepancy Conjecture

THEVERGE &

.LDE!NIS\GNUP LONGFORM . REVIEWS . VIDEO. TECH. SCIENCE. ENTERTAINMENT. CARS. DESIGN. US&WORLD. FORUMS (o}

COMMENTS l

TRENDING NOW
Two dead after passenger self-immolates on Japanese bullet train NEW ARTICLES

A computer made a math proof the size
of Wikipedia, and humans can't check it
Erdés Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d, k holds that (x; € {—1,+1}):

k
E Xid
i=1

<2

30/35

Applications: Erdés Discrepancy Conjecture

THEVERGE &

.LDEWS\GMUP LONGFORM . REVIEWS . VIDEO. TECH. SCIENCE. ENTERTAINMENT. CARS. DESIGN. US&WORLD. FORUMS (o}

COMMENTS l

TRENDING NOW
Two dead after passenger self-immolates on Japanese bullet train NEW ARTICLES

A computer made a math proof the size
of Wikipedia, and humans can't check it
Erdés Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d, k holds that (x; € {—1,+1}):

k The DRAT proof was 13Gb and checked
> x| <2 with our tool DRAT-trim [SAT14]
i=1

30/35

Applications: SAT Competitions (mandatory proof logging)

DRAT proof logging supported by all the top-tier solvers:
» e.g. Lingeling, MiniSAT, Glucose, and CryptoMiniSAT

DRAT-trim validates proofs in a time similar to solving time.
» computes also unsatisfiable core;
» optimizes the proof for possible later validations; and
» can emit a resolution proof (typically huge).

Example run of DRAT-trim on Erd&s Discrepancy Proof

fud$./DRAT-trim EDP2_1161.cnf EDP2_1161.drat

finished parsing

detected empty clause; start verification via backward checking
23090 of 25142 clauses in core

5757105 of 6812396 lemmas in core using 469808891 resolution steps
16023 RAT lemmas in core; 5267754 redundant literals in core lemmas
VERIFIED

n Q0 000a0

31/35

Applications: Ramsey Numbers

Ramsey Number R(k): What @ @

is the smallest n such that any
graph with n vertices has either

a clique or a co-clique of size k7 @ @

R(3) =6
R(4) =18

43 < R(5) < 49 () ()

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

Symmetry breaking can be validated using DRAT [CADE'15]

32/35

Applications: Ramsey Numbers

Ramsey Number R(k): What G e

is the smallest n such that any
graph with n vertices has either

a clique or a co-clique of size k7 @ e

R(3) =6
R(4) =18

43 < R(5) < 49 @ °

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

Symmetry breaking can be validated using DRAT [CADE'15]

32/35

Applications: Ramsey Numbers

Ramsey Number R(k): What G
is the smallest n such that any
graph with n vertices has either

a clique or a co-clique of size k7 @ e

R(3) =6
R(4) =18

43 < R(5) < 49 @

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

Symmetry breaking can be validated using DRAT [CADE'15]

32/35

Conclusions

33/35

Conclusions

Proofs of unsatisfiability useful for several applications:
» Validate results of SAT solvers;
» Extracting minimal unsatisfiable cores;
» Computing Interpolants;
» Tools that use SAT solvers, such as theorem provers.

Challenges:
» Reduce size of proofs on disk and in memory;
» Reduce the cost to validate clausal proofs;

» How to deal with Gaussian elimination, cardinality
resolution, and pseudo-Boolean reasoning?

34/35

Thanks!

33333

	Introduction
	Proof Checking
	Proof Systems and Formats
	Media and Applications
	Conclusions

