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Lecture 17: Virtual Memory 

•  Administration 
–  Take QUIZ 11 over P&H 5.4 before 11:59pm today 
–  Homework 6 due now 
–  Homework 7 due Thursday April 1, 2010       no joke  
–  Exam April 6 (review April 1) 

•  Last Time 
–  Using a memory address to find location in cache 
–  Deciding what to evict from the cache 
–  Improving cache optimization 

•  Today 
–  What is Virtual Memory? 
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The Memory Hierarchy 
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Physical Memory Addressing 
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Webster’s definition of “virtual” 

Pronunciation: 'v&r-ch&-w&l, -ch&l; 'v&rch-w&l 
Function: adjective 
Etymology: Middle English, possessed of certain physical virtues, 
from Medieval Latin virtualis, from Latin virtus strength, virtue 

1 : being such in essence or effect though not formally 
     recognized or admitted <a virtual dictator> 

2 : of, relating to, or using virtual memory 

3 : of, relating to, or being a hypothetical particle whose 
     existence is inferred from indirect evidence <virtual photons>  
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The goal of virtual memory 

•  Make it appear as if each process has: 
–  Its own private memory 
–  The memory is nearly infinite in size 

•  The challenge...  Physical memory is: 
–  Limited in size 
–  Shared by all of the processes running on the machine 

•  The job of the virtual memory system is to
 maintain the illusion we want, given the physical
 limitations. 
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What if? 

•  A program is loaded into different places
 in memory each time it runs? 
–  Relocation 

•  A program wants to use more memory than
 physically exists? 
–  Page to disk 

•  We want to switch between multiple
 programs that use different data? 
–  Protection 
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Simple View of Memory 
•  Single program runs at a

 time 
•  Code and static data are at

 fixed locations 
–  code starts at fixed

 location, e.g., 0x100 
–  subroutines may be at

 fixed locations (absolute
 jumps) 

•  data locations may be wired
 into code 

•  Stack accesses relative to
 stack pointer. 
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Running Two Programs (Relocation) 

•  Need to relocate logical
 addresses to physical
 locations 

•  Stack is already relocatable 
–  all accesses relative to SP 

•  Code can be made relocatable 
–  allow only relative jumps 
–  all accesses relative to PC 

•  Data segment 
–  at load time, calculate all

 addresses relative to a DP 
•  expensive 

–  faster with hardware support 
•  base register 
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Base-Register Addressing 

•  Add a single base register,
 BR, to hardware 

•  Base register loaded with
 data pointer (DP) for
 current program 

•  All data addresses added
 to base before accessing
 memory 
–  Can relocate code too 

•  Often implemented with an
 adder 

Logical Address Base (DP) 

Logical Address 
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Base Register Addressing – Context switching 

•  System code handles         
 switching between programs 
–   Place to stand: Mechanism to

 bypass the base address  

•  System table contains  
–  Base address of each

 program 
–  Saved state of non-running

 programs 
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Providing Protection Between Programs 
(Length Registers) 

•  Add a Length Register LR to
 the hardware 

•  A program is only allowed to
 access memory from BR to B
R+Length-1 

•  A program cannot set BR or LR 
–  they are privileged registers 

•  But how do we switch
 programs? 
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Base + Length Addressing 
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What a mess! 

•  Is there a better way that: 
–  Provides a standard virtual address space to each

 process  
–  Simplifies protection 
–  Enables relocation 
–  Extends the physical memory capacity 
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A Load from Virtual Memory 

•  Translate from virtual space to physical space 
–  VA ⇒ PA 
–  May need to go to disk 
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A Load from Virtual Memory 

•  Both programs can use the same set of addresses! 
–  Change translation tables to point same VA to different PA for

 different programs 
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What a mess! 

•  Is there a better way?  We need: 
–  Provides a standard virtual address space to each

 process  
–  Simplifies protection 
–  Enables relocation 
–  Extends the physical memory capacity 
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Demand Paging 

•  Virtual address space is split into “pages”  
–  4-256 KB 
–  Pages in main-memory are called “page-frames” 

•  Main memory holds a subset of all pages of a
 process 

•  How to locate a page? 
–  Virtual to physical address translation  

•  How to allocate frames to processes? 
–  Main memory as a cache for the disk 

Disk
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Contiguous logical view still, but 
 Paged Memory: Any Page in any Page Frame! 
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What is the mapping from 
a page to a page frame? 
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Virtual Address Translation 

Example 
•  Main Memory = 64MB 
•  Page Size = 4KB 
•  VPN = 20 bits 
•  PPN = 14 bits 
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•  Translation table 
–  aka “Page Table” 
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Page Table Construction 

•  Page table size 
–  (14 + 1) * 220 ~ 2MB 

•  Where to put the page table? 
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Paging and Protection 

•  How to ensure that processes can’t access each
 other’s data 
–  Put them in separate virtual address spaces 
–  Control the mappings of VA to PA for each process 

•  Separate page tables 
•  How can you share data between processes? 

–  Yes!  Give them each a VA mapping to the same PA 
•  Matching entry in each process’ page table 
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Paging: Main Memory as a Cache for Disk 

•  32 bit addresses = 4GB, Main Memory = 64MB 
•  Dynamically adjust what data stays in main memory 

–  Page similar to cache block 
•  Note: file system >> 4GB, managed by O/S 

data page

(4-256KB)


Demand Paging
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What if Data is Not in DRAM? 

1)  Examine page table 

2) Discover that no mapping exists 

3) Select page to evict, store back to disk 

4) Bring in new page from disk 

5) Update page table 
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Page Fault 

User Program Runs 
Page  fault 

OS requests page 

Disk read 

2nd User Program Runs 
Disk interrupt 
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User program 
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Summary 

•  Virtual memory provides 
–  Illusion of private memory system for each process 
–  Protection 
–  Relocation in memory system 
–  Demand paging 

•  But – page tables can be large 
–  Motivates: paging page tables, multi-level tables, inverted

 page tables, TLB 
•  Next time 

–  Integration of virtual memory into cache hierarchy 
–  DRAM memory organization, TLBs 
–  Homework 7 is due 4/1 
–  Reading: P&H 5.6, 5.11-13  


