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Lecture 16: Cache Memories 

•  Last Time 
–  AMAT – average memory access time 
–  Basic cache organization 

•  Today 
–  Take QUIZ 12 over P&H 5.7-10 before 11:59pm today 
–  Read 5.4, 5.6 for 3/25 
–  Homework 6 due Thursday March 25, 2010 

–  Hardware cache organization 
–  Reads versus Writes 
–  Cache Optimization 
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Cache Memory Theory 

•  Small fast memory + big
 slow memory 

•  Looks like a big fast
 memory 

MC 
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Fast 

MM 

Big 
Slow 

Big 
Fast 
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The Memory Hierarchy 

Registers 

Level 1 Cache 

1 cyc  3-10 words/cycle  compiler managed 
 < 1KB 

1-3cy  1-2 words/cycle  hardware managed 
 32KB -1MB 

5-10cy  1 word/cycle  hardware managed 
 1MB - 4MB 

30-100cy  0.5 words/cycle  OS managed 
 64MB - 4GB 

106-107cy  0.01 words/cycle  OS managed 
 4GB+   

Level 2 Cache 

CPU 
Chip 

DRAM 

Chips 

Mechanical 

Disk 

Tape 

Latency Bandwidth
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Direct Mapped 

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)
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Fully Associative 

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to any cache location

Cache location = any
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Set Associative 

10 2 3 4 5 6 7

8 9 10 11 1213 141516171819 20 212223 24252627 2829 303110 2 3 4 5 6 7

•  Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0Set 1 2 3
2-way set associative = 2 blocks in set
This example: 4 sets
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How do we use memory address 
to find block in the cache? 
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How Do We Find a Block in The Cache? 

•  Our Example: 
–  Main memory address space = 32 bits (= 4GBytes) 
–  Block size = 4 words = 16 bytes 
–  Cache capacity = 8 blocks = 128 bytes 

•   

•  index ⇒ which set 
•  tag ⇒ which data/instruction in block 
•  block offset ⇒ which word in block 
•  # tag/index bits determine the associativity 
•  tag/index bits can come from anywhere in block address 

32 bit Address

block offset

4 bits

tag index

block address

28 bits
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Finding a Block: Direct-Mapped 

S  
Entries 

Tag Index 
Address 

= 

Hit Data 

With cache capacity = 8 blocks 

3

25
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Finding A Block: 2-Way Set-Associative 

2 elements per set 

4  
Sets 

Tag Index 
Address 

= = 

Data 

Hit 

2

26

S - sets 
A - elements in each set  

A-way associative 
S=4, A=2 

2-way associative  
8-entry cache 
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Finding A Block: Fully Associative 

Tag 

Address 
Data 

Hit 

= 

= 

= = = 

= = = 

28
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Set Associative Cache - cont’d 

•  All of main memory is
 divided into S sets 
–  All addresses in set N map

 to same set of the cache  
•  Addr = N mod S 
•  A locations available 

•  Shares costly comparators
 across sets 

•  Low address bits select set 
–  2 in example 

•  High address bits are tag,
 used to associatively
 search the selected set 

•  Extreme cases 
–  A=1:  Direct mapped cache 
–  S=1:  Fully associative 

•  A need not be a power of 2 
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Cache Organization 

27 

Address 
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•  Where does a block get placed? - DONE
•  How do we find it? - DONE
•  Which one do we replace when a new one is brought in?
•  What happens on a write?
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Which Block Should Be Replaced on Miss? 

•  Direct Mapped 
–  Choice is easy - only one option 

•  Associative 
–  Randomly select block in set to replace 
–  Least-Recently used (LRU) 

•  Implementing LRU 
–  2-way set-associative 
–  >2 way set-associative 
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What Happens on a Store? 

•  Need to keep cache consistent with main memory 
–  Reads are easy - no modifications 
–  Writes are harder - when do we update main memory? 

•  Write-Through 
–  On cache write - always update main memory as well 
–  Use a write buffer to stockpile writes to main memory for

 speed 

•  Write-Back 
–  On cache write - remember that block is modified (dirty

 bit) 
–  Update main memory when dirty block is replaced 
–  Sometimes need to flush cache (I/O, multiprocessing) 
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BUT: What if Store Causes Miss! 

•  Write-Allocate 
–  Bring written block into cache 
–  Update word in block 
–  Anticipate further use of block 

•  No-write Allocate 
–  Main memory is updated 
–  Cache contents unmodified 
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Improving cache performance 
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How Do We Improve Cache Performance? 

hit miss missAMAT t p penalty= + •
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How Do We Improve Cache Performance? 

•  Reduce hit time 
•  Reduce miss rate 
•  Reduce miss penalty 

hit miss missAMAT t p penalty= + •
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Questions to think about  

•  As the block size goes up, what happens to the
 miss rate? 

•  … what happens to the miss penalty?  
•  … what happens to hit time? 
•  As the associativity goes up, what happens to the

 miss rate? 
•  … what happens to the hit time? 
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Reducing Miss Rate: Increase Associativity 

•  Reduce conflict misses 
•  Rules of thumb 

–  8-way = fully associative 
–  Direct mapped size N = 2-way set associative size N/2 

•  But! 
–  Size N associative is larger than Size N direct mapped 
–  Associative typically slower that direct mapped (thit larger) 
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Reducing Hit Time 

•  Make Caches small and simple 
–  Hit Time = 1 cycle is good (3.3ns!) 
–  L1 - low associativity, relatively small 

•  Even L2 caches can be broken into sub-banks 
–  Can exploit this for faster hit time in L2 
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Reducing Miss Rate: Increase Block Size 

•  Fetch more data with each cache miss 
–  16 bytes ⇒ 64, 128, 256 bytes! 
–  Works because of Locality (spatial) 
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Reduce Miss Penalty: Transfer Time 

•  Should we transfer the whole block at once? 
•  Wider path to memory 

–  Transfer more bytes/cycle 
–  Reduces total time to transfer block 
–  Limited by wires 

•  Two ways to do this: 
–  Wider path to each memory 
–  Separate paths to multiple memories  

“multiple memory banks” 

•  Block size and transfer unit not necessarily equal! 
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Reduce Miss Penalty: Deliver Critical word first 

•  Only need one word from block immediately 

•  Don’t write entire word into cache first 
–  Fetch word 2 first (deliver to CPU) 
–  Fetch order: 2 3 0 1 

LW R3,8(R5) 

0 1 32



UTCS 352, Lecture 16          26 

Reduce Miss Penalty: More Cache Levels 

•  Average access time = 
   HitTimeL1 + MissRateL1 * MissPenaltyL1 

•  MissPenaltyL1 = 
   HitTimeL2 + MissRateL2 * MissPenaltyL2 

•  etc. 
•  Size/Associativity of higher level caches? 

L1 L3L2
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Reduce Miss Penalty: Read Misses First 

•  Let reads pass writes in Write buffer 

SW 512(R0),R3 
LW R1,1024(R0) 
LW R2,512(R0) 

Tag
Data

CPU

=?

MAIN MEMORYwrite buffer



UTCS 352, Lecture 16          28 

Reduce Miss Penalty:  
Lockup (nonblocking) Free Cache 

•  Let cache continue to function while miss is being
 serviced 

LW
 R1,1024(R0) 
LW R2,512(R0) 

Tag
Data

CPU

=?

MAIN MEMORYwrite buffer

MISS

LW R2,512(R0) 

LW R1,1024(R0) 
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Reducing Miss Rate: Prefetching 

•  Fetching Data that you will probably need 

•  Instructions 
–  Alpha 21064 on cache miss 

•  Fetches requested block intro instruction stream buffer 
•  Fetches next sequential block into cache 

•  Data 
–  Automatically fetch data into cache (spatial locality) 
–  Issues? 

•  Compiler controlled prefetching 
–  Inserts prefetching instructions to fetch data for later use 
–  Registers or cache 
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Reducing Miss Rate: Use a “Victim” Cache 

•  Small cache (< 8 fully associative entries) 
–  Jouppi 1990 
–  Put evicted lines in the victim FIRST 
–  Search in both the L1 and the victim cache 
–  Accessed in parallel with main cache 
–  Captures conflict misses 

Tag

L1 Victim

CPU

=?

=?
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VC: Victim Cache Example 
Given direct mapped L1 of 4 entries, 
    fully associative 1  entry VC 
Address access sequence 
•  8, 9, 10, 11, 8, 12, 9, 10, 11, 12, 8 
                      ^        ^             ^ 
                      A        B             C 
First access to 12 misses, put 8 in VC,  
    put 12 in L1, third access to 8 hits in VC 

Tag
L1

Victim

CPU

=?

=?

8
9

10
11

L1        Victim

12
9

10
11 8 

L1        Victim

12
9

10
11 8 

L1        Victim

 After: A                       B                                       C 
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Summary 

•  Recap 
–  Using a memory address to find location in cache 
–  Deciding what to evict from the cache 
–  Improving cache performance 

•  Next Time 
–  Homework 6 is due March 25, 2010 
–  Reading: P&H 5.4, 5.6 

–  Virtual Memory 
–  TLBs 


