Expressing Symmetry Breaking in DRAT Proofs

Marijn J.H. Heule

THE UNIVERSITY OF

TEXAS

—— AT AUSTIN ——

Joint work with

Warren Hunt, Jr. and Nathan Wetzler

CADE-25, August 7, 2015

1/28

Introduction and Motivation
Symmetry Breaking in SAT Solvers
Breaking a Single Symmetry
Breaking Multiple Symmetries
Tools and Evaluation

Conclusions

2/28

Motivation

Satisfiability solvers are used in amazing ways...

» Hardware verification: Centaur x86 verification
» Combinatorial problems:

» Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]
» Gardens of Eden in Conway's Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]
» Erdés Discrepancy Problem [Konev and Lisitsa, 2014]

3/28

Motivation

Satisfiability solvers are used in amazing ways...

» Hardware verification: Centaur x86 verification
» Combinatorial problems:

» Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]
» Gardens of Eden in Conway's Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]
» Erdés Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors.

» Documented bugs in SAT, SMT, and QBF solvers
[Brummayer and Biere, 2009; Brummayer et al., 2010]

» Implementation errors often imply conceptual errors

» Symmetry breaking, which is crucial to solve combinatorial
problems, cannot be validated with existing methods

3/28

Symmetry Breaking Tool Chain

1. The input formula is transformed into a clause-literal graph;

2. A symmetry detection tool extracts symmetries from the graph;
3. Symmetry-breaking predicates are added to the input formula;
4

. The symmetry-free formula is solved using a SAT solver.

input CNF SAT solving
formula F result

clause-literal) -
5 symmetries symmetry fr,ee
graph G formula F

A bug in any of these tools may result in incorrect results

Most observed bugs during SAT Competition 2013 were caused by tools 1-3

4/28

From Resolution to Clausal DRAT Proofs

-DI.

i
Checked Efficiently I

Expressive I

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

5/28

Main Contribution

We present a method to express the addition of
symmetry-breaking predicates in DRAT, a clausal proof format
supported by top-tier solvers.

Our method allows, for the first time, validation of SAT solver
results obtained via symmetry breaking, thereby validating the
results of symmetry extraction tools as well.

6/28

Symmetry Breaking
in SAT Solvers

Example Formulas: Unavoidable Subgraphs

A connected undirected graph G is an unavoidable subgraph
of clique K of order n if any red/blue edge-coloring of the
edges of K contains G either in red or in blue.

Ramsey Number R(k): What G
is the smallest n such that any

graph with n vertices has either i

a clique or a co-clique of size k? @
R(33)=6
R(4) =18
43 < R(5) < 49 @ 0
SAT solvers can determine that R(4) = 18 in 1 second using

symmetry breaking; w/o symmetry breaking it requires weeks.

8/28

Example formula: an unavoidable path of two edges

Consider the formula below — which expresses the statement
whether path of two edges unavoidable in a clique of order 3:
C1 C2 C3 C4 C5 CG

— S AN A A
F:=((xVy)AN(xVZ)A(yVZ)AN(XVY)AN(XVZ)A(YVZ)
A clause-literal graph has a vertex for each clause and literal,

and edges for each literal occurrence connecting the literal and
clause vertex. Also, two complementary literals are connected.

G G G Co Cy G

Gy Cs GCo G G G

Symmetry: (x,y, z)(¥, Z,X) is an edge-preserving bijection

9/28

Convert Symmetries into Symmetry-Breaking Predicates

A symmetry 0 = (x1,...,Xn)(p1,---,Ppn) of a CNF formula F
is an edge-preserving bijection of the clause-literal graph of F,
that maps literals x; onto p; and X; onto p; with i € {1..n}.

Given a CNF formula F. Let 7 be a satisfying truth
assignment for F and o a symmetry for F, then o(7) is also a
satisfying truth assignment for F.

Symmetry 0 = (x1,...,X,)(p1,- .., pn) for F can be broken by

adding a symmetry-breaking predicate: xi,...,x, < p1,..., Pn.
(K Vp)AFKLVRVP)A(prV XV p)A
(>?1V)_<2V>_<3\/p3)/\()_<1\/p2\/>_<3\/p3)/\
(P1\/)_(2\/)_(3\/p3)/\(p1\/Pg\/)_(3\/p3)/\...

Why are we allowed to add these clauses?

10/28

Breaking a Single Symmetry

Resolution Asymmetric Tautology (RAT) [IJCAR 2012]

Given a clause C = (h V ---V) and a CNF formula F:
» C denotes the conjunction of its negated literals (h) A --- A (I)
» F k1 € denotes that unit propagation on F derives a conflict
» C is an asymmetric tautology w.r.t. F if and only if FA C €

» C is a resolution asymmetric tautology on / € C w.r.t. F iff for all
resolvents C o D with D € F and / € D holdsthat FACo Dy €

Example
Consider the formula F = (aV c) A (bV &) A (bV d):
» The clause (aV d) is an asymmetric tautology w.r.t. F
» The clause (bV ¢) is an resolution asymmetric tautology w.r.t. F

Theorem: Given a formula F and a clause C having RAT with
respect to F, then F and F U {C} are equi-satisfiable.

12/28

Clausal Proof System using RAT addition and deletion

vy

> < Learn: add a clause
- ~ * Clause C has RAT w.r.t. F
l Unsatisfiable
* Learn empty clause
Satisfiable
1 * Forget last clause

7 Forget: remove a clause
” * Clause C has RAT w.r.t. F\{C}

@ init
—l

13/28

Expressing a Symmetry Breaking Predicate in DRAT (1)

Introduce auxiliary variables using o = (x4, ..., x,)(p1,-- -, Pn)
» The swap variable s :== xq,..., %, > p1,..., Pn

p;i if s set to true

» The prime variables x/ := { v otherwise
i

Example (using 0 = (x1, x2)(x2, x1))

> add(s V)_(1 V X2), add(§V Xl), add(§V)_<2)
» add(x; V5V X3), add(X; V5V x2), add(x; V sV 1),
add(x;{ VsV x1)

Add symmetry-breaking predicate using the prime variables:
» Add the constraint x{,...,x < pi,...,p,
Example (using 0 = (x1, x2)(x2, x1))

» add(s V x; V x}),add(X] V x5), delete(s VV x| V x5)

14/28

Expressing a Symmetry Breaking Predicate in DRAT (2)

Redefine involved clauses

» For each clause C € F that contains at least one literal /
which occurs in the symmetry, add a clause C’ which is a
copy of C with literals I’ for each such /.

» Remove the original involved clauses.
Example (using 0 = (x1,x2)(X2,x1) and C = (x2 V X3))

» add(s V x5V X3), add(x} V X3), delete(s V x5 V X3),
delete(xx V X3)

Optionally remove all definitions of the first step

» After this step, the resulting formula is equal to the
original formula extended with the symmetry-breaking

predicate (modulo variable renaming).
» This step reduces validation costs significantly.

15/28

Breaking Multiple Symmetries

Difficulties due to Multiple Symmetries

Consider a formula F with two symmetries
o1=(x1,---,X%)(p1,---,pn) and
o2 = (y1,-- -, ¥n)(q1,- -, Gn)-

Symmetry breaking will add the predicates

XtyoosXg < P1,...,ppand yi,..., ¥, <@1,...,q, The
number of predicates is linear in the number of symmetries.

After breaking o; with the method shown, resulting in formula
F’, we cannot simply apply it again, because o, is not a
symmetry of F'.

Hence, the method shown can only redefine original clauses.

To obtain a symmetry-free formula, the method shown has to
be applied multiple times per symmetry. Even with just two
symmetries, one may needs to apply it twice per symmetry.

17/28

Break a Symmetry Chain using Sorting Networks

A symmetry chain is a sequence of k symmetries of length 2n
with the property that x;j = p;jtn, Pij = Xij+n, and
Xi+1,j = Xij+n with 1 <i< k and].SJS n.

Example (symmetry chain (x, x5)(x2, x6) (X3, x7) (X4, Xg))

» based on o; = (Xi,Xi+47Xi+17Xi+5)(Xi+17Xi+57Xi7Xi+4)

» results in predicates x1, x5 < X0, X5 < X3, X7 < X4, Xg

Breaking a symmetry chain comes down at sorting the
assignments, which can be realized using a sorting network.

x1X5 = 10 ===t T ________ ? S 00 = xy'x¢/
XoXg = 01 ——— R I\ ——— 01 = x;"xg"
x3x7 = 11 —=——= e l_ & 10 = x§'xy"
XgXg = 00 —= - A ACEEEEEEEEE 11 = xg'xg

Size k symmetry chain: apply the procedure O(klog? k) times.

18/28

Converting Symmetries into a Symmetry Chain

Q: How to break multiple symmetries in general?

A: Convert them into a symmetry chain.

+: Limits the size of the partial proof.

—: Breaks the symmetries only partially.

Example

Consider two symmetries: 01 = (x1, Xa, X2, X5) (X2, X5, X1, Xa)
and 03 = (x2, X4, X3, X6) (X3, X6, X2, X4). Compute reduced
symmetries 0] = (x1, x2)(x2, x1) and o5 = (x2, x3)(x3, x2) that
form a symmetry chain. Using o] and o) to define the swap
variable and the symmetry-breaking predicate. Use o; and o,
for the other definitions.

19/28

Tools and Evaluation

20/28

Old Tool Chain

A W N =

1 : transformer

input CNF
formula F

/

/

3 : predicates

. The input formula is transformed into a clause-literal graph;
. A symmetry detection tool extracts symmetries from the graph;
. Symmetry-breaking predicates are added to the input formula;

. The symmetry-free formula is solved using a SAT solver.

SAT solving
result

4 : SAT solver

/

clause-literal
graph G

symmetries

symmetry-free
formula F’

A bug in any of these tools may result in incorrect results

Most observed bugs during SAT Competition 2013 were caused by tools 1-3

21/28

New Tool Chain

verification DRAT proof
result of formula F

/

6 : drat-trim

5 : merge

input CNF
formula F

partial

DRAT proof

DRAT proof
of formula F’

(L rtorne) (2 emer)

/

/

clause-literal

graph G symmetries

symmetry-free
formula F’

Only the correctness of the proof checker needs to be trusted

4 : SAT solver

22/28

New Tools

The new tool sym2drat:
» Input: CNF formula and symmetries;

» Output: A symmetry-free formula and a partial proof that
describes the derivation from the input formula to the
symmetry-free formula;

» Uses pairwise sorting to reduce the size of the partial proof.

Merge: simply concatenate using Unix cat

DRAT proof checkers:

» Implemented an extension for drat-trim to validate
partial DRAT proofs. This feature was crucial during
development for debugging purposes;

» Modified our mechanically-verified proof checker to make
it compatible with DRAT proofs.

23/28

Evaluation: Ramsey Number Four

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k7

R(3) =6

B me) <9 (5) ()

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

The size of the proof is 20 MB and the time required is 1.8 s

Proof validated with our mechanically-verified checker as well.

24/28

Evaluation: Erdés Discrepancy Conjecture

HE VERGE ‘&

.LUG\M\S\GNUP LONGFORM . REVIEWS. VIDEO. TECH. SCIENCE. ENTERTAINMENT. CARS. DESIGN. US&WORLD. FORUMS Q

TRENDING NOW
Two dead after passenger self-immolates on Japanese bullet train NEW ARTICLES

A computer made a math proof the size
of Wikipedia, and humans can't check it
Erdés Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d, k holds that (x; € {—1,+1}):

k

E Xid

i=1

The original DRAT proof was 13Gb. Our
<2 new proof using symmetry breaking is 2Gb.

COMMENTS l

25/28

Evaluation: Two Pigeons per Hole Problems

Biere proposed benchmarks
expressing whether 2n + 1
pigeons can be put in n holes
that contain at most two
pigeons per hole.

For n > 6 they can only be
solved by symmetry breaking
or cardinality resolution.

No SAT solvers can produce a proof for the problems with n > 6.

Our method can produce proofs for problems with n < 12 that
can be generated in minutes and validated within an hour.

26/28

Conclusions

27/28

Conclusions

Conclusions:

» The first approach to validate symmetry-breaking
techniques usage in SAT solvers by expressing the
techniques as DRAT proof steps;

» Increases the trust in results based on symmetry breaking;
» Evaluated our method on hard-combinatorial formulas.

Future work:
» Determine precisely the number of times the
symmetry-breaking procedure needs to be applied;
» Improve the speed of the mechanically-verified checker;

» Implement a parallel proof checker to reduce the gap
between solving and verification costs.

28/28

Conclusions

Conclusions:

» The first approach to validate symmetry-breaking
techniques usage in SAT solvers by expressing the
techniques as DRAT proof steps;

» Increases the trust in results based on symmetry breaking;
» Evaluated our method on hard-combinatorial formulas.

Future work:
» Determine precisely the number of times the
symmetry-breaking procedure needs to be applied;
» Improve the speed of the mechanically-verified checker;

» Implement a parallel proof checker to reduce the gap
between solving and verification costs.

Thanks! Questions?

28/28

	Introduction and Motivation
	Symmetry Breaking in SAT Solvers
	Breaking a Single Symmetry
	Breaking Multiple Symmetries
	Tools and Evaluation
	Conclusions

