
1/28

Expressing Symmetry Breaking in DRAT Proofs

Marijn J.H. Heule

Joint work with

Warren Hunt, Jr. and Nathan Wetzler

CADE-25, August 7, 2015



2/28

Introduction and Motivation

Symmetry Breaking in SAT Solvers

Breaking a Single Symmetry

Breaking Multiple Symmetries

Tools and Evaluation

Conclusions



3/28

Motivation

Satisfiability solvers are used in amazing ways...
I Hardware verification: Centaur x86 verification
I Combinatorial problems:

I Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors.
I Documented bugs in SAT, SMT, and QBF solvers

[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors
I Symmetry breaking, which is crucial to solve combinatorial
problems, cannot be validated with existing methods



3/28

Motivation

Satisfiability solvers are used in amazing ways...
I Hardware verification: Centaur x86 verification
I Combinatorial problems:

I Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]

I Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]

I Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

..., but satisfiability solvers have errors.
I Documented bugs in SAT, SMT, and QBF solvers

[Brummayer and Biere, 2009; Brummayer et al., 2010]

I Implementation errors often imply conceptual errors
I Symmetry breaking, which is crucial to solve combinatorial
problems, cannot be validated with existing methods



4/28

Symmetry Breaking Tool Chain

1. The input formula is transformed into a clause-literal graph;
2. A symmetry detection tool extracts symmetries from the graph;
3. Symmetry-breaking predicates are added to the input formula;
4. The symmetry-free formula is solved using a SAT solver.

input CNF
formula F

1 : transformer

clause-literal
graph G

2 : saucy

symmetries

3 : predicates

symmetry-free
formula F ′

4 : SAT solver

SAT solving
result

A bug in any of these tools may result in incorrect results

Most observed bugs during SAT Competition 2013 were caused by tools 1-3



5/28

From Resolution to Clausal DRAT Proofs

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion
Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]



6/28

Main Contribution

We present a method to express the addition of
symmetry-breaking predicates in DRAT, a clausal proof format
supported by top-tier solvers.

Our method allows, for the first time, validation of SAT solver
results obtained via symmetry breaking, thereby validating the
results of symmetry extraction tools as well.



7/28

Symmetry Breaking
in SAT Solvers



8/28

Example Formulas: Unavoidable Subgraphs

A connected undirected graph G is an unavoidable subgraph
of clique K of order n if any red/blue edge-coloring of the
edges of K contains G either in red or in blue.

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.



9/28

Example formula: an unavoidable path of two edges
Consider the formula below — which expresses the statement
whether path of two edges unavoidable in a clique of order 3:

F :=

C1︷ ︸︸ ︷
(x∨y)∧

C2︷ ︸︸ ︷
(x∨z)∧

C3︷ ︸︸ ︷
(y∨z)∧

C4︷ ︸︸ ︷
(x̄∨ȳ)∧

C5︷ ︸︸ ︷
(x̄∨z̄)∧

C6︷ ︸︸ ︷
(ȳ∨z̄)

A clause-literal graph has a vertex for each clause and literal,
and edges for each literal occurrence connecting the literal and
clause vertex. Also, two complementary literals are connected.

C1 C2 C3

x x̄ y ȳ z z̄

C4 C5 C6

C6 C4 C5

ȳ y z̄ z x̄ x

C3 C1 C2

Symmetry: (x , y , z)(ȳ , z̄ , x̄) is an edge-preserving bijection



10/28

Convert Symmetries into Symmetry-Breaking Predicates

A symmetry σ = (x1, . . . , xn)(p1, . . . , pn) of a CNF formula F
is an edge-preserving bijection of the clause-literal graph of F ,
that maps literals xi onto pi and x̄i onto p̄i with i ∈ {1..n}.

Given a CNF formula F . Let τ be a satisfying truth
assignment for F and σ a symmetry for F , then σ(τ) is also a
satisfying truth assignment for F .

Symmetry σ = (x1, . . . , xn)(p1, . . . , pn) for F can be broken by
adding a symmetry-breaking predicate: x1, . . . , xn ≤ p1, . . . , pn.

(x̄1 ∨ p1) ∧ (x̄1 ∨ x̄2 ∨ p2) ∧ (p1 ∨ x̄2 ∨ p2) ∧
(x̄1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧ (x̄1 ∨ p2 ∨ x̄3 ∨ p3) ∧
(p1 ∨ x̄2 ∨ x̄3 ∨ p3) ∧ (p1 ∨ p2 ∨ x̄3 ∨ p3) ∧ . . .

Why are we allowed to add these clauses?



11/28

Breaking a Single Symmetry



12/28

Resolution Asymmetric Tautology (RAT) [IJCAR 2012]

Given a clause C = (l1 ∨ · · · ∨ lk) and a CNF formula F :
I C denotes the conjunction of its negated literals (l̄1) ∧ · · · ∧ (l̄k)

I F `1 ε denotes that unit propagation on F derives a conflict
I C is an asymmetric tautology w.r.t. F if and only if F ∧ C `1 ε

I C is a resolution asymmetric tautology on l ∈ C w.r.t. F iff for all
resolvents C � D with D ∈ F and l̄ ∈ D holds that F ∧ C � D `1 ε

Example
Consider the formula F = (a ∨ c) ∧ (b̄ ∨ c̄) ∧ (b ∨ d):

I The clause (a ∨ d) is an asymmetric tautology w.r.t. F
I The clause (b ∨ c) is an resolution asymmetric tautology w.r.t. F

Theorem: Given a formula F and a clause C having RAT with
respect to F , then F and F ∪ {C} are equi-satisfiable.



13/28

Clausal Proof System using RAT addition and deletion

F

Learn: add a clause
* Clause C has RAT w.r.t. F

Forget: remove a clause
* Clause C has RAT w.r.t. F \{C}

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init



14/28

Expressing a Symmetry Breaking Predicate in DRAT (1)

Introduce auxiliary variables using σ = (x1, . . . , xn)(p1, . . . , pn)

I The swap variable s := x1, . . . , xn > p1, . . . , pn

I The prime variables x ′i :=

{
pi if s set to true
xi otherwise

Example (using σ = (x1, x2)(x2, x1))

I add(s ∨ x̄1 ∨ x2), add(s̄ ∨ x1), add(s̄ ∨ x̄2)

I add(x ′1 ∨ s̄ ∨ x̄2), add(x̄ ′1 ∨ s̄ ∨ x2), add(x ′1 ∨ s ∨ x̄1),
add(x̄ ′1 ∨ s ∨ x1)

Add symmetry-breaking predicate using the prime variables:
I Add the constraint x ′1, . . . , x

′
n ≤ p′1, . . . , p

′
n

Example (using σ = (x1, x2)(x2, x1))

I add(s ∨ x̄ ′1 ∨ x ′2), add(x̄ ′1 ∨ x ′2), delete(s ∨ x̄ ′1 ∨ x ′2)



15/28

Expressing a Symmetry Breaking Predicate in DRAT (2)

Redefine involved clauses
I For each clause C ∈ F that contains at least one literal l
which occurs in the symmetry, add a clause C ′ which is a
copy of C with literals l ′ for each such l .

I Remove the original involved clauses.

Example (using σ = (x1, x2)(x2, x1) and C = (x2 ∨ x̄3))

I add(s ∨ x ′2 ∨ x̄3), add(x ′2 ∨ x̄3), delete(s ∨ x ′2 ∨ x̄3),
delete(x2 ∨ x̄3)

Optionally remove all definitions of the first step
I After this step, the resulting formula is equal to the
original formula extended with the symmetry-breaking
predicate (modulo variable renaming).

I This step reduces validation costs significantly.



16/28

Breaking Multiple Symmetries



17/28

Difficulties due to Multiple Symmetries
Consider a formula F with two symmetries
σ1 = (x1, . . . , xn)(p1, . . . , pn) and
σ2 = (y1, . . . , yn)(q1, . . . , qn).

Symmetry breaking will add the predicates
x1, . . . , xn ≤ p1, . . . , pn and y1, . . . , yn ≤ q1, . . . , qn. The
number of predicates is linear in the number of symmetries.

After breaking σ1 with the method shown, resulting in formula
F ′, we cannot simply apply it again, because σ2 is not a
symmetry of F ′.

Hence, the method shown can only redefine original clauses.

To obtain a symmetry-free formula, the method shown has to
be applied multiple times per symmetry. Even with just two
symmetries, one may needs to apply it twice per symmetry.



18/28

Break a Symmetry Chain using Sorting Networks
A symmetry chain is a sequence of k symmetries of length 2n
with the property that xi ,j = pi ,j+n, pi ,j = xi ,j+n, and
xi+1,j = xi ,j+n with 1 ≤ i < k and 1 ≤ j ≤ n.

Example (symmetry chain (x1, x5)(x2, x6)(x3, x7)(x4, x8))

I based on σi = (xi , xi+4, xi+1, xi+5)(xi+1, xi+5, xi , xi+4)

I results in predicates x1, x5 ≤ x2, x6 ≤ x3, x7 ≤ x4, x8

Breaking a symmetry chain comes down at sorting the
assignments, which can be realized using a sorting network.

x4x8 = 00
x3x7 = 11
x2x6 = 01
x1x5 = 10

11 = x ′′4 x
′′
8

10 = x ′′′3 x ′′′7

01 = x ′′′2 x ′′′6

00 = x ′′1 x
′′
5

Size k symmetry chain: apply the procedure O(k log2 k) times.



19/28

Converting Symmetries into a Symmetry Chain

Q: How to break multiple symmetries in general?

A: Convert them into a symmetry chain.

+: Limits the size of the partial proof.

−: Breaks the symmetries only partially.

Example
Consider two symmetries: σ1 = (x1, x4, x2, x5)(x2, x5, x1, x4)
and σ2 = (x2, x4, x3, x6)(x3, x6, x2, x4). Compute reduced
symmetries σ′

1 = (x1, x2)(x2, x1) and σ′
2 = (x2, x3)(x3, x2) that

form a symmetry chain. Using σ′
1 and σ′

2 to define the swap
variable and the symmetry-breaking predicate. Use σ1 and σ2
for the other definitions.



20/28

Tools and Evaluation



21/28

Old Tool Chain

1. The input formula is transformed into a clause-literal graph;
2. A symmetry detection tool extracts symmetries from the graph;
3. Symmetry-breaking predicates are added to the input formula;
4. The symmetry-free formula is solved using a SAT solver.

input CNF
formula F

1 : transformer

clause-literal
graph G

2 : saucy

symmetries

3 : predicates

symmetry-free
formula F ′

4 : SAT solver

SAT solving
result

A bug in any of these tools may result in incorrect results

Most observed bugs during SAT Competition 2013 were caused by tools 1-3



22/28

New Tool Chain

input CNF
formula F

1 : transformer

clause-literal
graph G

2 : saucy

symmetries

3 : sym2drat

partial
DRAT proof

DRAT proof
of formula F ′

4 : SAT solver

5 : merge6 : drat-trim

symmetry-free
formula F ′

DRAT proof
of formula F

verification
result

Only the correctness of the proof checker needs to be trusted



23/28

New Tools

The new tool sym2drat:
I Input: CNF formula and symmetries;
I Output: A symmetry-free formula and a partial proof that
describes the derivation from the input formula to the
symmetry-free formula;

I Uses pairwise sorting to reduce the size of the partial proof.

Merge: simply concatenate using Unix cat

DRAT proof checkers:
I Implemented an extension for drat-trim to validate
partial DRAT proofs. This feature was crucial during
development for debugging purposes;

I Modified our mechanically-verified proof checker to make
it compatible with DRAT proofs.



24/28

Evaluation: Ramsey Number Four

Ramsey Number R(k): What
is the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.

The size of the proof is 20 MB and the time required is 1.8 s

Proof validated with our mechanically-verified checker as well.



25/28

Evaluation: Erdős Discrepancy Conjecture

Erdős Discrepancy Conjecture was recently solved using SAT.

The conjecture states that there exists no infinite sequence of
-1, +1 such that for all d , k holds that (xi ∈ {−1,+1}):∣∣∣∣∣

k∑
i=1

xid

∣∣∣∣∣ ≤ 2
The original DRAT proof was 13Gb. Our
new proof using symmetry breaking is 2Gb.



26/28

Evaluation: Two Pigeons per Hole Problems

Biere proposed benchmarks
expressing whether 2n + 1
pigeons can be put in n holes
that contain at most two
pigeons per hole.

For n > 6 they can only be
solved by symmetry breaking
or cardinality resolution.

No SAT solvers can produce a proof for the problems with n > 6.

Our method can produce proofs for problems with n ≤ 12 that
can be generated in minutes and validated within an hour.



27/28

Conclusions



28/28

Conclusions

Conclusions:
I The first approach to validate symmetry-breaking
techniques usage in SAT solvers by expressing the
techniques as DRAT proof steps;

I Increases the trust in results based on symmetry breaking;
I Evaluated our method on hard-combinatorial formulas.

Future work:
I Determine precisely the number of times the
symmetry-breaking procedure needs to be applied;

I Improve the speed of the mechanically-verified checker;
I Implement a parallel proof checker to reduce the gap
between solving and verification costs.

Thanks! Questions?



28/28

Conclusions

Conclusions:
I The first approach to validate symmetry-breaking
techniques usage in SAT solvers by expressing the
techniques as DRAT proof steps;

I Increases the trust in results based on symmetry breaking;
I Evaluated our method on hard-combinatorial formulas.

Future work:
I Determine precisely the number of times the
symmetry-breaking procedure needs to be applied;

I Improve the speed of the mechanically-verified checker;
I Implement a parallel proof checker to reduce the gap
between solving and verification costs.

Thanks! Questions?


	Introduction and Motivation
	Symmetry Breaking in SAT Solvers
	Breaking a Single Symmetry
	Breaking Multiple Symmetries
	Tools and Evaluation
	Conclusions

