
UTCS 352, Lecture 16 1

Lecture 16: Cache Memories

•  Last Time
–  AMAT – average memory access time
–  Basic cache organization

•  Today
–  Take QUIZ 12 over P&H 5.7-10 before 11:59pm today
–  Read 5.4, 5.6 for 3/25
–  Homework 6 due Thursday March 25, 2010

–  Hardware cache organization
–  Reads versus Writes
–  Cache Optimization

UTCS 352, Lecture 16 2

Cache Memory Theory

•  Small fast memory + big
 slow memory

•  Looks like a big fast
 memory

MC

Small
Fast

MM

Big
Slow

Big
Fast

UTCS 352, Lecture 16 3

The Memory Hierarchy

Registers

Level 1 Cache

1 cyc 3-10 words/cycle compiler managed
 < 1KB

1-3cy 1-2 words/cycle hardware managed
 32KB -1MB

5-10cy 1 word/cycle hardware managed
 1MB - 4MB

30-100cy 0.5 words/cycle OS managed
 64MB - 4GB

106-107cy 0.01 words/cycle OS managed
 4GB+

Level 2 Cache

CPU
Chip

DRAM

Chips

Mechanical

Disk

Tape

Latency Bandwidth

UTCS 352, Lecture 16 4

Direct Mapped

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)

UTCS 352, Lecture 16 5

Fully Associative

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to any cache location

Cache location = any

UTCS 352, Lecture 16 6

Set Associative

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0Set 1 2 3
2-way set associative = 2 blocks in set
This example: 4 sets

UTCS 352, Lecture 16 7

How do we use memory address
to find block in the cache?

UTCS 352, Lecture 16 8

How Do We Find a Block in The Cache?

•  Our Example:
–  Main memory address space = 32 bits (= 4GBytes)
–  Block size = 4 words = 16 bytes
–  Cache capacity = 8 blocks = 128 bytes

• 

•  index ⇒ which set
•  tag ⇒ which data/instruction in block
•  block offset ⇒ which word in block
•  # tag/index bits determine the associativity
•  tag/index bits can come from anywhere in block address

32 bit Address

block offset

4 bits

tag index

block address

28 bits

UTCS 352, Lecture 16 9

Finding a Block: Direct-Mapped

S
Entries

Tag Index
Address

=

Hit Data

With cache capacity = 8 blocks

3

25

UTCS 352, Lecture 16 10

Finding A Block: 2-Way Set-Associative

2 elements per set

4
Sets

Tag Index
Address

= =

Data

Hit

2

26

S - sets
A - elements in each set

A-way associative
S=4, A=2

2-way associative
8-entry cache

UTCS 352, Lecture 16 11

Finding A Block: Fully Associative

Tag

Address
Data

Hit

=

=

= = =

= = =

28

UTCS 352, Lecture 16 12

Set Associative Cache - cont’d

•  All of main memory is
 divided into S sets
–  All addresses in set N map

 to same set of the cache
•  Addr = N mod S
•  A locations available

•  Shares costly comparators
 across sets

•  Low address bits select set
–  2 in example

•  High address bits are tag,
 used to associatively
 search the selected set

•  Extreme cases
–  A=1: Direct mapped cache
–  S=1: Fully associative

•  A need not be a power of 2

UTCS 352, Lecture 16 13

Cache Organization

27

Address

15
42
86

95
11
75
33

Data

Valid
bits

90
12
74
35

99
13
73
31

96
14
72
37

•  Where does a block get placed? - DONE
•  How do we find it? - DONE
•  Which one do we replace when a new one is brought in?
•  What happens on a write?

UTCS 352, Lecture 16 14

Which Block Should Be Replaced on Miss?

•  Direct Mapped
–  Choice is easy - only one option

•  Associative
–  Randomly select block in set to replace
–  Least-Recently used (LRU)

•  Implementing LRU
–  2-way set-associative
–  >2 way set-associative

UTCS 352, Lecture 16 15

What Happens on a Store?

•  Need to keep cache consistent with main memory
–  Reads are easy - no modifications
–  Writes are harder - when do we update main memory?

•  Write-Through
–  On cache write - always update main memory as well
–  Use a write buffer to stockpile writes to main memory for

 speed

•  Write-Back
–  On cache write - remember that block is modified (dirty

 bit)
–  Update main memory when dirty block is replaced
–  Sometimes need to flush cache (I/O, multiprocessing)

UTCS 352, Lecture 16 16

BUT: What if Store Causes Miss!

•  Write-Allocate
–  Bring written block into cache
–  Update word in block
–  Anticipate further use of block

•  No-write Allocate
–  Main memory is updated
–  Cache contents unmodified

UTCS 352, Lecture 16 17

Improving cache performance

UTCS 352, Lecture 16 18

How Do We Improve Cache Performance?

hit miss missAMAT t p penalty= + •

UTCS 352, Lecture 16 19

How Do We Improve Cache Performance?

•  Reduce hit time
•  Reduce miss rate
•  Reduce miss penalty

hit miss missAMAT t p penalty= + •

UTCS 352, Lecture 16 20

Questions to think about

•  As the block size goes up, what happens to the
 miss rate?

•  … what happens to the miss penalty?
•  … what happens to hit time?
•  As the associativity goes up, what happens to the

 miss rate?
•  … what happens to the hit time?

UTCS 352, Lecture 16 21

Reducing Miss Rate: Increase Associativity

•  Reduce conflict misses
•  Rules of thumb

–  8-way = fully associative
–  Direct mapped size N = 2-way set associative size N/2

•  But!
–  Size N associative is larger than Size N direct mapped
–  Associative typically slower that direct mapped (thit larger)

UTCS 352, Lecture 16 22

Reducing Hit Time

•  Make Caches small and simple
–  Hit Time = 1 cycle is good (3.3ns!)
–  L1 - low associativity, relatively small

•  Even L2 caches can be broken into sub-banks
–  Can exploit this for faster hit time in L2

UTCS 352, Lecture 16 23

Reducing Miss Rate: Increase Block Size

•  Fetch more data with each cache miss
–  16 bytes ⇒ 64, 128, 256 bytes!
–  Works because of Locality (spatial)

0

5

10

15

20

25

16 32 64 128 256

Block Size

M
is

s
R

at
e

1K 4K
16K 64K
256K

UTCS 352, Lecture 16 24

Reduce Miss Penalty: Transfer Time

•  Should we transfer the whole block at once?
•  Wider path to memory

–  Transfer more bytes/cycle
–  Reduces total time to transfer block
–  Limited by wires

•  Two ways to do this:
–  Wider path to each memory
–  Separate paths to multiple memories

“multiple memory banks”

•  Block size and transfer unit not necessarily equal!

UTCS 352, Lecture 16 25

Reduce Miss Penalty: Deliver Critical word first

•  Only need one word from block immediately

•  Don’t write entire word into cache first
–  Fetch word 2 first (deliver to CPU)
–  Fetch order: 2 3 0 1

LW R3,8(R5)

0 1 32

UTCS 352, Lecture 16 26

Reduce Miss Penalty: More Cache Levels

•  Average access time =
 HitTimeL1 + MissRateL1 * MissPenaltyL1

•  MissPenaltyL1 =
 HitTimeL2 + MissRateL2 * MissPenaltyL2

•  etc.
•  Size/Associativity of higher level caches?

L1 L3L2

UTCS 352, Lecture 16 27

Reduce Miss Penalty: Read Misses First

•  Let reads pass writes in Write buffer

SW 512(R0),R3
LW R1,1024(R0)
LW R2,512(R0)

Tag
Data

CPU

=?

MAIN MEMORYwrite buffer

UTCS 352, Lecture 16 28

Reduce Miss Penalty:
Lockup (nonblocking) Free Cache

•  Let cache continue to function while miss is being
 serviced

LW
 R1,1024(R0)
LW R2,512(R0)

Tag
Data

CPU

=?

MAIN MEMORYwrite buffer

MISS

LW R2,512(R0)

LW R1,1024(R0)

UTCS 352, Lecture 16 29

Reducing Miss Rate: Prefetching

•  Fetching Data that you will probably need

•  Instructions
–  Alpha 21064 on cache miss

•  Fetches requested block intro instruction stream buffer
•  Fetches next sequential block into cache

•  Data
–  Automatically fetch data into cache (spatial locality)
–  Issues?

•  Compiler controlled prefetching
–  Inserts prefetching instructions to fetch data for later use
–  Registers or cache

UTCS 352, Lecture 16 30

Reducing Miss Rate: Use a “Victim” Cache

•  Small cache (< 8 fully associative entries)
–  Jouppi 1990
–  Put evicted lines in the victim FIRST
–  Search in both the L1 and the victim cache
–  Accessed in parallel with main cache
–  Captures conflict misses

Tag

L1 Victim

CPU

=?

=?

UTCS 352, Lecture 16 31

VC: Victim Cache Example
Given direct mapped L1 of 4 entries,
 fully associative 1 entry VC
Address access sequence
•  8, 9, 10, 11, 8, 12, 9, 10, 11, 12, 8
 ^ ^ ^
 A B C
First access to 12 misses, put 8 in VC,
 put 12 in L1, third access to 8 hits in VC

Tag
L1

Victim

CPU

=?

=?

8
9

10
11

L1 Victim

12
9

10
11 8

L1 Victim

12
9

10
11 8

L1 Victim

 After: A B C

UTCS 352, Lecture 16 32

Summary

•  Recap
–  Using a memory address to find location in cache
–  Deciding what to evict from the cache
–  Improving cache performance

•  Next Time
–  Homework 6 is due March 25, 2010
–  Reading: P&H 5.4, 5.6

–  Virtual Memory
–  TLBs

