
1

UTCS CS352 Lecture 5
 1

Lecture 5: Instruction Set Architectures II

Announcements
•  Turn in Homework #1
•  XSPIM tutorials in PAI 5.38 during TA office hours

–  Tue Feb 2: 2-3:30pm
–  Wed Feb 3: 1:30-3pm
–  Thu Feb 4: 3-4:30pm

•  Take QUIZ 2 before 11:59pm today over Chapter 1
•  Quiz 1: 100% - 29; 80% - 25; 60% - 17; 40% - 3

UTCS CS352 Lecture 5
 2

Lecture 5: Instruction Set Architectures II

Last Time
–  Performance analysis
–  ISA basics

Today
–  ISA II

•  Machine state (memory, computation, control)
•  Design principles
•  Instruction formats
•  Representing and addressing data

2

UTCS CS352 Lecture 5
 3

ISA is an interface (abstraction layer)

ISA

Program 1 Program 2 Program 3

Hardware 1 Hardware 2 Hardware 3

UTCS CS352 Lecture 5
 4

ISA Specifies
How the Computer Changes State

Op
 Mode
 Ra
Rb

instruction

Instruction formats

Instruction types

Addressing modes

Machine state includes

 PC, memory state register state

Before State

R0-R31

32 bit

Memory

Byte Addr

Little Endian

32-bit addr

PC

After State

R0-R31

32 bit

Memory

Byte Addr

Little Endian

32-bit addr

PC

3

UTCS CS352 Lecture 5
 5

Design Considerations:
Changes to Machine State Imply Instruction Classes & Design

Machine State

R0-R31

32 bit

Memory

Byte Addr

Little Endian

32-bit addr

PC

Changes to Memory State
•  Data representation
•  ALU Operations

–  arithmetic (add, sub, mult, div)
–  logical (and, or, xor, srl, sra)

–  data type conversions(cvtf2d,cvtf2i)

•  Data movement
–  memory reference (lb, lw, sb, sw)
–  register to register (movi2fp, movf)

Control: what instruction to do next
–  PC = ??
–  tests/compare (slt, seq)
–  branches and jumps (beq, bne, j, jr)
–  procedure calls (jal, jalr)
–  operating system entry (trap)

ISA Design Principles

1.  Simplicity favors regularity
–  e.g., instruction size, instruction formats, data formats
–  eases implementation by simplifying hardware

2.  Smaller is faster
–  fewer bits to read, move, & write
–  use/reuse the register file instead of memory

3.  Make the common case fast
–  e.g., small constants are common, thus immediate fields

 can be small
4.  Good design demands compromise

–  special formats for important exceptions
–  e.g., a jump far away (beyond a small constant)

UTCS CS352 Lecture 5
 6

4

UTCS CS352 Lecture 5
 7

ISA Design
Components of Instructions

•  Operations (opcodes)
–  ALU, Data, Control

•  Number of operands
•  Operand specifiers

•  Instruction encodings

r1 = r2 + r3

add r1,r2,r3

src2
 dst
opcode
 src1

encoded in

bits

what you think 

assembly language

UTCS CS352 Lecture 5
 8

Operand Number
Affects All Instruction Classes

•  No Operands HALT
NOP

•  1 operand NOT R4 R4 ⇐ R4 JMP _L1

•  2 operands ADD R1, R2 R1 ⇐ R1 + R2 LDI R3, #12

•  3 operands ADD R1, R2, R3
R1 ⇐ R2 + R3

•  > 3 operands
MADD R4,R1,R2,R3
R4 ⇐ R1+(R2*R3)

5

UTCS CS352 Lecture 5
 9

Effect of Operand Number

E = (C+D)*(C-D)

C ⇒ r1

D ⇒ r2

E ⇒ r3

add r3,r1,r2

sub r4,r1,r2

mult r3,r4,r3

mov r3,r1

add r3,r2

mov r4,r1

sub r4,r2

mult r3,r4

3 operand machine
 2 operand machine

Assign

UTCS CS352 Lecture 5
 10

Instruction Formats:
Can not be perfectly uniform

•  ALU, control, and data instructions need to
 specify different information
–  return
–  increment R1
–  R3 ← R1 + R2
–  jump to 64-bit address

•  Frequency varies
–  instructions
–  constants
–  registers

•  Encoding choices
–  fixed format
–  small number of formats
–  byte/bit variable

Op RS1 RS2 RD func
6 5 5 5 11

Op RS1 RD Const
6 5 5 16

Op Const
6 26

Fixed-Format (MIPS)

I: ld/st, rd ← rs1 op imm, branch

R: rd ← rs1 op rs2

J: j, jal

6

UTCS CS352 Lecture 5
 11

Fixed or Variable-Length Instructions?

•  Variable-length instructions
 give more efficient
 encodings
–  no bits to represent unused

 fields/operands
–  can frequency code

 operations, operands, and
 addressing modes

–  Examples
•  VAX-11, Intel x86 (byte

 variable)
•  Intel 432 (bit variable)

•  But - can make fast
 implementation difficult
–  sequential determination of

 location of each operand

Op

Op
8

8
R M
4 4

R M
4 4

R M
4 4

Op
8

R M
4 4

Op
8

R M
4 4

Disp
32

VAX instrs: 1-53 bytes!

UTCS CS352 Lecture 5
 12

Compromise: A Few Formats and A Few Sizes

•  Gives much better code
 density than fixed-format
–  important for embedded

 processors
•  Simple to decode
•  Examples:

–  ARM Thumb, MIPS 16

•  Another approach
–  On-the fly instruction

 decompression (IBM
 CodePack)

Op R1 R2 R3 Const
6 5 5 5 10 1

Op R1 R2
6 5 5

Op R1 R2 R3
4 4 4 4

7

UTCS CS352 Lecture 5
 13

ISA Specifies Memory Organization

•  Where is the data?
–  Registers or memory?
–  Addressing modes
–  Alignment of data? Where does a datum begin?

•  How much data does an instruction operate on?
–  Smallest and maximum addressable unit of memory
–  byte (8 bits)? halfword (16 bits)? word (32 bits)?
–  doubleword (64 bits)?

•  Endianness
–  How does the machine read the data?
–  We will write numbers as you expect

•  most significant bits to least, left to right

UTCS CS352 Lecture 5
 14

Bits, Bytes, & Words

•  What & how much do you want to address?
–  1 bit: 2 values
–  8 bits: 256 values
–  16 bits: 65,536 values

•  early memory constrained machines
–  32 bits: 4,294,967,296 unsigned values

•  2,147,483,648 signed values (one bit for the sign)
•  modern 1980-present?

–  64 bits (distinct values) 1995-present?
•  1.84467441 × 1019 unsigned values
•  9.22337204 × 1018 signed values

8

UTCS CS352 Lecture 5
 15

How much data at once?

•  What kind of data do you have?
–  1, 8, 16, 32, or 64 bits?

•  Design Principal: what’s the common case?
–  Numbers?
–  Strings?
–  Characters?
–  How many letters in the alphabet?

UTCS CS352 Lecture 5
 16

How much data at once?

•  What kind of data do you have?
–  1, 8, 16, 32, or 64 bits?

•  Design Principal: what’s the common case?
–  Numbers?
–  Strings?
–  Characters?
–  How many letters in the alphabet?

•  Application driven
–  Signal processing: 16-bit fixed point (fraction)
–  Text processing:

•  characters
•  8-bit (C, Fortran)
•  16-bit (Java) characters

–  Scientific computing: 64-bit floating point

9

UTCS CS352 Lecture 5
 17

How much data at once?
Where is it (alignment)?

•  How much?
–  A byte = 8 bits
–  A half word = 16 bits
–  A word = 32 bits
–  A double word = 64 bits

•  Alignment:
–  Bytes accessed at any address
–  Halfwords only at even addresses
–  Words accessed only at multiples of 4

byte

0x1000
0x1003
0x1004

half word
half word

byte or half word aligned

✗
unaligned half word access (illegal)

0x1000
0x1002
0x1003
 0x1001

addresses

UTCS CS352 Lecture 5
 18

Endianness

•  How are bytes ordered within a word?
–  Little Endian (Intel, DEC)
–  most significant byte at highest address (this class)

–  Big Endian (MIPS, PowerPC, IBM, Motorola, ARM)
•  most significant byte at lowest address

–  Today - most machines can do either (configuration
 register)

0
 1
 2
 3

0x1000
 0x1001
 0x1002
 0x1003

0
1
2
3

0x1000
0x1001
0x1002
0x1003

10

UTCS CS352 Lecture 5
 19

Data Types

•  How does the machine
 interpret the contents of
 memory and registers?

•  Explicit or implicit?
–  tag
–  use

•  Most general purpose
 computers correlate size
 with type
–  8, 16, 32, 64-bit
–  signed and unsigned
–  fixed and floating
–  characters
–  addresses vs. values 0x8a1c int

“abcd” str

Examples of tags (ie. Symbolics machine)

UTCS CS352 Lecture 5
 20

Example: 32-bit Floating Point

•  Floating Point Type
 specifies mapping from
 bits to real numbers
–  format

•  1 bit sign
•  8-bit exponent
•  23-bit mantissa

–  interpretation
•  mapping from bits to

 abstract set

–  operations
•  add, mult, sub, sqrt, div

mantissa exp s
23 8 1

v MS E= − × ×−() .()1 2 1127

11

UTCS CS352 Lecture 5
 21

Integer Constants

•  Integer constants
–  mostly small
–  positive or negative

•  Bit fields
–  contiguous field of 1s within 32 bits

 (64 bits)
•  Other

–  addresses, characters, symbols
•  A good architecture

–  uses a few bits to encode the most
 common.

–  allows any constant to be generated
 (table reference)

–  MIPS stores 32 bits of zero in $zero

Op
6 VAX short literal

-32 to 31

E
5

S
5

00000001111111111000000000000000

Symbolics 3600
Bit Fields

UTCS CS352

Lecture 5

Strings & Characters

•  Programming Language driven
•  C/C++, Fortran, etc

–  ASCII
•  American Standard Code
 for Information Interchange
•  1 character per byte
•  256 charcters
•  4 characters per word

•  Example: ‘B’ is 66, ‘a’ is 97, ‘t’ is 116 ‘!’ is 33
•  ‘Bat!’

0100 0010 0110 0001 0111 0100 0010 0001

 22

12

UTCS CS352

Lecture 5

Strings & Characters

•  Programming Language driven
•  Real Language driven

–  Universal Character Set
–  UTC-8, UTC-16, UTC-32
–  Lots of languages, not just English!

•  Java uses Unicode
–  UTC 16
–  2 characters per word (instead of 4 in ASCII)
–  Converts between other encodings

 23

UTCS CS352 Lecture 5
 24

Where is the data?
Addressing Modes

double x [100] ; // global
void foo(int a) { // formal argument
 int j ; // local
 for(j=0;j<10;j++)
 x[j] = 3 + a * x [j-1];
 bar(a);
}

Memory

foo

Stack

j
a

bar

x

procedure
constant

actual
argument

array reference

Driven by Executable Layout & Program Usage

13

UTCS CS352 Lecture 5
 25

Addressing Modes

•  Stack relative for locals and
 arguments

a, j: *(R30+x)

•  Short immediates (small
 constants)

3
•  Long immediates (global

 addressing)
&x[0], &bar: 0x3ac1e400

•  Indexed for array
 references

*(R4+R3)

Memory

foo

Stack

j
a

bar

x

SP

UTCS CS352 Lecture 5
 26

Addressing Modes

 #n immediate
 (0x1000) absolute
 Rn Register value
 (Rn) Register indirect (as address)
 -(Rn) predecrement
 (Rn)+ postincrement
 *(Rn) Memory indirect
 *(Rn)+ postincrement
 d(Rn) Displacement
 d(Rn)[Rx] Scaled

VAX 11 had 27 addressing modes (why?)

14

UTCS CS352 Lecture 5
 27

Summary

•  ISA definition
–  State: memory, registers, PC (Program Counter)
–  the effect of each operation on the system state

•  computation
•  memory state
•  conditional control

–  Data representation, layout, addressing
•  Next Time

–  Homework #2 is due 2/9
–  Control, Data in registers & memory,
–  MIPS

•  Reading: P&H 2.10-15

