Lecture 12: Pipelined Processor

* Last time
- Simple processor organization
- Logic & control
- Motivation & idea behind pipeling
+ Today
- Take QUIZ 8 over P&H 4.7-10, before 11:59pm today
- Homework 4 due Thursday March 4, 2010
- Pipelining in the real world

UTCS 352, Lecture 12 1

Pipelining Lessons

X0 0 —

~0oQ=0

6PM 7 8 9 - Pipelining doesn't help latency
I - of single task, it helps
—] | Time ‘I‘hr‘oughpu‘l’ Of entire
workload

R gy o e B
30 3 ?0 30 30 30 30 + Multiple tasks operating
simultaneously using

different resources

* Potential speedup = Number
pipe stages

* Pipeline rate limited by
slowest pipeline stage

+ Unbalanced lengths of pipe
stages reduces speedup

+ Time to "“fill" pipeline and time
to "drain” it reduces speedup
+ Stall for Dependences

UTCS 352, Lecture 12 2

Graphically Representing MIPS Pipeline

M | Reg%ﬁ Reg

* Can help with answering questions like:
- How many cycles does it take to execute this code?
- What is the ALU doing during cycle 4?

- Is there a hazard, why does it occur, and how can it be
fixed?

UTCS 352, Lecture 12 3

S~ 0 3 —~

S0 Q-0

Why Pipeline? For Performance!

Time (clock cycles)

Once the
Inst O M IRegE DM | {Reg pipéline is full,
T_ oneiinstruction

isicompleted
Inst 1 M 0 Regl "} oM]-Reg every cycle, so
 SesoeagRee CPI=1

Inst 2 ML Reg|=]_ Reg

Inst 3 M Reg[;@ ﬂ]- Reg

&=

Inst 4 M L Reg bM | |Reg
| Timé to fillithe pipeline u

UTCS 352, Lecture 12 4

Can Pipelining Get Us Into Trouble?

* Yes: Pipeline Hazards

- structural hazards: attempt to use the same resource by
two different instructions at the same time

- data hazards: attempt to use data before it is ready

* An instruction's source operand(s) are produced by a
prior instruction still in the pipeline

- control hazards: attempt to make a decision about
program control flow before the condition has been
evaluated and the new PC target address calculated

+ branch instructions

* Can always resolve hazards by waiting
- pipeline control must detect the hazard
- and take action fo resolve hazards

UTCS 352, Lecture 12 5

S~ 0 3 —

S o0oQ~0

A Single Memory Would Be a Structural Hazard

Time (clock cycles)

1w tnem i Reg@ !]_ Regé F:T?:rigr%data from
Inst 1 'Ilem i Reg[:@ Mem]_ Reg
Inst 2 tllem i Reg@ Mem]_ Reg
Inst 3 !.[Reg[:_l’_g Mem]_ Reg

Inst 4 Reaing ifstruction | t"em u Reg@ Mem]— Reg

frorh memory

Fix with separate instr and data memories (I$ and D$) 6

How About Register File Access?

Time (clock cycles)

register writing
UTCS 352, Lecture 12

| add $1, [im [dRegf bm]..
! e
S
¢ | Inst1 IM 0 Regft DM E{Reg
! e
of Inst 2 IM HORegf: DM [{Reg
: sy
d ;
el add $2,%1, M Reg
;
UTCS 352, Lecture 12 7
How About Register File Access?
Fix réegister file
;| add $1, (M HlRegf DM gccessihazard by
n T_ dping réads in the
s | " second: half of the
t | Inst1 M Reg[: '|'D '|'Re9 cycle arid writes in
r i the first half
> i
ol Inst 2 IM £l Regf DM [{Reg
; LA
d ;
e| add $2,%1, im IR D? DM E{Reg
; T
clock edge that controls clock edge that controls

loading of pipeline state

registers 8

S~ 0 3 —

S0 Q~0

Register Usage Can Cause Data Hazards
Dependencies backward in time cause hazards

add s$1, iMm R Reg@]_Reg-

DM
[—
sub $4,51,$5 M IReg[:{_@.‘.DL]_Reg

and $6,5$1,87 M IR%H#E}[Ti_TR@
or §$8,51,8%9 M IReg[:@TDL]_Reg

xor $4,51,$5 IM IR%E#E}[DM IR@

Read before write is ready: data hazard

UTCS 352, Lecture 12 9

Register Usage Can Cause Data Hazards
Dependencies backward in time cause hazards

add 31, M

sub $4,51,85

and $6,5$1,87

or §8,%$1,%9

Reg

xor $4,%51,85

Write-read data hazard

UTCS 352, Lecture 12 10

S~ 0 3 —

S0 Q~0

Loads Can Cause Data Hazards
Dependencies backward in time cause hazards

lw $1,4($2)|™

sub $4,51,85

and $6,51,87

or $8,51,%9

xor $4,%$1,%5

Reg

+ Load-use data hazard

UTCS 352, Lecture 12

1

Resolving Hazards: Pipeline Stalls

* Can resolve any type of hazard
- data, control, or structural

Detect the hazard

Freeze the pipeline up to the dependent stage
until the hazard is resolved

UTCS 352, Lecture 12

12

One Way to "Fix" a Data Hazard

Can fix data

or §8,%$1,%9

[0 LR B
Z but impacts
! b $4,51,85 i|m ’ : red
su ’ ’ : g eg
: el
(0]
and $6,5$1,87 DM | |Reg
y =1l
e
r
UTCS 352, Lecture 12 13
Another Way to "Fix" a Data Hazard
Fixgdata Hazards
g by forwarding
11 : :
/| add S$1, ™ Reg[’%ﬂ results s soon
n i asthey are
S i available to
t| sub $4,51,85 m Regl% '|'D T Red where they are
" H needed
o M Regl
g and $6,51,8%7
e
r DM

[

DM Reg

xor $4,51,$5 IR [i

UTCS 352, Lecture 12

14

Data Forwarding (aka Bypassing)

Take the result from the earliest point that it exists in any of the
pipeline state registers and forward it to the functional units
(e.g., the ALU) that need it that cycle

For ALU functional unit: the inputs can come from any pipeline
register
- adding multiplexors to the inputs of the ALU

- connecting the Rd write data in EX/MEM or MEM/WB to either (or
both) of the EX's stage Rs and Rt ALU mux inputs

- adding the proper control hardware to control the new muxes
Other functional units may need forwarding logic (e.g., the DM)

Forwarding can achieve a CPT of 1 even in the presence of data
dependencies

UTCS 352, Lecture 12 15

PC

Datapath with Forwarding Hardware

PCSrc
ID/EX
ﬁ EX/IVEM
Control
IFID \// M H ¥
MEM/WB

d |_Eranc \77
4 ST
Read Addr 1 J

Instruction Register Read | | || Data
Memory Read Addr 20ata 1 Memory

Read File M Read |_|

|

-

Address Write Addr /‘\ Fr2tAddress Data]
Data 2 i
~—»\Write Data] | Write Data
1l ALU\ |: :
16 32 : :
=>| cntrl :
OEPER |1 .~
EX/MEM.RegisterRd
m‘:_FlWWB.Registeer_

iyexJRigisterRs _Unit £ I

ID/EX.Regi

UTCS 352, Lecture 12 1c

Forwarding Illustration

S~ 0 3 —~

S0 Q~0

add $1, M J:Reg[: =N [om

Reg

sub $4’$1’$5 M J:Regi

DM

Reg
T

and $6,$7,5%1

M E Regf:

EX/MEM hazard
forwarding

UTCS 352, Lecture 12

DM

Reg

=i

MEM/WB hazard

forwarding

17

Data Forwarding Control Conditions

EX/MEM hazard:
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

MEM/WB hazard:

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)

Forwards the
result from the
previous instr.
to either input
of the ALU

Forwards the

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) resultfromthe

ForwardA = 01
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and (MEM/WB.RegisterRd

ForwardB = 01
UTCS 352, Lecture 12

second
previous instr.
to either input

ID/EX.RegisterRt)) Ofthe ALU

18

Yet Another Complication!

a conflict between the result of the WB stage

instruction and the MEM stage instruction - which

should be forwarded?

Another potential data hazard can occur when there is

add $1,81,$2(mm

 TRegf & WLIbM | IReg

S~ 0 3 —~

add $1,51,83

add $1,51,54

S0 Q-0

UTCS 352, Lecture 12

M ERegf 1 Whibm

Reg
.|_

M H]Regf

DM

Reg

19

Corrected Data Forwarding Control Conditions

MEM/WB hazard:

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd

and (EX/MEM.RegisterRd

and (MEM/WB.RegisterRd
ForwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd
and (EX/MEM.RegisterRd
and (MEM/WB.RegisterRd
ForwardB = 01

UTCS 352, Lecture 12

= 0)
!= ID/EX.RegisterRs)
= ID/EX.RegisterRs))

= 0)
!= ID/EX.RegisterRt)
= ID/EX.RegisterRt))

20

10

Memory Data Hazards

p | 1w S1,4(82) (M
n
S

t| sub $4,51,8$5
r.
o| and $6,51,87

-

d

el or $8,51,$9 Reg
r

xor $2,$7,%9 M IReg@'[DM]'Reg
+ Does forwarding solve all our problems?
UTCS 352, Lecture 12 21
Forwarding with Load-use Data Hazards

/ 1w $1,4($2)IM J:Reg@

n D

? sub $4,51,$5 M J:Reg[: i

r.

ol and $6,51,87 ™]-Reg

;

0 or §8,51,%$9 IDM Reg
r 14 14]_

xor $2,87,%9 IM J:Reglﬁ.[w]_Reg

+ still must stall one cycle even with forwarding!

UTCS 352, Lecture 12 22

11

S~ 0 3 —

=0 Q0

Forwarding with Load-use Data Hazards

1w §1 4($2)IM J:Reg[: pm [E {REg
7| DX - \,& —
st s4,51,85 (™ RS EMARR
\~\ 7 2
and $6,51,$5 M iRegFE}é RM]'Reg
ol $6,50,$9 i =3 T
cor §81,%1,,%% m R 2V om | lReg
T
xor $4,51,85 M R Z .[DM]_
UTCS 352, Lecture 12 23

Load-use Hazard Detection Unit

Need a Hazard detection Unit in the ID stage that inserts a
stall between the load and its use

ID Hazard Detection

if (ID/EX.MemRead

and ((ID/EX.RegisterRt = IF/ID.RegisterRs)
or (ID/EX.RegisterRt = IF/ID.RegisterRt)))
stall the pipeline

The first line tests to see if the instruction now in
the EX stage is a 1w; the next two lines check to see
if the destination register of the 1w matches either
source register of the instruction in the ID stage
(the load-use instruction)

After this one cycle stall, the forwarding logic can
handle the remaining data hazards

UTCS 352, Lecture 12 24

12

Stall Hardware

We have to detect this case & implement the stall

Prevent the instructions in the IF and ID stages from
progressing down the pipeline - done by preventing the PC
register and the IF/ID pipeline register from changing
- Hazard detection Unit controls the writing of the PC (PC.write)

and IF/ID (IF/ID.write) registers

Insert a "bubble” between the 1w instruction (in the EX stage)
and the load-use instruction (in the ID stage) (i.e., insert a noop
in the execution stream)

- Set the control bits in the EX, MEM, and WB control fields of the
ID/EX pipeline register to O (noop). The Hazard Unit controls the
mux that chooses between the real control values and the O's.

Let the 1w instruction and the instructions after it in the
pipeline (before it in the code) proceed normally down the
pipeline

UTCS 352, Lecture 12 25

Adding the Hazard Hardware

PCSrc

PC

D/EX.MemRead

ID/EX
ﬁ EX/IMEM
| H H ¥
[1 —»Control |0 [|
MEM/WB
d _E ranct ~—al
: Read Addr 1 N E
Instruction Register Read || | Data
Memory Read Addr 20ata 1 Memory
Read . |
— = File Read
Address Write Addr /{\ FAddress Data |1
Data 2= il .
~»\Write Data] > Write Data ;
- 1T M ALU\ |? H

16 32 cntrl
I & B -’/ﬂ
Forward — J B

Unit

ID/EX.RegisterRt L]

UTCS 352, Lecture 12

13

Compiler Instruction Scheduling

The compiler can rearrange instructions, eliminating
load-use hazard!

Proebsting & Fischer (1991) show how to optimally
schedule a straight line sequence of instructions,
given sufficient registers and a delay of one pipeline
stage.

Approach

Build a dependence graph that describes the partial order of
instruction definitions and uses

Schedule R independent loads (load; load; load; ..)
Each load requires a register,
thus R is the minimum number of live registers

Schedule operation independent of the previous load and
utcs s@nather.load in a pair (operation; load) 27

S~ 0 3 —

=0 Q0

Compiler Scheduling to Avoid
Load-use Data Hazards

M ED Reg@

sub $4,51,$5 I Regl

lw 51,4(82)

and $6,51,$7

or $8,51,%9

e

xor $2,87,$9 N M J:Reg@.[w]_Reg

UTCS 352, Lecture 12 28

14

S~ 0 3 —

=0 Q-0

Compiler Scheduling to Avoid
Load-use Data Hazards

lw $1,4(82)

xor $2,37,$9 M J:Reg[:

Reg

sub $4,51,8$5

and $6,51,87

Reg

or $8,51,%9

UTCS 352, Lecture 12

]_ Reg

29

Types of Data Hazards

RAW (read after write)

- only hazard for ‘fixed' pipelines

- later instruction must read after earlier write
WAW (write after write)

- variable-length pipeline

- later instruction must write after earlier write
WAR (write after read)

- pipelines with late read
- later instruction must write after earlier read

UTCS 352, Lecture 12

30

15

S ~0 3> —~

SoQ~0

Memory-to-Memory Copies

For loads immediately followed by stores (memory
-tfo-memory copies) can avoid a stall by adding
forwarding hardware from the MEM/WB register to
the data memory input.

- Would need to add a Forward Unit and a mux to the memory

access stage
M 0 Reg@ om [l [Redf
sW ,4(83) M IRGQ@ M]'Reg_

UTCS 352, Lecture 12 31

lw 51,4(82)

Summary

The real world of pipelining

- Just stall

- Forwarding for register and memory hazards
Next Time

- Prediction for control hazards

- Multiple issue and out-of-order processors

- Homework 4 due Thursday March 4, 2010
Reading: P&H 4.11-15

UTCS 352, Lecture 12 32

16

