
1

UTCS 352, Lecture 17
 1

Lecture 17: Virtual Memory

•  Administration
–  Take QUIZ 11 over P&H 5.4 before 11:59pm today
–  Homework 6 due now
–  Homework 7 due Thursday April 1, 2010 no joke 
–  Exam April 6 (review April 1)

•  Last Time
–  Using a memory address to find location in cache
–  Deciding what to evict from the cache
–  Improving cache optimization

•  Today
–  What is Virtual Memory?

UTCS 352, Lecture 17
 2

The Memory Hierarchy

Registers

Level 1 Cache

Level 2 Cache

CPU
Chip

DRAM

Chips

Mechanical

Disk

Tape

CPU ISA design

 Cache design

 Virtual Memory design

2

UTCS 352, Lecture 17
 3

Physical Memory Addressing

CPU
 Cache

LW R1,0(R2)

DRAM

64MB

21 bits

•  assuming 32 bytes per cache block

DRAM

256MB

23 bits

Physical Addr.

26 bits

Physical Addr.

28 bits

address

64 bits
 64 bits

tag
 ind
 off

30 bits

address

32 bits

UTCS 352, Lecture 17
 4

Webster’s definition of “virtual”

Pronunciation: 'v&r-ch&-w&l, -ch&l; 'v&rch-w&l
Function: adjective
Etymology: Middle English, possessed of certain physical virtues,
from Medieval Latin virtualis, from Latin virtus strength, virtue

1 : being such in essence or effect though not formally
 recognized or admitted <a virtual dictator>

2 : of, relating to, or using virtual memory

3 : of, relating to, or being a hypothetical particle whose
 existence is inferred from indirect evidence <virtual photons>

3

UTCS 352, Lecture 17
 5

The goal of virtual memory

•  Make it appear as if each process has:
–  Its own private memory
–  The memory is nearly infinite in size

•  The challenge... Physical memory is:
–  Limited in size
–  Shared by all of the processes running on the machine

•  The job of the virtual memory system is to
 maintain the illusion we want, given the physical
 limitations.

UTCS 352, Lecture 17
 6

What if?

•  A program is loaded into different places
 in memory each time it runs?
–  Relocation

•  A program wants to use more memory than
 physically exists?
–  Page to disk

•  We want to switch between multiple
 programs that use different data?
–  Protection

4

UTCS 352, Lecture 17
 7

Simple View of Memory
•  Single program runs at a

 time
•  Code and static data are at

 fixed locations
–  code starts at fixed

 location, e.g., 0x100
–  subroutines may be at

 fixed locations (absolute
 jumps)

•  data locations may be wired
 into code

•  Stack accesses relative to
 stack pointer.

PC

R1

R31
...

Code

Data

Stack

UTCS 352, Lecture 17
 8

Running Two Programs (Relocation)

•  Need to relocate logical
 addresses to physical
 locations

•  Stack is already relocatable
–  all accesses relative to SP

•  Code can be made relocatable
–  allow only relative jumps
–  all accesses relative to PC

•  Data segment
–  at load time, calculate all

 addresses relative to a DP
•  expensive

–  faster with hardware support
•  base register

PC

R1

R31
...

Code

Data

Stack

Code

Data

Stack

PC

R1

R31
...

5

UTCS 352, Lecture 17
 9

Base-Register Addressing

•  Add a single base register,
 BR, to hardware

•  Base register loaded with
 data pointer (DP) for
 current program

•  All data addresses added
 to base before accessing
 memory
–  Can relocate code too

•  Often implemented with an
 adder

Logical Address Base (DP)

Logical Address

UTCS 352, Lecture 17
 10

Base Register Addressing – Context switching

•  System code handles
 switching between programs
–  Place to stand: Mechanism to

 bypass the base address

•  System table contains
–  Base address of each

 program
–  Saved state of non-running

 programs

Base 0

Base 1

Code

Data

Stack

Code

Data

Stack

Sys Code
Sys Table

6

UTCS 352, Lecture 17
 11

Providing Protection Between Programs
(Length Registers)

•  Add a Length Register LR to
 the hardware

•  A program is only allowed to
 access memory from BR to B
R+Length-1

•  A program cannot set BR or LR
–  they are privileged registers

•  But how do we switch
 programs?

Code

Data

Stack

Code

Data

Stack

Base 0

Base 1

Sys Code
Sys Table

Length 0 +

Length 1 +

UTCS 352, Lecture 17
 12

Base + Length Addressing

Logical Address Base

Logical Address

Length

<

Allowed

Privileged Registers

7

UTCS 352, Lecture 17
 13

What a mess!

•  Is there a better way that:
–  Provides a standard virtual address space to each

 process
–  Simplifies protection
–  Enables relocation
–  Extends the physical memory capacity

UTCS 352, Lecture 17
 14

A Load from Virtual Memory

•  Translate from virtual space to physical space
–  VA ⇒ PA
–  May need to go to disk

CPU
 Cache
 DRAM

64MB

LW R1,0(R2)

Virtual Addr.

32 bits

21 bits

Tr
an

sla
te

Physical Addr.

26 bits

8

UTCS 352, Lecture 17
 15

A Load from Virtual Memory

•  Both programs can use the same set of addresses!
–  Change translation tables to point same VA to different PA for

 different programs

CPU
 Cache
 DRAM

64MB

LW R1,0(R2)

Virtual Addr.

32 bits

21 bits

Tr
an

sla
te

Physical Addr.

26 bits

Process 1

Process 2

Tr
an

sla
te

Tr
an

sla
te

UTCS 352, Lecture 17
 16

What a mess!

•  Is there a better way? We need:
–  Provides a standard virtual address space to each

 process
–  Simplifies protection
–  Enables relocation
–  Extends the physical memory capacity

9

UTCS 352, Lecture 17
 17

Demand Paging

•  Virtual address space is split into “pages”
–  4-256 KB
–  Pages in main-memory are called “page-frames”

•  Main memory holds a subset of all pages of a
 process

•  How to locate a page?
–  Virtual to physical address translation

•  How to allocate frames to processes?
–  Main memory as a cache for the disk

Disk

UTCS 352, Lecture 17
 18

Contiguous logical view still, but
 Paged Memory: Any Page in any Page Frame!

Code

Data

Stack

Code

Data

Stack

Contiguous Paged Memory

Pages

Page
Frames

OS changes mappings dynamically
•  In response to users data accesses
•  OS triggered by hardware

10

UTCS 352, Lecture 17
 19

What is the mapping from
a page to a page frame?

Code

Data

Stack

Memory

Page memory
number address

one entry per page

Page
Frames

Code

Data

Stack

Process
divided into pages

1
2
3
4
5
6
7
8

Logical Page Table

UTCS 352, Lecture 17
 20

Virtual Address Translation

Example
•  Main Memory = 64MB
•  Page Size = 4KB
•  VPN = 20 bits
•  PPN = 14 bits

Virtual Page Number (VPN)
 Page Offset

Physical Page Number (PPN)
 Page Offset

Translation

Table

0

11

12
25

31
 0

11

12

•  Translation table
–  aka “Page Table”

11

UTCS 352, Lecture 17
 21

Page Table Construction

•  Page table size
–  (14 + 1) * 220 ~ 2MB

•  Where to put the page table?

valid
 Physical Page Number

Page Table Register

+

VPN
 offset

PPN
 offset

UTCS 352, Lecture 17
 22

Paging and Protection

•  How to ensure that processes can’t access each
 other’s data
–  Put them in separate virtual address spaces
–  Control the mappings of VA to PA for each process

•  Separate page tables
•  How can you share data between processes?

–  Yes! Give them each a VA mapping to the same PA
•  Matching entry in each process’ page table

12

UTCS 352, Lecture 17
 23

Paging: Main Memory as a Cache for Disk

•  32 bit addresses = 4GB, Main Memory = 64MB
•  Dynamically adjust what data stays in main memory

–  Page similar to cache block
•  Note: file system >> 4GB, managed by O/S

data page

(4-256KB)

Demand Paging

UTCS 352, Lecture 17
 24

What if Data is Not in DRAM?

1) Examine page table

2) Discover that no mapping exists

3) Select page to evict, store back to disk

4) Bring in new page from disk

5) Update page table

13

UTCS 352, Lecture 17
 25

Page Fault

User Program Runs
Page fault

OS requests page

Disk read

2nd User Program Runs
Disk interrupt

OS Installs page

User program
resumes

UTCS 352, Lecture 17
 26

Summary

•  Virtual memory provides
–  Illusion of private memory system for each process
–  Protection
–  Relocation in memory system
–  Demand paging

•  But – page tables can be large
–  Motivates: paging page tables, multi-level tables, inverted

 page tables, TLB
•  Next time

–  Integration of virtual memory into cache hierarchy
–  DRAM memory organization, TLBs
–  Homework 7 is due 4/1
–  Reading: P&H 5.6, 5.11-13

