GARBAGE COLLECTION IN AN
LUNCOOPERATIVE ENVIRONMENT

H. BOEHM AND M. WEISER

PRESENTED BY

SUMAN JANA

(SOME SLIDES COURTESY SRILAKSHMI PENDYALA)

WHY THINK ABOUT
LUNCOOPERATIVE ENVIRONMENTS ?

* Programmers do not want to pay for GC
- GC + manual memory management ?
* GC bookkeeping reduces space for data
- Tagging integers reduces max integer value
* Partial GC support for existing languages
- C, Pascal, Russell
* Bugs in read/write barriers are hard to detect

LUNCOOPERATIVE ENVIRONMENT

* Compiler cannot distinguish pointers from data
accurately

- Static analysis ? (dynamic data structures)
- Has to be conservative

* No read/write barriers

* Possibly no explicit reset of unused references

- Optimized code can skip clearing stale register
content

WHAT CAN GO WRONG

IF DATA IS

MISTAKEN AS POINTER ?

* Incorrect modifications during compact/copy

data

7

\

w

)

0x80495000

\,

v

Mutator view of object 1

WHAT CAN GO WRONG IF DATA IS
MISTAKEN AS POINTER ?

* Incorrect modifications during compact/copy

[)

0x80495000

> < - \
pointer | 0x80495000 - .
> < > $

GC view of object 1

WHAT CAN GO WRONG IF DATA IS
MISTAKEN AS POINTER ?

* Incorrect modifications during compact/copy

[)

r

pointer | 0x80595000
> <

\ J

GC relocates to
0x80595000

GC view of object 1

WHAT CAN GO WRONG

IF DATA IS

MISTAKEN AS POINTER ?

* Incorrect modifications during compact/copy

data

r

\

)

0x80595000

\

y

-

Mutator view of object 1

CONSERVATIVE GC ASSUMPTIONS

* Mutator does not intentionally hide references to
objects

- No pointer hiding
* Pointers only point to beginning of objects
- No interior object pointers (realistic ?)
* No objects greater than 4 KB

CONSERVATIVE GC DETAILS

Mark-Sweep, Stop-the-World
- No Copy/compaction

- Incorrect pointer detection only hurts
performance, not correctness

For marking each data value d in stack & registers
call verifyPointer(d)

- If verifyPointer(d)=TRUE, treat d as pointer
Less accurate verifyPointer — more memory leak

Modify memory allocator to improve accuracy of
verifyPointer

CONSERVATIVE GC DETAILS
(CNTD.)

* Modified sweep phase

- If a object is not marked, add the object to
corresponding free-list

- If an entire chunk is not marked, return the
chunk to OS allocator

- Multiple adjacent free chunks are coalesced and
returned

MEMORY ALLOCATOR

Allocation in 4KB chunks (also 4KB aligned) from OS
allocator

Each chunk contains same-sized objects
Free-lists for smaller objects

Dedicated chunk for larger objects

Global list of allocated chunks

Each chunk header contains

- Size of objects in the chunk

- Pointer to corresponding entry in global list
- Mark bits for objects

MEMORY ALLOCATOR (CNTD.)

entry for C:

List of
allocated
chunks

chunk
addresses

_-"'"H

-

—

more
chunk
addresses

emptly

-s— last valid chunk

Chunk C

mark bits

data
objects

VERIFYPOINTER(D)

If (d<lowest heap addr) or (d>highest heap addr)
return FALSE

Find chunk C containing d's target object
- C=d & Oxffff0000 (why?)
If C not in Global allocated chunk list return FALSE

If ((d-C) mod C->object_size ==0) and
((d-C)+object_size <= 4KB) return TRUE
Else return FALSE

MINIMIZING VERIFYPOINTER FALSE
POSITIVES

* Process address space follows standard UNIX
layout

- Heap starting address is 0x80***
- No false positives for small data values

* Separation of "atomic” and "composite” objects
- "atomic” objects cannot contain any pointers

- Extra chunk header bit indicates "atomic”
objects

CONSERVATIVE GO ISSUES

* Memory leak

- Some unused objects may never be collected
(data mistaken as pointers to unused objects)

* Difficult to support copy/compaction

- Modifying data mistaken as pointers will result in
incorrect behavior

* Difficult to support concurrent/incremental GC
- No read/write barriers

EXPERIMENTAL RESULTS

* Russell GC Marking took 1.9 s/MB of accessible
memory in heap and sweep phase took 0.4 s/MB on a
25 MHz Sun 3/260

* Successfully ran two large unmodified C programs -
TimberWolf and SDI. with GC

- Re-linked programs to call GC allocator instead
of standard Unix allocator.

* Noticed significant fragmentation

- Free space in a chunk can not be reused for
different-sized objects

EXPERIMENTAL RESULTS (CNTD.)

* Tssues with SUNVIEW+GC

- Dynamically allocated memory remapped to refer
to frame buffer: used "valloc’ calls

* Soln: never free 'valloc' allocated memory

- Allocated large chunks of memory using "malloc”
and divided it into multiple parts for fast
allocation, did not keep the original "*head”
pointer

* Soln: Recognize such calls and do not free
those locations

GC AS A DEBUGGING TOOL

* GC can identify memory leaks
- Find not-freed inaccessible allocated memory
* Steps
- Record function names are recorded in a list for
“malloc” call

- for 'free’ call, remove the corresponding list-
entry

- If 6C finds any inaccessible object declare it as
memory leak along with the corresponding source
fucntion from malloc-list

DISCUSSION QQUESTIONS

* Concurrent conservative garbage collection ?

- Checkpointing heap at the beginning of mark
phase

- Lazy copying (COW pages) can decrease
checkpointing overhead

* Do we really need conservative collectors ?
- Are the motivations given in the paper justified?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

